Skip to main content
Log in

Adaptive Flow Rate Control for Network Utility Maximization Subject to QoS Constraints in Wireless Multi-hop Networks

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the problem of network utility maximization subject to QoS constraints in a wireless multi-hop network. Recently, virtual queues based cross-layer solution has been proposed to address this issue. Virtual queues can share the burden of the actual queues and also control the lengths of actual queues to ensure certain QoS constraints. In this paper, we introduce link reliability into the virtual queue models and optimization objective and accordingly present a fully distributed adaptive CSMA based flow rate control algorithm (AFCA) to achieve network utility maximization subject to QoS constraints. We analyze AFCA’s stability property and its near-optimality in network utility maximization while satisfying given QoS constraints. We reveal the relationship between various key parameters in AFCA and resulting network utility. Simulation results validate the effectiveness of our analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In this paper, we assume that it is upper layer’s duty (e.g., transport layer or application layer) to recover those lost packets and we will touch how such packet recovery is realized in the rest of this paper.

References

  1. Low SH, Lapsley DE (1999) Optimization Flow Control, I: Basic Algorithm and Convergence. IEEE/ACM Trans Networking 7(6):861–874

    Article  Google Scholar 

  2. Chiang M, Low SH, Calderbank RA, Doyle JC (2007) Layering as optimization decomposition - A mathematical theory of network architectures. Proc IEEE 95(1):255–312

    Article  Google Scholar 

  3. Lin X, Shroff NB, Srikant R (2008) On the connection-level stability of congestion-controlled communication networks. IEEE Trans Inf Theory 54(5):2317–2338

    Article  MathSciNet  MATH  Google Scholar 

  4. Li Y, Chiang M, Calderbank AR, Diggavi SN (2009) Optimal rate-reliability-delay tradeoff in networks with composite links. IEEE/ACM Trans Networking 57(5):1390–1401

    Google Scholar 

  5. Pongsajapan J, Low SH (2007) Reverse engineering TCP/IP-like networks using delay-sensitive utility functions. In: Proc. of IEEE INFOCOM’07. Anchorage, pp 418–426

  6. Neely M (2011) Opportunistic scheduling with worst case delay guarantees in single and multi-hop networks. In: Proc. of IEEE INFOCOM’11. Shanghai, pp 1728–1736

  7. Neely MJ, Modiano E, Rohrs CE (2005) Dynamic Power Allocation and Routing for time varing wireless networks. IEEE J Sel Areas Commun 23(1):98–103

    Article  Google Scholar 

  8. Neely MJ, Modiano E, Li CP (2008) Fairness and optimal stochastic control for heterogeneous networks. IEEE/ACM Trans Networking 16(2):396–409

    Article  Google Scholar 

  9. Wang X, Kar K (2006) Cross-layer rate optimization for proportional fairness in multihop wireless networks with random access. IEEE J Sel Areas Commun 24(8):1548–1559

    Article  Google Scholar 

  10. Xue D, Ekici E (2013) Delay-guaranteed cross-Layer scheduling in multihop wireless networks. IEEE/ACM Trans Networking 21(6):1696–1707

    Article  Google Scholar 

  11. Huynh T, Pham N, Lee S, Hwang W (2015) Dynamic Control Policy for Delay Guarantees in Multi-hop Wireless Networks. Wireless Personal Communications: An International Journal 80(2):647–670

    Article  Google Scholar 

  12. Jiang L, Walrand J (2010) A Distributed CSMA Algorithm for Throughput and Utility Maximization in wireless networks. IEEE/ACM Trans Networking 18(3):960–972

    Article  Google Scholar 

  13. Liew SC, Kai CH, Leung HC, Wong P (2010) Back-of-the-envelope computation of throughput distributions in CSMA wireless networks. IEEE Trans Mob Comput 9(9):1319–1331

    Article  Google Scholar 

  14. Deng X, He L, Zhu C, Dong M, Ota K, Cai L (2016) QoS-Aware and Load-Balance Routing for IEEE 802.11s Based Neighborhood Area Network in Smart Grid. Wirel Pers Commun 89(4):1065–1088

    Article  Google Scholar 

  15. Ota K, Dong M, Chen X, Liu A, Chen Z (2013) Cross layer optimal design for wireless sensor networks under rayleigh fast fading channels. In: Proc. of IEEE HPCC/EUC’13. Zhangjiajie, pp 183–189

  16. Dong M, Ota K, Liu A, Guo M (2016) Joint Optimization of Lifetime and Transport Delay under Reliability Constraint Wireless Sensor Networks. IEEE Trans Parallel Distrib Syst 27(1):225–236

    Article  Google Scholar 

  17. Li Y, Papachristodoulou A, Chiang M, Calderbank AR (2011) Congestion control and its stability in networks with delay sensitive traffic. Comput Netw 55:20–32

    Article  MATH  Google Scholar 

  18. Giaccone P, Leonardi E, Shah D (2007) Throughput region of finite buffered networks. IEEE Trans Parallel Distrib Syst 18(2):251–263

    Article  Google Scholar 

  19. Neely MJ (2006) Energy optimal control for time varying wireless networks. IEEE Trans Inf Theory 52(7):2915–2934

    Article  MathSciNet  MATH  Google Scholar 

  20. Le LB, Modiano E, Shroff NB (2010) Optimal control of wireless networks with finite buffers. In: Proc. of IEEE INFOCOM’10. San Diego, pp 1–9

  21. Neely MJ (2013) Delay-based network utility maximization. IEEE/ACM Trans Networking 21(1):41–54

    Article  Google Scholar 

  22. Bo J, Joo C, Shroff NB (2013) Delay-Based Back-Pressure Scheduling in Multihop Wireless Networks. IEEE/ACM Trans Networking 21(5):1539–1552

    Article  Google Scholar 

  23. Xue D, Murawski R, Ekici E (2015) Capacity achieving distributed scheduling with finite buffers. IEEE/ACM Trans Networking 23(2):519–532

    Article  Google Scholar 

  24. Ni J, Tan B, Srikant R (2012) Q-CSMA: Queue-Length-Based CSMA/CA Algorithms for Achieving Maximum Throughput and Low Delay in Wireless Networks. IEEE/ACM Trans Networking 20(3):825–836

    Article  Google Scholar 

  25. Wang T, Yao Z, Zhang B, Li C (2017) Utility Bounds of Joint Congestion and Medium Access Control for CSMA based Wireless Networks. KSII Trans Internet Inf Syst 11(1):193–214

    Google Scholar 

  26. Kai C, Zhang S (2013) Throughput analysis of CSMA wireless networks with finite offered-load. In: Proc. of IEEE ICC’13. Budapest, pp 6101–6106

  27. Swamy PS, Ganti RK, Jagannathan K (2015) Adaptive CSMA under the SINR model: Fast convergence through local gibbs optimization. In: Proc. 53rd Ann. Allerton Conf. Communication, Control, and Computing, Monticello

  28. Yun S-Y, Shin J, Yi Y (2013) CSMA over time-varying channels: optimality, uniqueness and limited backoff rate. In: Proc. of ACM MobiHoc’13. New York, pp 137–146

  29. Choi JG, Joo C, Zhang J, Shroff NB (2014) Distributed Link Scheduling Under SINR Model in multihop wireless networks. IEEE/ACM Trans Networking 22(4):1204–1217

    Article  Google Scholar 

  30. Jang H, Yun SY, Shin J, Yi Y (2014) Distributed learning for utility maximization over CSMA-based wireless multihop networks. In: Proc. of IEEE INFOCOM’14. Toronto, pp 280–288

  31. Karaca M, Landfeldt B (2016) Approaching Optimal Centralized Scheduling with CSMA-Based Random Access over Fading Channels. IEEE Commun Lett 20(6):1183–1186

    Article  Google Scholar 

  32. Kelly FP (1979) Reversibility and Stochastic Networks. Wiley, New York

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported partially by the National Natural Science Foundation of China under grants 61471339, 61531006, 61173158, and the Natural Sciences and Engineering Research Council (NSERC) of Canada (Discovery Grant 293264-12 and Strategic Project Grant STPGP 397491-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Li.

Appendix

Appendix

1.1 Proof of Proposition 1

Proof: According to (3), expanding the first term in (4), and transforming the obtained expression to a form using common denominator, then we have the corresponding numerator becomes the following.

$$ \sum_{\boldsymbol{\upsigma}}\sum_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}\left\{\exp \left({\lambda}_{\boldsymbol{\upsigma}}+{\lambda}_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}^{\ast}\right){\lambda}_{\boldsymbol{\upsigma}}\right\}-\sum_{\boldsymbol{\upsigma}}\sum_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}\left\{\exp \left({\lambda}_{\boldsymbol{\upsigma}}+{\lambda}_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}^{\ast}\right){\lambda}_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}\right\} $$
(34)

where λ σ  = ∑(n, m)∣σ σ (n, m) λ (n, m), \( {\lambda}_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}={\sum}_{\left(n,m\right)\mid {\boldsymbol{\upsigma}}^{\mathbf{\prime}}}{\sigma}_{\left(n,m\right)}{\lambda}_{\left(n,m\right)} \), \( {\lambda}_{\boldsymbol{\upsigma}}^{\ast }={\sum}_{\left(n,m\right)\mid \boldsymbol{\upsigma}}{\sigma}_{\left(n,m\right)}{\lambda}_{\left(n,m\right)}^{\ast } \), and \( {\lambda}_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}^{\ast }={\sum}_{\left(n,m\right)\mid {\boldsymbol{\upsigma}}^{\mathbf{\prime}}}{\sigma}_{\left(n,m\right)}{\lambda}_{\left(n,m\right)}^{\ast } \).

Regarding the second term in (4), we use the same way of transformation as above, and obtain a corresponding numerator as follows.

$$ \sum_{\boldsymbol{\upsigma}}\sum_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}\left\{\exp \left({\lambda}_{\boldsymbol{\upsigma}}+{\lambda}_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}^{\ast}\right){\lambda}_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}^{\ast}\right\}-\sum_{\boldsymbol{\upsigma}}\sum_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}\left\{\exp \left({\lambda}_{\boldsymbol{\upsigma}}+{\lambda}_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}^{\ast}\right){\lambda}_{\boldsymbol{\upsigma}}^{\ast}\right\} $$
(35)

Since both of the above transforms share the same denominator, we add the two numerators (34) and (35) together, and yield

$$ \sum_{\boldsymbol{\upsigma}}\sum_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}\left\{\exp \left({\lambda}_{\boldsymbol{\upsigma}}+{\lambda}_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}^{\ast}\right)\left({\lambda}_{\boldsymbol{\upsigma}}+{\lambda}_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}^{\ast}\right)\right\}-\sum_{\boldsymbol{\upsigma}}\sum_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}\left\{\exp \left({\lambda}_{\boldsymbol{\upsigma}}+{\lambda}_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}^{\ast}\right)\left({\lambda}_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}+{\lambda}_{\boldsymbol{\upsigma}}^{\ast}\right)\right\} $$
(36)

Since \( {\lambda}_{\boldsymbol{\upsigma}}+{\lambda}_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}^{\ast } \) is positively correlated to \( \exp \left({\lambda}_{\boldsymbol{\upsigma}}+{\lambda}_{{\boldsymbol{\upsigma}}^{\mathbf{\prime}}}^{\ast}\right) \), we have the first term in (36) is larger than or equal to the second term. So (4) is proved.

1.2 Proof of Proposition 2

Proof: First, we prove that the queue length of source node s(c), ∀cC, has upper bound. Second, we prove that the queue length of s(c)‘s next hop node on the path for a session cC has upper bound.

First, we prove that, for a session cC, \( {Q}_{s(c)}^c(t)\le {q}_M \), ∀t.

Since \( {Q}_{s(c)}^c(0)=0 \), we have \( {Q}_{s(c)}^c(0)\le {q}_M \) when t = 0.

Suppose \( {Q}_{s(c)}^c(t)\le {q}_M \) (t > 0), we need to prove that \( {Q}_{s(c)}^c\left(t+1\right)\le {q}_M \).

There are two cases regarding this.

  1. 1)

    If \( {Q}_{s(c)}^c(t)\le {q}_M-T \) in scheduling cycle t, we can easily obtain that \( {Q}_{s(c)}^c\left(t+1\right)\le {q}_M \) since \( {s}_{\left(s,s\right)}^c(t)\le T \),

  2. 2)

    Else if \( {q}_M-T<{Q}_{s(c)}^c(t)\le {q}_M \), then we have (30a) < 0, which means that \( {s}_{\left(s,s\right)}^c(t)=0 \). Accordingly, we still have \( {Q}_{s(c)}^c\left(t+1\right)\le {q}_M \).

Thus, we have \( {Q}_{s(c)}^c(t)\le {q}_M \), ∀t.

Second, we prove that the queue length of s(c)‘s next-hop on the route of session c, denoted by node m, has upper bound. Here, to ease the presentation, we let n = s(c).

Next, we proceed to prove that \( {Q}_m^c(t)\le {q}_M/{\mathrm{Pr}}_{\left(n,m\right)}+T,\forall t \). The reason why such an upper bound holds at node m (i.e., source node’s next hop) will also be provided in the proof shown below. Let q M  = q M /Pr(n, m) + T.

It is obviously \( {Q}_m^c(0)=0 \) when t = 0. Thus, \( {Q}_m^c(0)\le {q_M}^{\prime } \).

Suppose \( {Q}_m^c(t)\le {q_M}^{\prime } \) (when t > 0) holds, we need to prove that \( {Q}_m^c\left(t+1\right)\le {q_M}^{\prime } \).

If \( {Q}_m^c(t)<{q}_M/{\mathrm{Pr}}_{\left(n,m\right)} \), we have (30b) > 0. That is, link (n,m) may have successful transmission scheduling (i.e., 0≤ \( {s}_{\left(n,m\right)}^c(t)+{d}_{\left(n,m\right)}^c(t)\le T \)). Then, in this case, we have \( {Q}_m^c\left(t+1\right)={Q}_m^c(t)+{s}_{\left(n,m\right)}^c(t)<{q}_M/{\mathrm{Pr}}_{\left(n,m\right)}+T={q_M}^{\prime } \).

If \( {q}_M/{\mathrm{Pr}}_{\left(n,m\right)}\le {Q}_m^c(t)\le {q}_M/{\mathrm{Pr}}_{\left(n,m\right)}+T \), we have (30b) < 0. Accordingly, the link (n, m) has no chance to be scheduled (i.e., \( {s}_{\left(n,m\right)}^c(t)+{d}_{\left(n,m\right)}^c(t)=0 \)). Then, we still have \( {Q}_m^c\left(t+1\right)={Q}_m^c(t)+{s}_{\left(n,m\right)}^c(t)\le {q}_M/{\mathrm{Pr}}_{\left(n,m\right)}+T={q_M}^{\prime } \).

Thus, we have we prove that \( {Q}_m^c(t)\le {q}_M/{\mathrm{Pr}}_{\left(n,m\right)}+T,\forall t \).

In this way, we can recursively prove that the queue lengths of all downstream nodes on the path of a session is upper bounded. In addition, it is seen that the actual upper bounds of queue lengths at different nodes on a path for a session can be different.

Based on the above steps, (31) follows.

1.3 Proof of Proposition 3

Before analyzing the stability and near-optimality of the AFCA algorithm, we first give the following a lemma.

Lemma 2: By the AFCA algorithm, the transmission scheduling function (27) satisfies the following condition:

$$ {\varOmega}_{AFCA}(t)\ge \sum_c\left\{\frac{q_M-T}{q_M}{TU}^c\left(t-\tau \right)\left({r}_{\varepsilon}^{c,\ast }+\varepsilon \right)-\tau {T}^2\right\}+\varDelta (t) $$
(37)

where \( \varDelta (t)=E\left\{\sum_{\left(n,m\right)}{w}_{\left(n,m\right)}^{\max, \ast }(t)\left({\overline{\sigma}}_{\left(n,m\right)}(t)-{\overline{\sigma}}_{\left(n,m\right)}^{\ast }(t)\right)\left|\mathbf{Y}(t)\right.\right\} \).

Proof: According to Proposition 1, the transmission scheduling by (29) and (30) is used to maximize Ω AFCA (t), we have

$$ {\displaystyle \begin{array}{l}{\varOmega}_{AFCA}(t)\ge \sum \limits_{\left(n,m\right)}{w}_{\left(n,m\right)}^{\mathrm{max}}(t){\overline{\sigma}}_{\left(n,m\right)}^{\ast }(t)\\ {}\kern1.50em +\sum \limits_{\left(n,m\right)}{w}_{\left(n,m\right)}^{\max, \ast }(t)\left({\overline{\sigma}}_{\left(n,m\right)}(t)-{\overline{\sigma}}_{\left(n,m\right)}^{\ast }(t)\right)\end{array}} $$

Substituting the corresponding items in the above expression by (25c), we have,

$$ {\displaystyle \begin{array}{l}{\varOmega}_{AFCA}(t)\ge E\left\{\sum \limits_c\left(\frac{q_M-T-{Q}_s^c(t)}{q_M}\right){U}^c(t){s}_{s,s}^{c,\ast }(t)\right\}\\ {}\kern1.50em +\frac{1}{q_M}\sum \limits_c\sum \limits_{n\mid c}\left({Q}_n^c(t)-{Q}_m^c(t)\right){U}^c\left(t-\tau \right){s}_{\left(n,m\right)}^{c,\ast }(t)\\ {}\begin{array}{cccc}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \left.+\frac{1}{q_M}\sum \limits_c\sum \limits_{n\mid c}{U}^c\left(t-\tau \right){Q}_n^c(t){d}_{\left(n,m\right)}^{c,\ast }(t)\left|\mathbf{Y}(t)\right.\right\}+\varDelta (t)\hfill \end{array}\end{array}} $$

where \( {s}_{s,s}^{c,\ast }(t) \), \( {s}_{\left(n,m\right)}^{c,\ast }(t) \) and \( {d}_{\left(n,m\right)}^{c,\ast }(t) \), respectively, denote the values of their counterparts when the link scheduling vector picks a near-optimal vector \( {\overline{\boldsymbol{\upsigma}}}^{\ast } \).

Rearranging the right side of the above expression, we have,

$$ {\displaystyle \begin{array}{l}E\left\{\sum \limits_c\left(\frac{q_M-T}{q_M}{U}^c(t){s}_{s,s}^{c,\ast }(t)-\tau {T}^2\right)+\varDelta (t)\right\}\\ {}\kern0.5em \left.+\sum \limits_c\frac{1}{q_M}{U}^c\left(t-\tau \right)\left[\sum \limits_{\left(n,m\right)\mid c}{Q}_n^c(t)\left({s}_{\left(u,n\right)}^{c,\ast }(t)-{s}_{\left(n,m\right)}^{c,\ast }(t)-{d}_{\left(n,m\right)}^{c,\ast }(t)\right)\right]\left|\mathbf{Y}(t)\right.\right\}\end{array}} $$

According to Lemma 1 in Section 4.3, we have,

$$ {\varOmega}_{AFCA}(t)\ge \sum_c\left(\frac{q_M-T}{q_M}{TU}^c(t){r}_{\varepsilon}^{c,\ast }-\tau {T}^2\right)+\varDelta (t) $$

According to the characteristics of near-optimal solution as we discussed in Section 4.3, (37) follows.

In the flow rate control by AFCA algorithm, (28) maximizes the term \( {\varPsi}_{AFCA}^c(t) \) over all feasible values of R c(t). Thus, we have the following inequality.

$$ {\displaystyle \begin{array}{l}{\varPsi}_{AFCA}^c(t)\ge V{\varphi}_c\left({h}^c{r}_{\varepsilon}^{c,\ast}\right)\\ {}\kern1.50em -{r}_{\varepsilon}^{c,\ast}\left[\frac{q_M-T}{q_M}{TU}^c(t)-{Z}^c(t){h}^c-{X}^c\left(t-\tau \right){\rho}^c\Big)\right]\end{array}} $$
(38)

Substituting the corresponding items in (24) by (26), (37) and (38), respectively, we have,

$$ {\displaystyle \begin{array}{l}\varDelta \varGamma \left(\mathbf{Y}(t)\right)- VE\ \left\{\sum \limits_c{\varphi}_c\left({h}^c{R}^c(t)\right)|\mathbf{Y}(t)\right\}\\ {}\le {B_M}^{\prime }+\varDelta (t)-\sum \limits_c\left(V{\varphi}_c\left({h}^c{r}_{\varepsilon}^{c,\ast}\right)\right)-\sum \limits_c{Z}^c(t)\left({r}_{\varepsilon}^{c,\ast }{h}^c-{m}^c\right)\\ {}\kern1.00em -\sum \limits_c{X}^c(t)\left[{r}_{\varepsilon}^{c,\ast }{\rho}^c-{L}_{\mathrm{max}}{q}^{\mathrm{max}}\right]\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill -\sum \limits_c{U}^c(t)\left[\frac{q_M-T}{q_M} T\varepsilon -\frac{1}{q_M}{L}_{\mathrm{max}}{T}^2\right]\hfill \end{array}\end{array}} $$

where B M  = B M  + ∑ c τT 2 + ∑ c ρ c τL max q max.

Given the two conditions in Proposition 3, we have

$$ {\displaystyle \begin{array}{l}\varDelta \varGamma \left(\mathbf{Y}(t)\right)- VE\ \left\{\sum \limits_c{\varphi}_c\left({h}^c{R}^c(t)\right)|\mathbf{Y}(t)\right\}\\ {}\le {B}_M+\varDelta (t)-V\sum \limits_cV{\varphi}_c\left({h}^c{r}_{\varepsilon}^{c,\ast}\right)-\theta \sum \limits_c\left\{{Z}^c(t)+{X}^c(t)+{U}^c(t)\right\}\end{array}} $$

Summing over all cycles in {0, 1, 2, …, M −1}, we have

$$ {\displaystyle \begin{array}{l}\varGamma \left(\mathbf{Y}\left(M-1\right)\right)-\varGamma \left(\mathbf{Y}(0)\right)-V\left\{\sum \limits_{t=0}^{M-1}E\left(\sum \limits_c{\varphi}_c\left({h}^c{R}^c(t)\right)\right)\right\}\\ {}\le {MB_M}^{\prime }+\sum \limits_{t=0}^{M-1}\varDelta (t)- MV\sum \limits_cV{\varphi}_c\left({h}^c{r}_{\varepsilon}^{c,\ast}\right)\\ {}\kern1.00em -\theta \sum \limits_{t=0}^{M-1}\sum \limits_c\left\{{Z}^c(t)+{X}^c\left(t-T\right)+{U}^c(t)\right\}\end{array}} $$

Taking the limit sup as M→+∞, (32) is proved.

The (32) means that the AFCA algorithm can achieve stable state, which means that \( {\sum}_{t=0}^{M-1}\varDelta (t) \) will approach a finite value. Thus, for (33), since the utility function φ c (⋅) is strictly concave, using the Jensen’s inequality, we have,

$$ \frac{1}{M}\sum_{t=0}^{M-1}E\left(\sum_c{\varphi}_c\left({h}^c{R}^c(t)\right)\right)\le E\left\{\sum_c{\varphi}_c\left(\frac{1}{M}{h}^c\sum_{t=0}^{M-1}{R}^c(t)\right)\right\} $$

According to the definition of r in (14) and the characteristics of network capacity region as we discussed in Section 4.2, (33) is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Yao, Z., Zhang, B. et al. Adaptive Flow Rate Control for Network Utility Maximization Subject to QoS Constraints in Wireless Multi-hop Networks. Peer-to-Peer Netw. Appl. 11, 881–899 (2018). https://doi.org/10.1007/s12083-017-0594-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-017-0594-0

Keywords

Navigation