Skip to main content
Log in

Simulation models for mobile-to-mobile channels with isotropic and nonisotropic scattering

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

Recent radio channel measurements in peer-to-peer (P2P) and mobile-to-mobile network indicate that, depending on the mobility of the terminals and scattering properties of the environment, the predominate fading mechanism contains a combination of Rayleigh and double Rayleigh fading with or without line-of-sight (LoS) component. In this paper, we present the statistical and deterministic models by the sum-of-complex-sinusoids to simulate the channels in isotropic and non-isotropic scattering. The auto- and cross correlations of the in-phase, quadrature components, and squared envelopes of the channels are derived. Extensive Monte Carlo simulations are performed to validate the statistical properties of the proposed models. The time-average statistical properties and the corresponding variances are also investigated to justify that the models achieve satisfactory convergence performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rajandekar A, Sikdar B (2015) On the feasibility of using wifi white spaces for opportunistic M2M communications. commlett 4(6):681–684

    Google Scholar 

  2. Cheng X, Yang L, Shen X (2015) D2D for intelligent transportation systems: A feasibility study. IEEE Trans. Intell. Trans. Syst. 14(4):1784–1793

    Article  Google Scholar 

  3. Wang L, Wu H, Stüber GL (2017) Cooperative jamming-aided secrecy enhancement in P2P communications with social interaction constraints. Tvc 66(2):1144–1158

    Google Scholar 

  4. Vinogradov E, Joseph W, Oestges C (2015) Measurement-based modeling of time-variant fading statistics in indoor peer-to-peer scenarios. IEEE Trans. Antennas Propag. 63(5):2252–2263

    Article  Google Scholar 

  5. Oestges C, Czink N, Bandemer B, Castiglione P, Kaltenberger F, Paulraj AJ (2010) Experimental characterization and modeling of outdoor-to-indoor and indoor-to-indoor distributed channels. IEEE Trans. Veh. Technol. 59(5):2253–2265

    Article  Google Scholar 

  6. Koväcs I, Eggers P, Olesen K, Patersen L (2002) Investigations of outdoor-to-indoor mobile-to-mobile radio communication channels. In: Proc. IEEE Veh. Technol. Conf., Vancouver, Canada, 1, pp 430–434

  7. Andersen JB (2002) Statistical distributions in mobile communications using multiple scattering. In: Proc. URSI Gen. Assem. of Int. Union of Radio Sci., Maastricht, Netherlands

  8. Andersen JB, Koväcs IZ (2002) Power distributions revisited. In: Proc. COST273, Towards Mobile Broadband Multimedia Netw., Guildford, UK, TD (02)004

  9. Pätzold M, Hogstad BO, Youssef N (2008) Modeling, analysis, and simulation of MIMO mobile-to-mobile fading channels. IEEE Trans. Wireless Commun. 7(2):510–520

    Article  Google Scholar 

  10. Matolak DW, Frolik J (2011) Worse-than-Rayleigh fading: Experimental results and theoretical models. IEEE Commun. Mag. 49(4):140–146

    Article  Google Scholar 

  11. Sen I, Matolak DW (2008) Vehicle-vehicle channel models for the 5-GHz band. IEEE Tran. Intelligent Transport. Sys. 9(2):235–245

    Article  Google Scholar 

  12. Maurer J, Fugen T, Olesen K, Wiesbeck W (2002) Narrowband measurement and analysis of the intervehicle transmission channel at 5.2 GHz. In: IEEE Veh. Technol. Conf, Birmingham, AL, 3, pp 1274–1278

  13. Jaime-Rodriguez JJ, Gutierrez CA, Patzold M, Borhani A (2017) On the spectral moments of non-WSSUS mobile-to mobile double-Rayleigh fading channels. In: Proc. IEEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp 1–6

  14. Makhoul G, Mani F, D’Errico R, Oestges C (2017) Doppler characteristics for indoor mobile-to-mobile channels. In: Proc. European Conference on Antennas and Propagation (EUCAP), pp 2468–2472

  15. Ren H, Gao L, He X (2019) A Novel Generalized Modeling Mechanism for VHF and UHF Mobile-to-Mobile Channels. In: Proc. International Conference on Communication Software and Networks (ICCSN), pp 215–221

  16. Jiang C, Gao L, Duan L, Huang J (2018) Scalable mobile crowdsensing via peer-to-peer data sharing. IEEE Trans. Mobile Computing 17(4):898–912

    Article  Google Scholar 

  17. Pamungkas W, Suryani T, Wirawan (2018) Correlated double ring channel model at high speed environment in vehicle to vehicle communications. In: Proc. International Conference on Information and Communications Technology (ICOIACT), pp 601–606

  18. Patel CS, Stber GL, Pratt TG (2005) Simulation of Rayleigh-faded mobile-to-mobile communication channels. IEEE. Trans. Commun 53(11):1876–1884

    Article  Google Scholar 

  19. Zajic A, Stüber GL (2006) A new simulation model for mobile-to-mobile rayleigh fading channels. In: Proc. IEEE Wireless Commun. Netw. Conf., Las Vegas, NV, 3, pp 1266–1270

  20. Gutirrez CA, Ptzold M (2010) The design of sum-of-cisoids Rayleigh fading channel simulators assuming non-isotropic scattering conditions. IEEE Trans. Wireless Commun. 9(4):1308–1314

    Article  Google Scholar 

  21. Jiang H, Xue Y, Zhou J, Chen Z, Dang J, Wu L (2019) A 3D Cylinder MIMO Channel Model for 5G Macrocell Mobile-to-Mobile Communication Systems. IEEE Access 7:2169–3536

    Article  Google Scholar 

  22. He R, Ai B, Stüber GL, Zhong Z (2018) Geometrical-Based Statistical Modeling for Polarized MIMO Mobile-to-Mobile Channels. IEEE Trans Antennas Propag 66(8):4213–4227

    Article  Google Scholar 

  23. Jiang H, Zhang Z, Dang J, Wu L (2018) A novel 3-D massive MIMO channel model for vehicle-to-vehicle communication environments. IEEE Trans. Commun. 77:79–90

    Article  Google Scholar 

  24. Cheng X, Wang C-X, Laurenson DI, Salous S, Vasilakos AV (2009) An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobilechannels. IEEE Trans. Wireless Commun. 8 (9):4824–4835

    Article  Google Scholar 

  25. He R, Ai B, Stüber GL, Zhang Z (2018) Mobility Model-Based Non-Stationary Mobile-to-Mobile Channel Modeling. IEEE Trans. Wireless Commun. 17(7):4388–4400

    Article  Google Scholar 

  26. Gutirrez CA, Gutirrez-Mena JT, Luna-Rivera JM, Campos-Delgado DU, Velzquez R, Ptzold M (2018) Geometry-Based Statistical Modeling of Non-WSSUS Mobile-to-Mobile Rayleigh Fading Channels. IEEE Trans. Veh. Technol. 67(1):362–377

    Article  Google Scholar 

  27. Zajić AG, Stüber GL (2006) Efficient simulation of Rayleigh fading with enhanced de-correlation properties. IEEE Trans. Wireless Commun. 5(7):1866–1875

    Article  Google Scholar 

  28. Zheng YR, Xiao C (2003) Simulation models with correct statistical properties for Rayleigh fading channels. IEEE Trans. Commun. 53(6):920–928

    Article  Google Scholar 

  29. Wang C-X, Pätzold M, Yuan D (2007) Accurate and efficient simulation of multiple uncorrelated Rayleigh fading waveforms. IEEE Trans. Wireless Commun. 6(3):833–839

    Article  Google Scholar 

  30. Wang C-X, Yuan D, Chen H-H, Xu W (2008) An improved deterministic SoS channel simulator for multiple uncorrelated Rayleigh fading channels. IEEE Trans. Wireless Commun. 7(9):3307–3311

    Article  Google Scholar 

  31. Patel CS, Stüber GL, Pratt TG (2005) Comparative analysis of statistical models for the simulation of Rayleigh faded cellular channels. IEEE Trans. Commun. 53:1017–1026

    Article  Google Scholar 

  32. Erceg V, Fortune S, Ling J, Rustako A, Valenzuela R (1997) Comparisons of a computer-based propagation prediction tool with experimental data collected in urban microcellular environments. IEEE Journal Sel. Areas Commun. 15(4):677–684

    Article  Google Scholar 

  33. Chizhik D, Foschini GJ, Valenzuela RA (2000) Capacities of multielement transmit and receive antennas: Correlations and keyholes. IEE Electron. Lett. 36:1099–1100

    Article  Google Scholar 

  34. Chizhik D, Foschini GJ, Gans MJ, Valenzuela RA (2002) Keyholes, correlations, and capacities of multielement transmit and receive antennas. IEEE Trans. Wireless Commun. 1:361–368

    Article  Google Scholar 

  35. Gesbert D, Blcskei H, Gore DA, Paulraj AJ (2002) Outdoor MIMO wireless channels: Models and performance prediction. IEEE Trans. Commun. 50:1926–1934

    Article  Google Scholar 

  36. Shin H, Lee JH (2003) Capacity of multiple-antenna fading channels: Spatial fading correlation, double scattering, and keyhole. IEEE Trans. Inform. Theory 49(10):2636–2647

    Article  MathSciNet  Google Scholar 

  37. Wang L, Liu W, Cheng Y (2009) Statistical analysis of a mobile-to-mobile Rician fading channel model. IEEE Trans. Veh. Technol. 58(1):32–38

    Article  Google Scholar 

  38. Zheng Y, Xiao C (2002) Improved models for the generation of multiple uncorrelated Rayleigh fading waveforms. IEEE Commun. Lett. 6(6):256–258

    Article  Google Scholar 

  39. Pätzold M, Wang C-X, Hogstad BO (2009) Two new sum-of-sinusoids based method for the efficient generation of multiple uncorrelated Rayleigh fading waveforms. IEEE Trans. Wireless Commun. 8 (6):3122–3131

    Article  Google Scholar 

  40. Gan Y, Xu Q (2010) An improved SoS method for generating multiple uncorrelated Rayleigh fading waveforms. IEEE Commun. Lett. 14(7):641–643

    Article  Google Scholar 

  41. Abdi A, Kaveh M (2002) A space-time correlation model for multielement antenna systems in mobile fading channels. IEEE J. Sel. Areas Commun. 20(3):550–560

    Article  Google Scholar 

  42. Zajic AG, Stüber GL, Pratt TG, Nguyen S (2008) Envelope level crossing rate and average fade duration in mobile-to-mobile fading channels. In: Proc. IEEE Int. Conf. on Commun., Beijing, pp 4446–4450

  43. Anim-Appiah K (1998) Complex envelope correlations for nonisotropic scattering. IEEE Electron. Lett. 34:918–919

    Article  Google Scholar 

  44. Spencer Q, Rice M, Jeffs B, Jensen M (1997) A statistical model for angle of arrival in indoor multipath propagation. In: Proc. IEEE Veh. Technol. Conf., Phoenix, AZ, pp 1415–1419

  45. Austin MD, Stüber GL (1994) Velocity adaptive handoff algorithms for microcellular systems. IEEE Trans. Veh. Technol. 43:549–561

    Article  Google Scholar 

  46. Abdi A, Barger JA, Kaveh M (2002) A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station. IEEE Trans. Veh. Technol 51(3):425–434

    Article  Google Scholar 

  47. Gutierrez CA, Pätzold M (2007) Sum-of-sinusoids-based simulation of flat fading wireless propagation channels under non-isotropic scattering conditions. In: Proc. IEEE Global Telecomm. Conf.

  48. Talha B, Pätzold M (2009) A geometrical three-ring-based model for MIMO mobile-to-mobile fading channels in cooperative networks. In: Proc. IEEE Veh. Technol. Conf., Barcelona, Spain, 1, pp 1–7

  49. Lee W C-Y (1973) Finding the approximate angular probability density function of wave arrival by using a directional antenna. IEEE Trans. Veh. Technol. 21(3):328–334

    Google Scholar 

  50. Mardia KV, Jupp PE (1999) Directional statistics, Wiley, 1st edition

  51. Gradshsteyn IS, Ryzhik IM (2000) Table of integrals, series and products, Academic Press, 6th ed.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwu Ding.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Eqs. 13 and 16, auto- and cross correlations for model ST-ISO-LoS

The real and imaginary parts of hST(t) can be expressed, respectively, as

$$ \begin{array}{@{}rcl@{}} &h_{c} (t)=\mathfrak{Re}\left[h_{\text{ST}}(t)\right)=\frac{1}{\sqrt{1+K}}\left( g_{c}(t)+\sqrt{K} \cos L(t) \right], \end{array} $$
(48)
$$ \begin{array}{@{}rcl@{}} &h_{s} (t)=\mathfrak{Im}\left[ h_{\text{ST}}(t)\right)=\frac{1}{\sqrt{1+K}}\left( g_{s}(t)+\sqrt{K}\sin L(t) \right] \end{array} $$
(49)

where gc(t) and gs(t) are the real and imaginary parts of gST(t), and \(L(t)=2\pi f_{3} t \cos \limits \phi _{3}+\phi _{0}\). The ACF for hST(t) is calculated as

$$ \begin{array}{@{}rcl@{}} &&\mathbb{E}\left[h_{c}(t) h_{c}(\varrho)\right]=\frac{1}{1+K}\\ &&\mathbb{E}\left[\left( g_{c}(t)+\sqrt{K} \cos L(t) \right) \left( g_{c}(\varrho) + \sqrt{K} \cos L(\varrho) \right) \right] \end{array} $$
(50)

The CCF for hST(t) is obtained as

$$ \begin{array}{@{}rcl@{}} &&\mathbb{E}\left[h_{c}(t) h_{s}(t + \tau)\right] = \frac{1}{1+K}\\ &&\mathbb{E}\left[\left( g_{c}(t)+\sqrt{K} \cos L(t) \right) \left( g_{s}(t)+\sqrt{K}\sin L(t) \right) \right]. \end{array} $$
(51)

Note that phase ϕ0 in L(t) and L(ϱ) is independent of other random variables in gc(t) and gs(t). By taking the expectation with respect to ϕ0, one can obtain the autocorrelation and cross-correlation as specified in Eq. 13 and Eq. 15 using the results below:

$$ \begin{array}{@{}rcl@{}} R_{g_{c}g_{c}}(\tau)&=&\mathbb{E}\left[g_{c}(t) g_{c}(t+\tau)\right]=J_{0}(2\pi f_{1} \tau)J_{0}(2\pi f_{2}\tau) \end{array} $$
(52)
$$ \begin{array}{@{}rcl@{}} R_{g_{s}g_{s}}(\tau)&=&\mathbb{E}\left[g_{s}(t) g_{s}(t+\tau) \right]=R_{g_{c}g_{c}}(\tau) \end{array} $$
(53)
$$ \begin{array}{@{}rcl@{}} R_{g_{c}g_{s}}(\tau)&=&\mathbb{E}\left[g_{c}(t)g_{s}(t+\tau) \right]=0, R_{g_{s}g_{c}}(\tau)\\ &=&\mathbb{E}\left[g_{s}(t)g_{c}(t+\tau) \right]=0 \end{array} $$
(54)

1.1 Proof for Eqs. 52 and 54

From Eq. 9, the real and imaginary parts of gST(t) are given, respectively, by

$$ \begin{array}{@{}rcl@{}} g_{c} (t)&=&\mathfrak{Re}\left[g_{\text{ST}}(t)\right]=\sqrt{\frac{2}{NM}} \sum\limits_{n,m=1}^{N,M} \left( A_{n}(t)B_{m}(t)-C_{n}(t)D_{m}(t)\right) \end{array} $$
(55)
$$ \begin{array}{@{}rcl@{}} g_{s} (t)&=&\mathfrak{Im}\left[ g_{\text{ST}}(t)\right]=\sqrt{\frac{2}{NM}} \sum\limits_{n,m=1}^{N,M} \left( A_{n}(t)D_{m}(t)+C_{n}(t)B_{m}(t)\right) \end{array} $$
(56)

For brevity of notations, we replace t + τ with ϱ in the proceeding appendices. The autocorrelation can be obtained by

$$ \begin{array}{@{}rcl@{}} \mathbb{E}\left[g_{c}(t) g_{c}(\varrho)\right]&=&\frac{2}{NM}\mathbb{E}\left[ \sum\limits_{n,m=1}^{N,M} \left( A_{n}(t)B_{m}(t)-C_{n}(t)D_{m}(t)\right) \sum\limits_{k,j=1}^{N,M} \left( A_{k}(\varrho) B_{j}(\varrho)- C_{k}(\varrho) D_{j}(\varrho)\right) \right]\\ &=& \frac{2}{NM}\mathbb{E}\left[\sum\limits_{n,k=1}^{N,N} A_{n}(t)A_{k}(\varrho)\sum\limits_{m,j=1}^{M,M} B_{m}(t)B_{j}(\varrho)+ \sum\limits_{n,k=1}^{N,N} C_{n}(t)C_{k}(\varrho)\sum\limits_{m,j=1}^{M,M} D_{m}(t)D_{j}(\varrho)\right.\\ &&\left.-\sum\limits_{n,k=1}^{N,N} A_{n}(t)C_{k}(\varrho)\sum\limits_{m,j=1}^{M,M} B_{m}(t)D_{j}(\varrho)-\sum\limits_{n,k=1}^{N,N} C_{n}(t)A_{k}(\varrho)\sum\limits_{m,j=1}^{M,M} D_{m}(t)B_{j}(\varrho) \right] \end{array} $$
(57)

The cross-correlation is evaluated as

$$ \begin{array}{@{}rcl@{}} \mathbb{E}\left[g_{c}(t) g_{s}(\varrho)\right]=\mathbb{E}\left[ \frac{2}{NM} \sum\limits_{n,m=1}^{N,M} \left( A_{n}(t)B_{m}(t)-C_{n}(t)D_{m}(t)\right) \sum\limits_{j,k=1}^{N,M} \left( A_{j}(\varrho)D_{k}(\varrho)+C_{j}(\varrho)B_{k}(\varrho)\right) \right] \end{array} $$
(58)

Since 𝜃nnmm ∈ [−π,π) are statistically independent and uniformly distributed for all n and m, we have \(\mathbb {E} [{\sum }_{n,k=1, n\neq k}^{N,N} A_{n}(t)A_{k}(\varrho )] = \mathbb {E} [{\sum }_{n,k=1, n\neq k}^{N,N} C_{n}(t)C_{k}(\varrho )]=0\), and \( \mathbb {E} [{\sum }_{m,j=1, m\neq j}^{M,M} B_{m}(t)B_{j}(\varrho )]= \mathbb {E} [{\sum }_{m,j=1, m\neq j}^{M,M} D_{m}(t)D_{j}(\varrho )]=0\). Using the following identities which are easily obtained from [51, (p. 420-421)], one can justify \(\mathbb {E}\left [g_{c}(t) g_{c}(\varrho )\right ]=J_{0}(2\pi f_{1} \tau ) J_{0}(2\pi f_{2} \tau )\) and \(\mathbb {E}\left [g_{c}(t) g_{s}(\varrho )\right ]=0\).

$$ \begin{array}{@{}rcl@{}} &&\mathbb{E}\left [\sum\limits_{n,k=1}^{N,N} A_{n}(t)A_{k}(\varrho)\right]= \mathbb{E} \left[{\sum\limits_{n}^{N}} A_{n}(t)A_{n}(\varrho)\right]= \frac{1}{2} \mathbb{E} \left[ \sum\limits_{n=1}^{N} \tilde{A}_{n}(\tau)\right]= \frac{N}{2} J_{0}(2\pi f_{1} \tau) \end{array} $$
(59)
$$ \begin{array}{@{}rcl@{}} &&\mathbb{E} \left[\sum\limits_{n,k=1}^{N,N} C_{n}(t)C_{k}(\varrho)\right]= \mathbb{E} \left[{\sum\limits_{n}^{N}} C_{n}(t)C_{n}(\varrho)\right]= \frac{1}{2} \mathbb{E} \left[\sum\limits_{n=1}^{N} \tilde{C}_{n}(\tau)\right]= \frac{N}{2} J_{0}(2\pi f_{1} \tau) \end{array} $$
(60)
$$ \begin{array}{@{}rcl@{}} && \sum\limits_{m=1,j}^{M,M} \mathbb{E}[ B_{m}(t)B_{j}(\varrho)] = \sum\limits_{m=1}^{M} \mathbb{E}[ B_{m}(t)B_{m}(\varrho)] = \frac{1}{2} \mathbb{E} \left[ \sum\limits_{m=1}^{M} \tilde{B}_{m}(\tau)\right] = \frac{M}{2} J_{0}(2\pi f_{2} \tau ) \end{array} $$
(61)
$$ \begin{array}{@{}rcl@{}} && \sum\limits_{m=1,j}^{M,M} \mathbb{E}[ D_{m}(t)D_{j}(\varrho)] = \sum\limits_{m=1}^{M} \mathbb{E}[ D_{m}(t)D_{m}(\varrho)] = \frac{1}{2} \sum\limits_{m=1}^{M} \mathbb{E} [\tilde{D}_{m}(\tau) ]= \frac{M}{2} J_{0}(2\pi f_{2} \tau ) \end{array} $$
(62)
$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{n,k=1}^{N,N}\mathbb{E}[A_{n}(t)C_{k}(\varrho)]= \sum\limits_{m,j=1}^{M,M}\mathbb{E}[B_{m}(t)D_{j}(\varrho)]=0. \end{array} $$
(63)

Appendix B: Proof of Eq. 18: Squared envelope correlation for Model ST-ISO-LoS

The squared envelope correlation for hST(t) contains four terms as indicated in Eq. 17. The first term is evaluated as

$$ \begin{array}{@{}rcl@{}} \mathbb{E}\left[h_{c}^{2}(t) {h_{c}^{2}}(\varrho)\right]&=&\frac{1}{(1+K)^{2}}\mathbb{E}\left[\left( g_{c}(t)+\sqrt{K} \cos L(t) \right)^{2}\left( g_{c}(t)+\sqrt{K} \cos L(t) \right)^{2}\right] \end{array} $$
(64)
$$ \begin{array}{@{}rcl@{}} &=&\frac{1}{(1+K)^{2}}\mathbb{E}\left[\left( {g^{2}_{c}}(t)+ 2\sqrt{K} g_{c}(t)\cos L(t) + K \cos^{2} L(t)\right) \right.\\ &&\left.\times \left( {g^{2}_{c}}(\varrho)+ 2\sqrt{K} g_{c}(\varrho)\cos L(\varrho) + K \cos^{2} L(\varrho) \right)\right] \end{array} $$
(65)

Note that \(\mathbb {E}[g_{c}(t)]=\mathbb {E}[g_{c}(\varrho )]=0\), \(\mathbb {E}[\cos \limits \left (\ell L(t)\right )]=\mathbb {E}[\cos \limits \left (\ell L(\varrho )\right )]=0,\ell =1,2\), and \(\mathbb {E}[{g^{2}_{c}}(t)] =\mathbb {E}[{g^{2}_{c}}(\varrho )]=R_{g_{c}g_{c}}(0)=1\). We have

$$ \begin{array}{@{}rcl@{}} \mathbb{E}\left[h_{c}^{2}(t) {h_{c}^{2}}(\varrho)\right]&=&\frac{1}{(1+K)^{2}}\left( \mathbb{E}\left[g_{c}^{2}(t) {g_{c}^{2}}(\varrho)\right] + {4K}R_{g_{c} g_{c}}(\tau)\mathbb{E}\left[ \cos L(t) \cos L(\varrho)\right] \right. \end{array} $$
(66)
$$ \begin{array}{@{}rcl@{}} &&\left.+K \mathbb{E}\left[ \cos^{2} L(t) +\cos^{2} L(\varrho) \right] +K^{2} \mathbb{E}\left[ \cos^{2} L(t) \cos^{2} L(\varrho) \right] \right) \end{array} $$
(67)

The autocorrelation of the squared quadrature component \(\mathbb {E}\left [h_{s}^{2}(t) {h_{s}^{2}}(\varrho )\right ]\) can be evaluated following the similar steps. Using identities \(\mathbb {E}\left [ {\cos \limits } L(t) {\cos \limits } L(\varrho )\right ]= \frac {1}{2}\cos \limits \left (2\pi f_{3} \tau \cos \limits \phi _{3}\right ), \mathbb {E}\left [ \cos \limits ^{2} L(t)\right ]=\mathbb {E}\left [\cos \limits ^{2} L(\varrho ) \right ]=\frac {1}{2} \), and \(\mathbb {E}\left [ \cos \limits ^{2} L(t) \cos \limits ^{2} L(\varrho ) \right ]= \frac {1}{4}+ \frac {1}{8}\cos \limits \left (4\pi f_{3} \tau \cos \limits \phi _{3}\right )\), we summarize the auto- and cross-correlations, respectively, as

$$ \begin{array}{@{}rcl@{}} &&\mathbb{E}\left[h_{x}^{2}(t) {h_{x}^{2}}(\varrho)\right] = \frac{8\mathbb{E}\left[g_{x}^{2}(t) {g_{x}^{2}}(\varrho)\right] + 16K R_{g_{x} g_{x}}(\tau) \cos\left( 2\pi f_{3} \tau \cos\phi_{3}\right) + {8K + 2K^{2} + K^{2} \cos\left( 4\pi f_{3} \tau \cos\phi_{3}\right)}}{8(1+K)^{2}} \end{array} $$
(68)
$$ \begin{array}{@{}rcl@{}} &&\mathbb{E}\left[h_{c}^{2}(t) {h_{s}^{2}}(\varrho)\right]= \mathbb{E}\left[h_{s}^{2}(t) {h_{c}^{2}}(\varrho)\right]=\frac{8\mathbb{E}\left[g_{c}^{2}(t) {g_{s}^{2}}(\varrho)\right]+ {8K + 2K^{2} - K^{2} \cos\left( 4\pi f_{3} \tau \cos\phi_{3}\right)}}{8(1+K)^{2}} \end{array} $$
(69)

where x = {c,s}. Note \(R_{|g|^{2}|g|^{2}}(\tau ) =\mathbb {E}\left [g_{c}^{2}(t) {g_{c}^{2}}(\varrho )\right ]+\mathbb {E}\left [g_{c}^{2}(t) {g_{s}^{2}}(\varrho )\right ]+\mathbb {E}\left [g_{s}^{2}(t) {g_{c}^{2}}(\varrho )\right ]+\mathbb {E}\left [g_{s}^{2}(t) {g_{s}^{2}}(\varrho )\right ]\). Inserting Eq. 68 and Eq. 69 into Eq. 17 yields Eq. 18.

1.1 Proof for \(R_{|g|^{2}|g|^{2}}(\tau ) \) in Eq. 20

The first term in the squared envelope correlation \(R_{|g|^{2}|g|^{2}}(\tau )\) is expressed as

$$ \begin{array}{@{}rcl@{}} \mathbb{E}\left[g_{c}^{2}(t) {g_{c}^{2}}(\varrho)\right]&=&\frac{4}{N^{2}M^{2}} \mathbb{E}\left[\sum\limits_{n,m=1}^{N,M} \left( A_{n}(t)B_{m}(t) - C_{n}(t)D_{m}(t)\right) \sum\limits_{u,p=1}^{N,M} \left( A_{u}(t)B_{p}(t)- C_{u}(t)D_{p}(t)\right) \right.\\ &&\left.\times \sum\limits_{q,r=1}^{N,M}\left( A_{q}(\varrho)B_{r}(\varrho) -C_{q}(\varrho) D_{r}(\varrho)\right) \sum\limits_{s,j=1}^{N,M} \left( A_{s}(\varrho) B_{j}(\varrho) - C_{s}(\varrho)D_{j}(\varrho)\right)\right]. \end{array} $$
(70)

Expanding Eq. 70 and taking expectation with respect to the phases, we obtain \(\mathbb {E}\left [g_{c}^{2}(t) {g_{c}^{2}}(\varrho )\right ]=\frac {4}{N^{2}M^{2}}({\Upsilon }_{A} {\Upsilon }_{B}+{\Upsilon }_{C} {\Upsilon }_{D}+ \frac {M^{2}N^{2}}{8}+ 4 \kappa )\), where \({\Upsilon }_{X}= \mathbb {E}\left [{\sum }_{n}^{N} X_{n}(t) {{\sum }_{u}^{N}} X_{u}(t) {{\sum }_{q}^{N}} X_{q}(\varrho ) {{\sum }_{s}^{N}} X_{s}(\varrho )\right ]\), where X = {A,B,C,D}, and

$$ \begin{array}{@{}rcl@{}} \kappa=\mathbb{E}\left[ \sum\limits_{n,s}^{N,N} A_{n}(t) A_{s}(\varrho) \sum\limits_{u,q}^{N,N} C_{u}(t) C_{q}(\varrho) \sum\limits_{m,j}^{M,M} B_{m}(t)B_{j}(\varrho) \sum\limits_{p,r=1}^{M,M}D_{p}(t) D_{r}(\varrho)\right] \end{array} $$
(71)

Similarly, we have \(\mathbb {E}\left [g_{c}^{2}(t) {g_{s}^{2}}(\varrho )\right ]=\mathbb {E}\left [g_{s}^{2}(t) {g_{c}^{2}}(\varrho )\right ] = \frac {4}{N^{2}M^{2}}\left (\frac {M^{2}}{4}({\Upsilon }_{A}+{\Upsilon }_{C})+\frac {N^{2}}{4}({\Upsilon }_{B}+{\Upsilon }_{D})-4 \kappa \right )\), and \(\mathbb {E}\left [g_{s}^{2}(t) {g_{s}^{2}}(\varrho )\right ]=\frac {4}{N^{2}M^{2}}({\Upsilon }_{A} {\Upsilon }_{D}+{\Upsilon }_{C} {\Upsilon }_{B}+ \frac {M^{2}N^{2}}{8}+ 4 \kappa )\). The term ΥA is evaluated as

$$ \begin{array}{@{}rcl@{}} {\Upsilon}_{A} &=& \mathbb{E}\left[ {\sum\limits_{p}^{N}} {A^{2}_{p}}(t){\sum\limits_{j}^{N}} {A^{2}_{j}}(\varrho)\right]\\ &&+\mathbb{E}\left[ \sum\limits_{n,u, n \neq u}^{N,N} A_{n}(t)A_{u}(t)\sum\limits_{q,s, q \neq s}^{N,N} A_{q}(\varrho)A_{s}(\varrho) \right] \end{array} $$
(72)

The first term in Eq. 72 is obtained as

$$ \begin{array}{@{}rcl@{}} \mathbb{E}\left[ {\sum\limits_{p}^{N}} {A^{2}_{p}}(t){\sum\limits_{j}^{N}} {A^{2}_{j}}(\varrho)\right] =\frac{2N^{2}+NJ_{0}(4 \pi f_{1} \tau)}{8}. \end{array} $$
(73)

The second term in Eq. 72 contains the following seven cases:

  • Case 1. nu,qs,n = q,us;

  • Case 2. nu,qs,n = s,qu;

  • Case 3. nu,qs,u = q,ns;

  • Case 4. nu,qs,u = s,nq;

  • Case 5. nu,qs,nq,us;

  • Case 6. nu,qs,n = q,u = s;

  • Case 7. nu,qs,n = s,u = q.

The value of \( \mathbb {E}\left [ {{\sum }_{n}^{N}} A_{n}(t)A_{n}(\varrho ){\sum }_{s, s\neq n}^{N} A_{s}(t)A_{s}(\varrho )\right ]\) is zero for Cases 1 to 5 and identical for Cases 6 and 7, and \( \mathbb {E}\left [ {{\sum }_{n}^{N}} A_{n}(t)A_{n}(\varrho ){\sum }_{s, s\neq n}^{N} A_{s}(t)A_{s}(\varrho )\right ]_{\text {case 6 or 7}} =\frac {N^{2}{J^{2}_{0}}(2 \pi f_{1} \tau ) - {{\sum }_{n}^{N}} \left (\mathbb {E}[\tilde {A}_{n}(\tau )]\right )^{2}}{4} \). Therefore, we have \( {\Upsilon }_{A}= \frac {1}{8}\left (2N^{2}+NJ_{0}(4 \pi f_{1} \tau )+ 4N^{2}{J^{2}_{0}}(2 \pi f_{1} \tau )\right )- \frac {1}{2} {{\sum }_{n}^{N}} \left (\mathbb {E}[\tilde {A}_{n}(\tau ) ]\right )^{2} \). In fact, the value of ΥA can also be obtained following the steps in [31, Appendix I Eq.(48)].

Using the same procedure on ΥC, we have \({\Upsilon }_{C}= \frac {1}{8} \left (2N^{2}+NJ_{0}(4 \pi f_{1} \tau )+ 4N^{2}{J^{2}_{0}}(2 \pi f_{1} \tau )\right ) -\frac {1}{2} {{\sum }_{n}^{N}} \left (\mathbb {E}[\tilde {C}_{n}(\tau ) ]\right )^{2} \). It is straightforward to justify \(\mathbb {E}[\tilde {C}_{n}(\tau )]=\mathbb {E}[\tilde {C}_{N-n}(\tau )], n=1, \cdots , N \) by the following steps:

$$ \begin{array}{@{}rcl@{}} \mathbb{E}[\tilde {C}_{n}(\tau)]&=& {\int}_{-\pi}^{\pi}\cos \left( 2 \pi f_{1} \tau \cos (\frac{2n\pi - \pi +\psi}{4N})\right)\frac{1}{2\pi} d\psi \\ &=& {\int}_{\frac{(n-1)\pi}{2N}}^{\frac{n \pi}{2N}}\cos \left( 2 \pi f_{1} \tau \cos \theta \right) \frac{4N}{2\pi} d\psi\\ & =& {\int}_{\frac{(N-n-1)\pi}{2N}}^{\frac{(N-n) \pi}{2N}}\cos \left( 2 \pi f_{1} \tau \sin \varphi \right) \frac{4N}{2\pi} d\varphi = \mathbb{E}[\tilde {C}_{N-n}(\tau)]\\ \end{array} $$
(74)

Denote \( \xi (f_{1},\tau )= {{\sum }_{n}^{N}} \left (\mathbb {E}\left [\tilde {A}_{n}(\tau ) \right ]\right )^{2}={{\sum }_{n}^{N}} \left (\mathbb {E}\left [\tilde {C}_{n}(\tau ) \right ]\right )^{2}\). Then, we have

$$ \begin{array}{@{}rcl@{}} {\Upsilon}_{A}&= {\Upsilon}_{C}= \frac{2N^{2}+NJ_{0}(4 \pi f_{1} \tau)+ 4N^{2}{J^{2}_{0}}(2 \pi f_{1} \tau)}{8} -\frac{\xi(f_{1},\tau)}{2} \end{array} $$
(75)
$$ \begin{array}{@{}rcl@{}} {\Upsilon}_{B}&= {\Upsilon}_{D}= \frac{2M^{2}+MJ_{0}(4 \pi f_{2} \tau)+4 M^{2}{J^{2}_{0}}(2 \pi f_{2} \tau)}{8}-\frac{ \xi(f_{2},\tau)}{2}, \end{array} $$
(76)

where \(\xi (f_{2},\tau )={{\sum }_{m}^{M}} \left (\mathbb {E}\left [\tilde {B}_{m}(\tau ) \right ]\right )^{2}={{\sum }_{m}^{M}} \left (\mathbb {E}\left [\tilde {D}_{n}(\tau ) \right ]\right )^{2}\). Inserting the results for \( \mathbb {E}\left [g_{c}^{2}(t) {g_{c}^{2}}(\varrho )\right ], \mathbb {E}\left [g_{c}^{2}(t) {g_{s}^{2}}(\varrho )\right ], \mathbb {E}\left [g_{s}^{2}(t) {g_{c}^{2}}(\varrho )\right ]\), and \(\mathbb {E}\left [g_{s}^{2}(t) {g_{s}^{2}}(\varrho )\right ] \) into \(R_{|g|^{2}|g|^{2}}(\tau )\), we obtain

$$ \begin{array}{@{}rcl@{}} R_{|g|^{2}|g|^{2}}(\tau) &=& \frac{1}{N^{2}M^{2}}\left( 2{\Upsilon}_{A} +2{\Upsilon}_{C}+ {N^{2}}\right)\\ &&\left( 2{\Upsilon}_{B}+ 2{\Upsilon}_{D}+{M^{2}}\right) \end{array} $$
(77)
$$ \begin{array}{@{}rcl@{}} &=& \frac{1}{N^{2}M^{2}}\left( 4{\Upsilon}_{A} + {N^{2}}\right)\left( 4{\Upsilon}_{B}+{M^{2}}\right). \end{array} $$
(78)

Inserting the results in Eq. 75 and Eq. 76 into Eq. 78 yields Eq. 20.

Appendix C: Proof of Eq. 27: Variance of time-average correlations for Model ST-ISO-LoS

We present the derivation of the variance of the time-average autocorrelation for the in-phase component in Eq. 27. The same steps can be applied to obtain that for the quadrature component. Recall \(\text {Var}\left [\tilde {R}_{{h_{c}}h_{c}}(\tau ) \right ] =\mathbb {E}[\tilde {R}_{{h_{c}}h_{c}}^{2}(\tau )]- \left ({R}_{{h_{c}}h_{c}}(\tau ) \right )^{2}\). We have

$$ \begin{array}{@{}rcl@{}} \mathbb{E}[\tilde{R}_{{h_{c}}h_{c}}^{2}(\tau)]&=&\mathbb{E}\left[\left( \frac{2\tilde{R}_{{g_{c}}g_{c}}(\tau) +K \cos\left( 2\pi f_{3} \tau \cos\phi_{3} \right)}{2(1+K)} \right)^{2}\right] \end{array} $$
(79)
$$ \begin{array}{@{}rcl@{}} &=&\frac{1}{4(1+K)^{2}} \left( 4 \mathbb{E}\left[ \tilde{R}_{{g_{c}}g_{c}}^{2}(\tau)\right]+ 4K\cos\left( 2 \pi f_{3} \tau \cos\phi_{3} \right)\mathbb{E}\left[ \tilde{R}_{{g_{c}}g_{c}}(\tau)\right]+\left( K\cos(2\pi f_{3}\tau \cos\phi_{3}) \right)^{2}\right) \end{array} $$
(80)

Note \(\mathbb {E}[\tilde {R}_{g_{c} g_{c}} (\tau )] = J_{0} (2\pi f_{1} \tau )J_{0} (2\pi f_{2} \tau )\) and \(\text {Var}[\tilde {R}_{g_{c} g_{c}}(\tau ) ] =\mathbb {E}[ \tilde {R}_{g_{c} g_{c}}^{2}(\tau )]-({R}_{g_{c} g_{c}}(\tau ))^{2}\). Using the results obtained for \({R}_{{h_{c}}h_{c}}(\tau ) \) in Appendix A, one can achieve Eq. 27. Steps to obtain \(\text {Var}[\tilde {R}_{g_{c} g_{c}}(\tau ) ] \) in Eq. 34 is presented below in Appendix C-A.

1.1 Proof for \(\text {Var}[\tilde {R}_{g_{c} g_{c}}(\tau ) ]\) in Eq. 34

The variance of the time-average autocorrelation of the real part for gST(t) is \(\text {Var}[\tilde {R}_{g_{c} g_{c}}(\tau ) ] =\mathbb {E}[ \tilde {R}_{g_{c} g_{c}}^{2}(\tau )]-({R}_{g_{c} g_{c}}(\tau ))^{2}\). The first term is evaluated as

$$ \begin{array}{@{}rcl@{}} \mathbb{E}[ \tilde{R}_{g_{c} g_{c}}^{2}(\tau)] &=& \frac{1}{4M^{2}N^{2}} \mathbb{E}\left[\sum\limits_{n,m=1}^{N,M} \left( \tilde{A}_{n}(\tau) \tilde{B}_{m}(\tau) + \tilde{C}_{n}(\tau) \tilde{D}_{m}(\tau)\right) \sum\limits_{p,q=1}^{N,M} \left( \tilde{A}_{p}(\tau) \tilde{B}_{q}(\tau) + \tilde{C}_{p}(\tau) \tilde{D}_{q}(\tau)\right)\right] \end{array} $$
(81)
$$ \begin{array}{@{}rcl@{}} &=& \frac{1}{4N^{2}M^{2}} \left( \mathbb{E}\left[\sum\limits_{n,q=1}^{N,N} \tilde{A}_{n}(\tau)\tilde{A}_{q}(\tau) \sum\limits_{m,p=1}^{M,M} \tilde{B}_{m}(\tau)\tilde{B}_{p}(\tau) \right] +2 \mathbb{E}\left[\sum\limits_{n,q=1}^{N,N} \tilde{A}_{n}(\tau)\tilde{C}_{q}(\tau) \sum\limits_{m,p=1}^{M,M} \tilde{B}_{m}(\tau)\tilde{D}_{p}(\tau) \right]\right.\\ &&\left. +\mathbb{E}\left[\sum\limits_{n,q=1}^{N,N}\tilde{C}_{n}(\tau)\tilde{C}_{q}(\tau)\sum\limits_{m,p=1}^{M,M}\tilde{D}_{m}(\tau)\tilde{D}_{p}(\tau \right] \right) \end{array} $$
(82)

We have the following identities:

$$ \begin{array}{@{}rcl@{}} \mathbb{E}[\sum\limits_{n,q=1}^{N,N}\tilde{A}_{n}(\tau)\tilde{A}_{q}(\tau)] &=&N^{2} {J^{2}_{0}}(2 \pi f_{1} \tau)+ \mathbb{E}\left[\sum\limits_{n=1}^{N} \tilde{A}_{n}(\tau) \tilde{A}_{n}(\tau)\right ]- \sum\limits_{n=1}^{N} \mathbb{E}[ \tilde{A}_{n}(\tau) ]\mathbb{E}[ \tilde{A}_{n}(\tau)] \end{array} $$
(83)
$$ \begin{array}{@{}rcl@{}} &=& N^{2} {J^{2}_{0}}(2 \pi f_{1} \tau)+ \frac{N}{2}+\frac{N J_{0}(4 \pi f_{1} \tau)}{2}- {\xi(f_{1},\tau)} \end{array} $$
(84)
$$ \begin{array}{@{}rcl@{}} && \mathbb{E}\left[\sum\limits_{n,q=1}^{N,N}\tilde{C}_{n}(\tau)\tilde{C}_{q}(\tau)\right] = \mathbb{E}\left[\sum\limits_{n,q=1}^{N,N}\tilde{A}_{n}(\tau)\tilde{A}_{q}(\tau)\right] \end{array} $$
(85)
$$ \begin{array}{@{}rcl@{}} && \mathbb{E}\left[\sum\limits_{m,p=1}^{M,M}\tilde{B}_{m}(\tau)\tilde{B}_{p}(\tau) \right] = \mathbb{E}\left[\sum\limits_{m,p=1}^{M,M}\tilde{D}_{m}(\tau)\tilde{D}_{p}(\tau) \right] = M^{2} {J^{2}_{0}}(2 \pi f_{2} \tau) + \frac{M}{2} + \frac{M J_{0}(4 \pi f_{2} \tau)}{2}- {\xi(f_{2},\tau)} \end{array} $$
(86)
$$ \begin{array}{@{}rcl@{}} && \mathbb{E}\left[\sum\limits_{n,q=1}^{N,N}\tilde{A}_{n}(\tau)\tilde{C}_{q}(\tau) \right] = N^{2} {J^{2}_{0}}(2 \pi f_{1} \tau)+V_{\tilde{A}\tilde{C}} \end{array} $$
(87)
$$ \begin{array}{@{}rcl@{}} && \mathbb{E}\left[\sum\limits_{m,p=1}^{M,M}\tilde{B}_{m}(\tau)\tilde{D}_{p}(\tau) \right] = M^{2} {J^{2}_{0}}(2 \pi f_{2} \tau)+V_{\tilde{B}\tilde{D}} \end{array} $$
(88)

where \(V_{\tilde {A}\tilde {C}} = {\sum }_{n=1}^{N} (\mathbb {E}[ \tilde {A}_{n}(\tau ) \tilde {C}_{n}(\tau )]-\mathbb {E}[ \tilde {A}_{n}(\tau )]\mathbb {E}[ \tilde {C}_{n}(\tau )] )\), \(V_{\tilde {B}\tilde {D}}= {\sum }_{m=1}^{M} \left (\mathbb {E}[ \tilde {B}_{m}(\tau ) \tilde {D}_{m}(\tau )]-\mathbb {E}[ \tilde {B}_{m}(\tau )]\mathbb {E}[ \tilde {D}_{m}(\tau )] \right )\). Inserting Eq. 84 to Eq. 88 into Eq. 82, we obtain

$$ \begin{array}{@{}rcl@{}} \mathbb{E}[ \tilde{R}_{g_{c} g_{c}}^{2}(\tau)]&=& \frac{1}{4M^{2}N^{2} } \left( 2 \left( N^{2} {J^{2}_{0}}(2 \pi f_{1} \tau)+ \frac{N}{2}+\frac{N J_{0}(4 \pi f_{1} \tau)}{2}- {\xi(f_{1},\tau)}\right) \right. \end{array} $$
(89)
$$ \begin{array}{@{}rcl@{}} &&\left. \times \left( M^{2} {J^{2}_{0}}(2 \pi f_{2} \tau) + \frac{M}{2} + \frac{M J_{0}(4 \pi f_{2} \tau)}{2} - {\xi(f_{2},\tau)}\right) + 2 \left( N^{2} {J^{2}_{0}}(2 \pi f_{1} \tau) + V_{\tilde{A}\tilde{C}}\right)\left( M^{2} {J^{2}_{0}}(2 \pi f_{2} \tau) + V_{\tilde{B}\tilde{D}}\right) \right) \\ &=& \frac{1}{8M^{2}N^{2} } \left( \left( 2N^{2} {J^{2}_{0}}(2 \pi f_{1} \tau) + N + {N J_{0}(4 \pi f_{1} \tau)} - 2~ {\xi(f_{1},\tau)}\right) \right.\\ &&\left. \times \left( 2M^{2} {J^{2}_{0}}(2 \pi f_{2} \tau) + M + {M J_{0}(4 \pi f_{2} \tau)} - 2~{\xi(f_{2},\tau)}\right) + 4 \left( N^{2} {J^{2}_{0}}(2 \pi f_{1} \tau) + V_{\tilde{A}\tilde{C}}\right)\left( M^{2} {J^{2}_{0}}(2 \pi f_{2} \tau) + V_{\tilde{B}\tilde{D}}\right)\right)\\ \end{array} $$
(90)

Recall \(\left (\tilde {R}_{g_{c} g_{c}} (\tau )\right )^{2}={J^{2}_{0}} (2\pi f_{1} \tau ){J^{2}_{0}} (2\pi f_{2} \tau )\). We have

$$ \begin{array}{@{}rcl@{}} \text{Var}[\tilde{R}_{g_{c} g_{c}}(\tau) ] &=& \frac{1}{8M^{2}N^{2} } \left( 2 M^{2} {J^{2}_{0}}(2 \pi f_{2} \tau) \left( N+{N J_{0}(4 \pi f_{1} \tau)}- 2~ {\xi(f_{1},\tau)}+2V_{\tilde{A}\tilde{C}} \right) \right. \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&+2 N^{2} {J^{2}_{0}}(2 \pi f_{1} \tau)\left( M+{M J_{0}(4 \pi f_{2} \tau)}-2~ \xi(f_{2},\tau) +2V_{\tilde{B}\tilde{D}}\right)\\ &&\left.+\left( N + {N J_{0}(4 \pi f_{1} \tau)}-2~ \xi(f_{1},\tau) \right) \left( M + {M J_{0}(4 \pi f_{2} \tau)}-2~\xi(f_{2},\tau)\right) + 4V_{\tilde{A}\tilde{C}}V_{\tilde{B}\tilde{D}}\right) \end{array} $$
(91)

Reorganizing Eq. 91, one can obtain Eq. 34.

The variance of time-average autocorrelation of the imaginary part of g(t) is \(\text {Var}[\tilde {R}_{g_{s} g_{s}}(\tau ) ] =\mathbb {E}[ \tilde {R}_{g_{s} g_{s}}^{2}(\tau )]-({R}_{g_{s} g_{s}}(\tau ))^{2}\). The first term is evaluated as

$$ \begin{array}{@{}rcl@{}} \mathbb{E}[ \tilde{R}_{g_{s} g_{s}}^{2}(\tau)]&=& \frac{1}{4M^{2}N^{2} } \mathbb{E}\left[\sum\limits_{n,m=1}^{N,M} \left( \tilde{A}_{n}(\tau) \tilde{D}_{m}(\tau) + \tilde{C}_{n}(\tau) \tilde{B}_{m}(\tau)\right) \sum\limits_{p,q=1}^{N,M} \left( \tilde{A}_{p}(\tau) \tilde{D}_{q}(\tau) + \tilde{C}_{p}(\tau) \tilde{B}_{q}(\tau)\right)\right]\\ &&= \frac{1}{4N^{2}M^{2}} \left( \mathbb{E}\left[\sum\limits_{n,q=1}^{N,N} \tilde{A}_{n}(\tau)\tilde{A}_{q}(\tau) \sum\limits_{m,p=1}^{M,M} \tilde{D}_{m}(\tau)\tilde{D}_{p}(\tau) \right] +2 \mathbb{E}\left[\sum\limits_{n,q=1}^{N,N} \tilde{A}_{n}(\tau)\tilde{C}_{q}(\tau) \sum\limits_{m,p=1}^{M,M} \tilde{B}_{m}(\tau)\tilde{D}_{p}(\tau) \right]\right.\\ &&\left. +\mathbb{E}\left[\sum\limits_{n,q=1}^{N,N}\tilde{C}_{n}(\tau)\tilde{C}_{q}(\tau)\sum\limits_{m,p=1}^{M,M}\tilde{B}_{m}(\tau)\tilde{B}_{p}(\tau) \right]\right) \end{array} $$
(92)

We have \(\text {Var}[\tilde {R}_{g_{s} g_{s}}(\tau ) ] =\text {Var}[\tilde {R}_{g_{c} g_{c}}(\tau ) ] \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Ibdah, Y. Simulation models for mobile-to-mobile channels with isotropic and nonisotropic scattering. Peer-to-Peer Netw. Appl. 14, 507–527 (2021). https://doi.org/10.1007/s12083-020-00995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-020-00995-2

Keywords

Navigation