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ABSTRACT

Graph Neural Networks (GNNs) have achieved remarkable performance by taking advantage of
graph data. The success of GNN models always depends on rich features and adjacent relationships.
However, in practice, such data are usually isolated by different data owners (clients) and thus are
likely to be Non-Independent and Identically Distributed (Non-IID). Meanwhile, considering the
limited network status of data owners, hyper-parameters optimization for collaborative learning
approaches is time-consuming in data isolation scenarios. To address these problems, we propose an
Automated Separated-Federated Graph Neural Network (ASFGNN) learning paradigm. ASFGNN
consists of two main components, i.e., the training of GNN and the tuning of hyper-parameters.
Specifically, to solve the data Non-IID problem, we first propose a separated-federated GNN learning
model, which decouples the training of GNN into two parts: the message passing part that is done by
clients separately, and the loss computing part that is learnt by clients federally. To handle the time-
consuming parameter tuning problem, we leverage Bayesian optimization technique to automatically
tune the hyper-parameters of all the clients. We conduct experiments on benchmark datasets and the
results demonstrate that ASFGNN significantly outperforms the naive federated GNN, in terms of
both accuracy and parameter-tuning efficiency.

Keywords Graph neural network · Federated learning · Bayesian optimization · Privacy preserving

1 Introduction

Graph Neural Networks (GNNs) have achieved superior performance by taking advantage of embedding features via
aggregating representations of nodes and their neighbors [1]. GNNs benefit a lot of applications across different tasks,
such as computer vision [2], traffic prediction [3], recommend system [4] and risk control [5].

1.1 Existing problem

The factor that drives the success of GNN is the rapid growth of high-dimensional data and their adjacent information.
However, existing GNN methods face two main challenges. First of all, with the increasing awareness of security and
privacy, data-isolation problem is serious, which limits the data size of a single party (client) and further damage the
performance of GNN. Furthermore, the isolated datasets in different clients are usually Non-Independent and Identically
Distributed (Non-IID), due to the reasons that clients belong to diverse geographic locations or have different time
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windows of data collection. Therefore, it becomes more and more difficult to train a global GNN model with the
Non-IID data in data isolation scenario.

Fig. 1 shows a typical example of the Non-IID graph data, where we assume there are I separated clients. These clients
collect graph data from different sources with the same format. In other words, clients share the same feature domain,
e.g., {f1,f2,f3}, but differ in sample space, which are represented by colorful nodes. Meanwhile, clients may have
diverse graph structures of nodes, i.e., heterogeneous graphs. Furthermore, data distributions are likely to be Non-IID ,
as is shown in Fig. 1.
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Figure 1: The data isolation problem with Non-IID graph data, assuming I clients with four nodes, three features and
different label distributions.

Moreover, hyper-parameters are important for GNN learning algorithms. For example, activation function determines
the output of layers, regularization parameter impacts the calculation of loss functions, and learning rate influences
the update of model weights in the back-propagation process [6]. These hyper-parameters directly affect the training
process of GNN models. Intuitively, in order to achieve the best model performance, clients with Non-IID graph data
are likely to have individual hyper-parameter sets rather than a global hyper-parameter set [7]. Due to the huge search
space and limited network status among clients, tuning of hyper-parameters is quite time-consuming. Therefore, it is
important to design a proper distributed GNN model on Non-IID dataset with hyper-parameter optimization power.

Unfortunately, there is few literature on solving the above problem. Although directly applying federated learning to
GNN seems a good choice, it has two main shortcomings [7]. Firstly, federated learning faces the statistical challenge.
The original goal of federated learning, i.e., training a single global model on the union of clients’ datasets, is no
longer suitable for Non-IID graph data [8]. Secondly, communication of federated GNN learning is time-consuming.
This is because, in order to achieve the best performance, models and hyper-parameters of clients are likely to be
different. Comparing with the traditional neural network, GNN has extra individual hyper-parameters to represent graph
information, which further increases the unbearable training time.

1.2 Our Solution

In order to bridge these gaps, we propose an Auto Separated-Federated GNN (ASFGNN) learning paradigm. As graph
data is often owned by companies and governments, we focus on the cross-silo federated learning in which the clients
are a limited number of organizations with powerful computing ability and reliable communications [7]. Our proposed
ASFGNN consists of two steps, i.e., GNN training and hyper-parameters optimization.

In the first step, the Separated-Federated GNN learning framework decouples a GNN model into two parts: message
passing sub-model that is conducted by clients separately and loss computing sub-model which is performed by clients
federally. Specifically, clients first perform message passing, i.e., neighbor information aggregation, individually, and
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get node embeddings. In the following step, clients take the embeddings as the input of the discrimination model to
compute loss, then update both message passing sub-model and loss computing sub-model using backward propagation
for the first time. After it, the server securely aggregates the local discrimination models using federated learning
method and gets the global discrimination model. Finally, the global discrimination model is broadcast to clients to
update the local discrimination models with the help of Jensen–Shannon divergence.

In the second step, we propose a Bayesian optimization algorithm to automatically optimize the hyper-parameters of
Separated-Federated GNN model. That is, Bayesian optimization algorithm takes hyper-parameters as input and regards
the average value of clients’ evaluation metrics (e.g., precision) as output [9, 10], where these metrics are uploaded by
clients and averaged by server in a secure manner. To this end, we get the hyper-parameters that achieve the best metric.

To verify the performance of our proposed ASFGNN, we empirically compare the accuracy of SFGNN and traditional
federated GNN model, and analyze the efficiency of Bayesian optimization method and the traditional grid search
method.

We summarize our main contributions as follows:

• We propose a novel Separated-Federated Graph Neural Network (SFGNN) learning framework, which can be
used to learn any existing GNN models under privacy consideration.

• We propose to adopt Bayesian optimization to tune model parameters automatically, which significantly
improves the efficiency of the SFGNN model.

• We conduct experiments on three benchmark datasets and the results demonstrate that our proposed SFGNN
outperforms federated GNN in terms of accuracy, and ASFGNN significantly reduces the hyper-parameter
tuning time of SFGNN comparing with grid search.

2 Related work

In this section, we briefly review the literature on federated learning and hyper-parameters optimization.

2.1 Federated learning

Federated learning model is prevailing privacy-preserving approach via model or gradient aggregation rather than
data aggregation [11]. However, the accuracy of federated learning would drop significantly with Non-IID datasets[7].
Existing works propose different strategies to resolve the statistical challenge of federated learning. One natural approach
is to create a small shared dataset which makes the data across clients more similar [12]. For some applications, the
contributions of clients to the global model are bounded according to the dataset characteristics [13]. Furthermore,
model-agnostic meta-learning has been developed to meta-learn a global model, which can be used as a starting point
for learning a good model of Non-IID data in each client [14]. These methods modify federated learning model with
Non-IID datasets, which can not be applied in GNN model directly. As GNN model includes two parts as shown in
preliminary, among which the message passing part owns personal information which should be learned individually.

Besides the federated learning, Split Learning (SL) is another decentralized method which trains the local models
separately and sends hidden layers to server [15]. The separated local models represent the personality of clients with
Non-IID datasets [16]. However, it is obviously that the hidden layers leak privacy information and the deep local layers
decrease the accuracy seriously [17]. In this paper, we combine the advantages of federated learning and split learning,
and propose a novel Separated-Federated Graph Neural Network learning framework.

2.2 Hyper-parameters optimization

Recently, there has been an increasing literature on hyper-parameters optimization [10]. Grid search is the most
traditional way of hyper-parameters tuning, which enumerates every possible configuration in the search space. Random
search is better than naive grid search, which samples configurations randomly. Moreover, Evolutionary Algorithm (EA)
and Reinforcement Learning (RL) methods are used to generate a new population (a bunch of configurations). Another
conventional solution resorts to formalizing machine learning process as a black-box optimization task, reference [18]
finds the optimal of black-box objectives with the method of Bayesian Optimization (BO). Comparing with EA and RL,
BO is more efficient than these methods and shows promising results in hyper-parameters optimization [10]. In this
paper, we propose to apply BO as a prevailing approach to find the proper hyper-parameters in our proposed model.
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3 Preliminaries

In this section, we present some preliminary techniques and methods of our proposal, including Graph Neural
Network (GNN), federated learning, secret sharing, Jensen-Shannon divergence, and Bayesian optimization.

3.1 Graph neural network

GNN learns node embeddings by aggregating features of node and its neighbors. The node embeddings are regarded
as the new node representations which are fed to downstream machine learning tasks. The process of GNN training
includes two steps: message passing and loss computing. The first step is the difference between GNN and other
neural network models, which uses a generation function to infer node embeddings. Numbers of message passing
functions have been proposed, e.g., random walk statistics based, attention based, similarity based, and convolution
based [19, 20, 21, 3]. In this work, we select GraphSAGE as the node embeddings generation function, which aggregates
the embeddings from a node’s local neighborhood in a inductive way [22]. The message passing process is described in
Equation (1), where k ∈ {1, 2, ...,K} denotes the depth of neighborhood aggregation, hv,k denotes the embedding of
node v during k-th aggregation step, xv denotes features of node v and N (v) denotes the neighbors of node v in the
graph [23].

hN (v),k ← AGGk({hu,k−1,∀u ∈ N (v)}),
hv,k ←

(
Wk · CONCAT

(
hv,k−1,hN (v),k

))
.

(1)

where AGGk is the aggregation function in k-th step, such as Mean, LSTM, and Pooling methods [22].

3.2 Federated learning

Federated Learning (FL) was first proposed by Google [24], which builds distributed machine learning models while
keeping personal data on clients. In other words, federated learning models are trained via model aggregation rather than
data aggregation. We suppose that I clients have their own datasets {D1, D2, ..., DI} which are collected from different
sources with the same feature domain. Private raw dataset Di is preserved locally, client i uses forward and backward
propagations to update its own model Mi individually, which has the identical neural network architecture with other
clients. Then clients upload the encrypted weights to the server with the help of secret sharing or homomorphic
encryption [25, 26, 27, 28]. The server averages the uploaded model parameters to update the global federated model
Ms, which will be sent back to client i to replace the local model Mi.

3.3 Jensen-Shannon divergence

The Jensen–Shannon divergence (JS) is popularly used to evaluate the dissimilarity between two probability distributions
[29]. JS has a finite value range from 0 to 1 for two probability distributions. Motivated by [30], JS can be used to
indicate the dissimilarity between two None-IID datasets. Considering two probability distributions P and Q, the JS
between P and Q is defined in Equation (2).

JS (P ||Q)← 1

2
KL

(
P ||P +Q

2

)
+

1

2
KL

(
Q||P +Q

2

)
,

KL (P1||P2)←
∑
x∈X

P1(x) log
P1(x)

P2(x)
.

(2)

As the machine learning model is built to represents the trained dataset, the difference between the aggregated model in
server and the local model in client can be simulated by the distribution similarity between the participated data and the
client data.

3.4 Secret sharing

Our proposal depends on Shamir’s t-out-of-n threshold secret sharing algorithm [25]. Typically, we use n-out-of-n
additive secret sharing to recover the privacy in this paper. For example, we suppose that there is an `-bit value a of
client i, i ∈ P with P = {1, ..., I}, which will be shared among all the participant clients. Firstly, in order to encrypt
(Shr(·)) the value a of client i, client i generates a random number aj , {aj ∈ Z2` , j ∈ P, j 6= i}, which will be
distributed to client j, {j ∈ P, j 6= i}. Then client i calculates ai = a−

∑
j aj mod 2` which will be kept locally. For

simplification, We use 〈a〉k to denote the share of a in client k, ∀k ∈ P . To decrypt (Rec(·)) the shared value a, client
k (∀k ∈ P) sends the encrypted value 〈a〉k to the server. The server aggregates

∑
k〈a〉k mod 2`, k ∈ P , and gets the

value a of client i.
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(a) Separated federated graph neural network (SFGNN) model

6HUYHU

0HWULF��

ŏ

&OLHQW�,

1RQ�,,'�GDWDVHWV

6)B0RGHO��

&OLHQW�� &OLHQW��

'� '� ',

6)B0RGHO�� 6)B0RGHO�,

0HWULF�� 0HWULF�,

+\SHU�SDUDPHWHUV��8SGDWH

0HWULFV�8SORDG
%D\HVLDQ�
2SWLPL]DWLRQ

(b) Hyper-parameters Bayesian optimization of SFGNN

Figure 2: Our proposed automated separated-federated graph neural network model.

3.5 Bayesian optimization

Bayesian Optimization (BO) is an effective method to solve the black-box parameter optimization problem [10]. In our
paper, we care about the hyper-parameter optimization in the training of GNN model, where we try to find the optimal
hyper-parameter setting that maximizes the utility function:

θ∗ = arg max
θ∈Θ

f(θ), (3)

where θ denotes the hyper-parameters, such as learning rate and dimension of hidden units. The Θ denotes the search
space and f is the utility function which is measured by certain model metrics, such as model accuracy and the Area
Under Curve (AUC) score. Typically, the evaluation of f is expensive and we cannot obtain its closed-form solution.
Therefore, we treat Equation (3) as a black-box optimization and adopt BO to solve this problem. The key ingredients
of BO include a surrogate model to “imitate” f and an acquisition function to decide the next trial based on historical
trails (i.e., hyper-parameters). In our paper, we use Gaussian process (GP) as our surrogate model and use the Expected
Improvement (EI) function as the acquisition function [31].

4 The proposed method

In this section, we first give an overview of the proposed Automated Separated-Federated Graph Neural Network (AS-
FGNN) learning paradigm. We then present its three main components, i.e., separated learning for message passing on
clients, federated learning for loss computing with Jensen–Shannon divergence, and hyper-parameters optimization
with Bayesian optimization. Finally, we summarize the whole algorithm.

4.1 Overview

We first give an overview of the proposed ASFGNN learning framework. We focus on horizontally split datasets in this
paper.

Our design of ASFGNN consists of two steps. First, we need to design a privacy preserving GNN learning model,
which can solve the Non-IID problem and reduce the communication cost as much as possible. Second, since GNN has
many hyper-parameters, we need to design a strategy to automatically optimize hyper-parameters to reduce the training
time.

The first step is to design a practical GNN learning paradigm without leaking the private plaintext data of clients.
Inspired by existing works [32, 33], we propose a Separated-Federated GNN (SFGNN) learning framework. The main
idea is decoupling the computation module of GNN into two sub-modules, i.e., the Separated GNN learning (SGNN)
model and the Federated GNN learning (FGNN) model, as shown in Fig. 2 (a). The former performs message passing
and obtains the node embeddings as inputs of the latter one. As clients have Non-IID datasets, node embeddings
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Table 1: Notations and descriptions.

Notation Description Notation Description
I total number of clients P union set of I clients
Gi graph data of client i V i nodes data of client i
Ei edges data of client i N i(v) neighbour function of client i
xiv features of node v in client i J total number of categories
W i
k,t weights of k-th step in SGNN for

client i during t-th epoch
K depth of neighbor aggregation in

SGNN
hiv,k intermediate node embeddings of

node v in client i during k-th step
Hi
v,t the final node embeddings of node

v in client i during t-th epoch
Qit probability density of label in client

i during t-th epoch
Qst probability density of label in server

during t-th epoch
N i
t sample numbers of different cate-

gories in client i during t-th epoch
Ns
t sample numbers of different cate-

gories in server during t-th epoch
nij,t sample numbers of category j in

client i during t-th epoch
nit total number of samples in client i

during t-th epoch
yit labels in client i ŷt

i labels prediction in client i
W i
l,t intermediate weights of l-th layer in

FGNN of client i during t-th epoch
W

i

l,t weights of l-th layer in FGNN of
client i during t-th epoch

W
s

l,t weights of l-th layer in FGNN model
of server during t-th epoch

jsit JS divergence between dataset of
client i and dataset of server during
t-th epoch

Shr(·) additively secret sharing encrypt Rec(·) additively secret sharing decrypt
〈·〉 encryption using secret sharing L number of layers in FGNN model
Mt average of metrics during t-th epoch M i

t metric of client i during t-th epoch
lrin learning rate of client i in n-th BO

round
l2
i
n L2 regularization of client i in n-th

BO round
θn hyper-parameters set in n-th BO

round
M(·) black-box function of hyper-

parameters optimization

are generated separately with individual network architecture and hyper-parameters. After the generation of node
embeddings with SGNN, FGNN trains the discrimination neural network taking advantage of federated learning
algorithm.

Secondly, hyper-parameters of SFGNN, such as learning rate, regularization factor, network structures etc., explode
with the increasing number of clients. We adopt Bayesian Optimization method to solve this black-box optimization
problem, in which we regard the hyper-parameters of model as inputs and the average of clients’ metrics as outputs,
as shown in Fig. 2 (b). The metrics of SFGNN model in clients are securely aggregated in server. Then the server
optimizes the hyper-parameters and sends the hyper-parameters back to clients to finish another training epoch of
SFGNN. To the end, the whole parameter-tuning time is greatly decreased, as the searching round of hyper-parameters
is highly reduced.

In summary, we leverage Bayesian optimization technique to automatically tune the hyper-parameters of SFGNN model,
combining SGNN with FGNN. Notations. Before presenting our model in details, we first describe the notations.
Considering there are many notations, for clarity, we summarize the notations used in this paper in Table 1.

4.2 Separated GNN learning (SGNN)

We summarize how to generate initial node embeddings for client i(i ∈ P) using GraphSAGE method [22] in SGNN
Algorithm 1, where the entire graph Gi = (V i, Ei), features for all nodes xiv

(
∀v ∈ V i

)
are provided as inputs. The

weight matrix W i
k,∀k ∈ {1, ...,K} are used to propagate information of message passing layers. The first step is

generating initial node embeddings using nodes’ private features, e.g., user features in social networks (line 2). In the
next step, clients generate local node embeddings by aggregating multi-hop neighbors’ information using GraphSAGE
method [22] for the FGNN computations as shown in line 4-15 in Algorithm 1.
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Algorithm 1: SGNN (Separated GNN learning on client)

Input: Graph G(V i, Ei) and node features {xiv,∀v ∈ V i} on data holder i, i ∈ P ; depth K; non-linearity function
σ; neighborhood functions N i(v) : v → 2V

i

,∀i ∈ P
Output: Node embeddings:Hi

v,t,∀v ∈ V i on client i during t− th training round
1 # Calculate the initial node embeddings
2 hiv,0 ← xiv ·W i

0,∀i ∈ P,∀v ∈ V i
3 # Generate local node embeddings
4 for each round t = 1, 2, ..., T do
5 for i ∈ P in parallel do
6 for k = 1 to K do
7 for v ∈ V do
8 client i: calculates hN

i(v)
v,k ←Mean

({
hiu,k−1 ,∀u ∈ N i(v)

})
9 end

10 client i: calculates hiv,k ← σ
(
W i
k,t · CONCAT

(
hiv,k−1, h

N i(v)
v,k

))
11 end
12 Client i: calculates Hi

v,t ← hiv,K/||hiv,K ||2,∀v ∈ V i
13 end
14 return Node embeddings Hi

v,t,∀i ∈ P
15 end

4.3 Federated GNN learning (FGNN)

First of all, client i (∀i ∈ P) randomly initializes weights of Federated GNN Learning model W
i

l,0, l ∈ {1, ..., L} with
L denoting the max layer. Client i gets the label distribution Qit

(
Qit =

{
qit,1, q

i
t,2, ..., q

i
t,J

})
in the current batch during

training epoch t with nit samples, where J denotes the label classification as shown in FGNN Algorithm 2. Then
client i counts sample numbers of different categories N i

t = {nit,1, nit,2, ..., nit,J}, where
∑J
j=1 n

i
t,j = nit ( line 4).

Meanwhile client i updates local FGNN model’s weights W i
k,t and W i

l,t using forward and backward propagation with
their own embeddings Hi

v,t generated by Algorithm 1 (lines 5-11). Loss function L(ŷt
i, yit)) is defined by different

tasks, e.g., cross entropy loss for classification task and mean absolute loss for regression task. In this paper, we choose
classification task for example, the loss of which is defined in Equation (4).

L(ŷt
i, yit) = − 1

nit

J∑
j=1

ŷij,t logy
i
j,t +l2

i
n ·

(
K∑
k=0

||W i
k,t||2 +

L∑
l=1

||W i

l,t||2

)
. (4)

After it, W i
l,t , N i

t , and M i
t (i ∈ P, l ∈ {1, ..., L}) of clients are uploaded to server with the help of secret sharing

(Shr(·)), supposing all clients participate in the federated learning, as shown in line 13. The server aggregates the
global FGNN model W

s

l,t by averaging the sum of W i
l,t, and gets the global label distribution Qst , sample numbers

Ns
t of a training batch and average of metrics Mt, all of which are regarded as outputs of FGNN model, as shown in

Algorithm 2 line 16-19. Then W
s

l,t and Qst are sent back to clients. To the end, client i calculates jsit with the help of
Qit and Qst , then the local FGNN model is updated by combining W

s

l,t and W i
l,t (line 24). jsit controls the percent of

the client local model in update process. The more Non-IID clients datasets are, the bigger priority of client model is.
In a world, the addition of JS contributes to the accuracy of client model in Non-IID federated learning.

4.4 Hyper-parameters optimization

We employ Bayesian optimization in tuning hyper-parameters, where we treat the hyper-parameter search process as
a black-box optimization, as shown in Equation (3). Specifically, the hyper-parameter set θn includes dropout rate,
L2 regularization, propagation depth, learning rate, and dimension of hidden units. The utility function f is set to be
the average of clients’ accuracy. The high-level optimization process is shown in Algorithm 3. Firstly, we update the
posterior probability distribution on f using all the hyper-parameters sets(line 5). Then we calculate the maximize point
of the EI acquisition function as the next hyper-parameters groups and observe the value of utility function (line 6 -
line 7). The hyper-parameter tuning time is measured by T = n ∗ t, where t denotes the running time of one set of

7



A PREPRINT - NOVEMBER 9, 2020

Algorithm 2: FGNN (Federated GNN learning)

Input: Node embeddings Hi
v,t,∀v ∈ V,∀i ∈ P; hyper-parameters setθn

Output: Mt

1 # Client model update

2 Randomly initialization W
i

l,0,∀i ∈ P,∀l ∈ {1, ..., L}
3 for each round t = 1, 2, ..., T do
4 # Updates local FGNN model’s weights and sends to server
5 for i ∈ P in parallel do
6 # Get: Qit, N

i
t

7 Hi
v,t ← SGNN

(
G(V i, Ei),N i(v), xiv

)
8 ŷit ← σ

(
Hi
v,t ·W

i

l,t

)
9 # Get: L(ŷt

i, yit), M i
t

10 W i
k,t ←W i

k,t−1 − lr
i
m∇L

(
ŷt
i, yit

)
11 W i

l,t ←W
i

l,t−1 − lr
i
m∇L

(
ŷt
i, yit

)
12 # Upload privacy information using secret sharing:
13 〈W i

l,t〉, 〈N i
t 〉, 〈M i

t 〉 ← Shr(W i
l,t),Shr(N i

t ),Shr(M i
t ), upload to server

14 end
15 # Secure aggregation in server:

16 W
s

l,t ← 1
I

(∑I
i=1〈W i

l,t〉
)

17 Ns
t ←

∑I
i=1〈N i

t 〉
18 Qst ←

Ns
t∑

J N
s
t

19 Mt = 1
I

∑I
i=1〈M i

t 〉
20 # Send W

s

l,t, Q
s
t to client i,∀i ∈ P

21 # Update W
i

l,t in client:
22 for i ∈ P in parallel do
23 jsit ← JS

(
Qit||Qst

)
24 W

i

l,t ← jsit ·W
i

l,t +
(
1− jsit

)
·W s

l,t

25 end
26 return Mt

27 end

hyper-parameters, n denotes the number of hyper-parameter combinations, and T is the total hyper-parameter tuning
time. Bayesian optimization optimizes the hyper-parameter tuning time by narrowing down the number of combinations
n greatly.

4.5 Putting all together

To sum up, we conclude the ASFGNN framework in the Algorithm 4. Before the training process, we initialize the
hyper-parameters set of clients and server as θ0. First of all, we get the node embeddings Hi

v,t for each client i using
Algorithm 1 (SGNN) with the relevant hyper-parameters set θn (line 5). Secondly, we start the training of FGNN model
using node embeddings as the inputs and get the average of accuracy (Mt) in each training round (line 7). The max of
Mt is marked as M(θn) (line 9), which is regarded as outputs of black-box. Then, the following input θn+1 is updated
by Bayesian optimization. Finally, we get the best hyper-parameters set θN and the relevant M(θN ).

5 Experiment

In this section, we empirically compare the performance of our proposed ASFGNN model with the GraphSAGE of
Centralized Model (CM) which is trained using all the data, the traditional Federated Learning model (FL) and the
Separated model (SP) in which clients can only use their own data without any communications. We aim to answer the
following questions.

8
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Algorithm 3: Hyper-parameters optimization
1 Place a Gaussian process prior on f
2 Observe f at n0 hyper-parameters groups according to an initial space-filling experimental design
3 Set n = n0

4 while n ≤ N do
5 Update the posterior probability distribution on f using all available data
6 Let θn be a maximize point of the EI acquisition function over Θ, where the acquisition function is computed

using the current posterior distribution
7 Observe yn = f(θn).
8 Increment n
9 end

Algorithm 4: ASFGNN (Automated separated-federated graph neural network learning)
1 Initialization of hyper-parameters set: θ0

2 for each BO round n = 0, 1, ..., N do
3 for each FGNN round t = 1, 2, ..., T do
4 for each client i ∈ P do
5 Hi

v,t ← SGNN(V i, Ei, θn)
6 end
7 Mt ← FGNN(Hi

v,t, θn)
8 end
9 M(θn)←MAX(Mt)

10 Update θn+1 ← arg maxθ∈ΘM(θ)
11 end
12 return θN ,M(θN )

• Q1: whether our model (SFGNN) outperforms the CM model, FL model and SP model that is trained on the
isolated Non-IID data, including Non-IID label and Non-IID graph?

• Q2: how the distribution parameter influences the performance of our model?

• Q3: how the number of clients influences the performance of our model?

• Q4: how the JS divergence influences the performance of our model?

• Q5: how does Bayesian optimization affect the efficiency of parameter tuning comparing with grid search?

5.1 Experimental settings

5.1.1 Framework

We construct our experiment on the popular TensorFlow framework [34]. All the experiments were performed on a
Macbook Pro laptop with 2.3GHz 4-core Intel Core i5 processor. For simplification, we ignore the communication cost
and focus on the performance and computation efficiency.

5.1.2 Datasets

To test the effectiveness of our proposed model, we choose three benchmark citation datasets, i.e., Cora, Pubmed, and
Citeseer. For simplification, we assume there are only two clients (A and B) who split datasets according to label
classes and number of neighbours in graph. We use N1 and N2 to denote the number of samples in each part. We
divide Cora dataset into Co1 and Co2. The first part Co1 has four label categories (theory, reinforcement learning,
genetic algorithms, and probabilistic methods) with 1,412 nodes. The second part Co2 contains the rest three label
categories (possessing neural networks, case based and rule learning labels) with 1,296 nodes. We also divide Citeseer
and Pubmed datasets into two parts (Ci1 and Ci2, Pu1 and Pu2) in a similar way. We report the data split result in
Table 2. In order to study the influence of data Non-IID on our method, we use α to denote the label distribution ratio.
The data of client A is made up of α ·N1 samples from the first part and (1− α) ·N1 samples from the second part.
Similarly, the data of client B is made up of (1−α) ·N2 samples from the first part and α ·N2 samples from the second
part. In other words, the hyper-parameters α implies the non-iid level. We assume that α ranges from 0.5 to 1.0 due
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Table 2: Statistic analysis of subsets.

Subset #Nodes #Edges #Features #Classes
Co1 1,412 2,657 1,433 4
Co2 1,296 1,961 1,433 3
Ci1 1,507 2,024 3,703 3
Ci2 1,805 2,005 3,703 3
Pu1 9,791 16,585 500 2
Pu2 9,926 19,020 500 2

Table 3: Performance comparison on three datasets in terms of accuracy.

Dataset CM FL SP SFGNN
Cora 0.8150 0.8833 0.9101 0.9264

Citeseer 0.7001 0.7500 0.7823 0.8055
Pubmed 0.7910 0.8889 0.9174 0.9340
Average 0.7687 0.8407 0.8699 0.8886

to the symmetry. We use exactly the same dataset split of training, validate, and test following the prior work [35].
Apparently, our proposal can be applied into the scenario where there are multiple clients.

5.1.3 Metrics

Following the existing work [35], we use accuracy as the evaluation metric. To compare the performance of different
strategies in decentralized scenario, we choose the average of metrics in all clients as the optimization target.

5.1.4 Hyper-parameters

Following recent research [36], we use hyperbolic tangent (TanH) as the active function of hidden layers and set the max
layer of the fully-connected deep neural network in the discrimination model (L = 2). We tune other hyper-parameters
by using Bayesian optimization. The hyper-parameters include dropout rate d ∈ {0.0, 0.5}, L2 regularization l2 ∈
{0.0, 5e−4, 1e−3, 5e−3, 1e−2}, propagation depth K ∈ {1, 2, 3, 4, 5}, learning rate lr ∈ {5e−4, 1e−3, 5e−3, 1e−2},
and dimension of hidden units l ∈ {64, 128, 256, 512}. As clients train the discrimination model federated, the
dimension of embeddings should be aligned, which means that all clients have the same hidden units dimension. The
experiment are conducted in a stand-alone PC to simulate the communication in federated learning. We tune parameters
based on the validate dataset and evaluate model performance on the test dataset.

5.2 Accuracy comparison

5.2.1 Accuracy comparison of different models with Non-IID label

To answer the proposed question Q1, we first set the label distribution ratio α = 1.0, which implies the labels
between client A and client B are totally different. In general, we take advantage of grid search method to find the
highest accuracy with the proper hyper-parameters. We summarize the comparison results in Table 3, and report the
corresponding best hyper-parameters set in Table 4.

Table 4: Hyper-parameters of the SFGNN model and FL model with the best accuracy.

Model K lr l2 d

FL of Cora 4 0.01 0.005 0.0
SFGNN of A on Cora 4 0.01 0.005 0.5
SFGNN of B on Cora 2 0.01 0.005 0.5

FL on Citeseer 4 0.005 0.005 0.0
SFGNN of A on Citeseer 4 0.005 0.01 0.5
SFGNN of B on Citeseer 4 0.01 0.01 0.0

FL on Pubmed 5 0.005 0.001 0.5
SFGNN of A on Pubmed 3 0.01 0.001 0.0
SFGNN of B on Pubmed 2 0.01 0.005 0.5
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Table 5: Performance comparison on both Non-IID label and Non-IID graph.

Dataset FL SFGNN Improvement
Cora 0.7525 0.7986 6.13%

Citeseer 0.7020 0.7583 8.02%
Average 0.7273 0.7785 7.04%

From the Table 3, we can conclude that SFGNN outperforms the other three models in all the datasets. Besides,
comparing with the traditional FL model, the improvement of accuracy is about 5.70% percent in average, which
means the SFGNN model is more effective for data Non-IID scenarios. Because our proposed SFGNN generates
embeddings separately with individual hyper-parameters and aggregates discrimination layers of clients, the SFGNN
model can balance the inference and contributions from samples with different labels. From Table 3, we can also find
an interesting result. That is, the Centralized GNN Model (CM) achieves the worst performance. This is because clients
have absolutely different label classes when the α = 1.0, and the models with relatively pure label classes will naturally
achieve better performance. When different label classes are combined together in CM, it introduces distractions to the
model learning target, which makes CM behave the worst.

From Table 4, we can also observe that clients generally have different hyper-parameters to achieve the best accuracy,
and these parameters are also different from the hyper-parameters of FL model. The individual hyper-parameters
describe the diversity of Non-IID datasets.

5.2.2 Accuracy comparison of different models with both Non-IID label and Non-IID graph

he GNN model benefits a lot from adjacent information, which is different from the traditional neural network model,
the distribution of graph data also has an important influence on model accuracy. As median of edges in Cora dataset
is 3.8, we firstly split the Cora dataset into two sub-datasets, i.e., Co3 and Co4, according to the average edges.
The Co3 has the samples with equal or lesser than 3 edges, while Co4 containts the rest samples. Furthermore, we
combine the Non-IID graph data with the Non-IID label data, which means the datasets have different graph and label
distributions. Similar as the setting in Table 2, we build a subset of Co3 as Co5, which only has label classes of ‘theory’,
‘reinforcement learning’, ‘genetic algorithms’, and ‘probabilistic methods’, and a subset of Co4 as Co6, which only
has labels of ‘possessing neural networks’, ‘case based’ and ‘rule learning’. Similarly, we get the subsets of Citeseer
dataset (Ci3, Ci4, Ci5, Ci6). After the data being preprocessed, client A owns the Co5 subset and client B owns the
Co6 subset of Cora dataset, and client A owns the Ci5 subset and client B owns the Ci6 subset of Citeseer dataset. We
train the SFGNN model and FL model respectively and compare their accuracy in Table 5. We can conclude that the
SFGNN model performs better than FL model when both label and graph are Non-IID, and the improvement percent
average increases from 5.70% to 7.04%. The experiment results indicate that SFGNN model is more appropriate for the
scenarios where both graph and label have different distributions.

5.2.3 Accuracy comparison with different label distribution

To answer the proposed question Q2, we vary α from 0.6 to 1.0 on Cora dataset and report the accuracy of different
models in Fig. 3. We compare our model with the SP model in which client A and client B can only use their own data
without any communications. The bigger ratio means the less similar distributions of clients’ datasets. From the results,
we can conclude that (1) SFGNN performs better than both SP model and FL model when data distribution is more
asymmetrical (α > 0.75), which is a quite common situation in real-world applications, (2) FL model is more suitable
for training a single global model when all the clients tend to have IID data (0.5 <= α < 0.75), and (3) SP model even
works better than FL when clients have severely heterogeneous label distributions (0.88 < α <= 1.0).

5.2.4 Accuracy comparison of different clients’ number with Non-IID label.

The CM model is trained by the whole dataset, which can be regarded as the ASFGNN model with only one client. To
answer the proposed question Q3, we vary the number of clients from 2 to 5 on Cora dataset. The labels of clients’
data are different from each other. We report the average accuracy of ASFGNN in Fig. 4. From it, we can find that the
average accuracy of ASFGNN first increases with the number of clients, and then tends to be stable. This is because,
when the number of clients first increases, each client has fewer kinds of labels, which makes the Non-IID problem
more serious. Therefore, our proposed ASFGNN achieves better performance with the increase of client number.
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Figure 3: Average accuracy comparison of three models with different α.
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Figure 4: Average accuracy comparison of different clients’ number with Non-IID label.

5.2.5 Accuracy comparison of JS divergence

To answer the proposed question Q4, we execute the FGNN model in Algorithm 2 in an another way. That is, clients
update the local discrimination models using global discrimination model directly. Then we compare the accuracy
with different α on Cora dataset, the results are shown in Table 6. From it, we find that SFGNN with JS consistently
outperforms SFGNN without JS, which shows the effectiveness of the proposed JS method. Besides, we also find that
the promotion of JS on SFGNN increases with the raise of α. The contribution of JS method becomes negligible when
clients tend to have IID data, e.g., α = 0.6.

5.3 Efficiency comparison

To answer the proposed question Q4, we compare the parameters tuning time of grid search and Bayesian optimization
on the three datasets. We perform the Bayesian optimization of hyper-parameters with the help of the open source
framework SMAC3 [37]. The domains of lr, l2, d in SMAC3 are continuous, and the domains ofK, l are discrete with the
interval of 1. Both grid search method and Bayesian optimization method are implemented under the same computation
and communication environment. We report the parameter tuning time in Table 7. Note that both methods achieve

Table 6: Performance comparison of JS in SFGNN model.

Ratio α Without JS With JS Improvement
1.0 0.9081 0.9264 3.66%
0.9 0.8226 0.8494 3.26%
0.8 0.7692 0.7931 3.10%
0.7 0.7120 0.7338 3.06%
0.6 0.7018 0.7138 1.72%
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Table 7: Training time comparison between BO and grid search on three datasets.

Datasets Grid Search BO Speedup
Cora 6.67h 0.39h 17.10

Citeseer 40.85h 0.42h 97.26
Pubmed 427.67h 4.17h 102.56

comparable accuracy on these three datasets. From Table 7, we can observe that, (1) the Bayesian optimization method
greatly reduces the hyper-parameters tuning time on all the three datasets, comparing with the traditional grid search
method, and (2) the speedup of Bayesian optimization against grid search becomes higher when dataset gets larger.
For example, the speedup on Pubmed dataset is 102.56 while it is 10.10 on Cora dataset. This is because Bayesian
optimization reduce the parameter tuning time of grid search by decreasing the parameter search space. In real-world
applications, the network bandwidth is always limited between clients and server, and the model training procedure
under data isolated setting usually takes much longer time then traditional centralized model training. Therefore,
decreasing the parameter search space becomes the key of reducing the tuning time. The results demonstrate that our
proposal is good at doing this.

6 Conclusion and future network

In this paper, we proposed a Automated Separated-Federated GNN learning paradigm in the Non-IID isolated scenario.
We first proposed a separated-federated GNN learning model, which decoupled the training of GNN into two parts:
the message passing part was done by clients separately, and the loss computing part was learnt by clients federally.
To handle the time-consuming problem, we leveraged the Bayesian optimization technique to automatically tune the
hyper-parameters of all the clients. Experiments on real world datasets demonstrated that our model significantly
outperformed the federated GNN learning on the isolated Non-IID data.

In the future, we would like to verify our proposal with more existing GNN models. We are also interested in deploying
our proposal into real-world applications.
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