Skip to main content

Advertisement

Log in

Joint offloading and energy optimization for wireless powered mobile edge computing under nonlinear EH Model

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

This paper investigates the wireless powered mobile edge computing (WP-MEC) system, which consists of an energy transmitter (ET) with multiple antennas, an MEC server and multi wireless devices (WDs) with single antenna. The ET transfers energy to WDs via energy beamforming. Each WD harvests energy to power its operations, i.e., computing tasks locally and offloading partial tasks to the MEC server. A practical nonlinear energy harvesting (EH) model is adopted to describe the relationship between energy transmitting and harvesting. In the context of the nonlinear EH model, energy constraints between harvesting and comsumption at WDs is analyzed and an optimization problem to maximize the weighted sum computation rate of the system is formulated. The transmitting power allocation among different energy beams at the ET and computation offloading at WDs are jointly optimized to make full use of energy and computing resources. Since the nonlinear EH model is nonconvex, it is hard to solve the formulated problem. By exploiting the successive convex approximation method, an iterative optimizing scheme called JOEO (Joint Offloading and Energy Optimization) is proposed. Simulation results in the final part indicate the convergence and superiority of the JOEO scheme over other benchmark schemes under different system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Palattella M R, Dohler M, Grieco A, Rizzo G, Torsner J, Engel T, Ladid L (2016) Internet of things in the 5G era: enablers, architecture, and business models. IEEE J Sel Areas Commun 34 (3):510–527

    Article  Google Scholar 

  2. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor 17(4):2347–2376

    Article  Google Scholar 

  3. Gui G, Liu M, Tang F, Kato N, Adachi F (2020) 6G: opening new horizons for integration of comfort, security and intelligence. IEEE Wirel Commun Mag 27(5):126–132

    Article  Google Scholar 

  4. Lin Y, Tu Y, Dou Z (2020) An improved neural network pruning technology for automatic modulation classification in edge devices. IEEE Trans Veh Technol 69(5):5703–5706

    Article  Google Scholar 

  5. Lin Y, Tu Y, Dou Z, Chen L, Mao S (2020) Contour stella image and deep learning for signal recognition in the physical layer. IEEE Trans Cogn Commun Netw 1–1

  6. Mach P, Becvar Z (2017) Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun Surv Tutor 19(3):1628–1656

    Article  Google Scholar 

  7. Bi S, Ho CK, Zhang R (2015) Wireless powered communication: opportunities and challenges. IEEE Commun Mag 53(4):117–125

    Article  Google Scholar 

  8. Xu Y, Gui G, Gacanin H, Adachi F (2021) A survey on resource allocation for 5G heterogeneous networks: current research, future trends and challenges. IEEE Commun Surv Tutor 23(2):668–695

    Article  Google Scholar 

  9. You C, Huang K, Chae H (2016) Energy efficient mobile cloud computing powered by wireless energy transfer. IEEE J Sel Areas Commun 34(5):1757–1771

    Article  Google Scholar 

  10. Bi S, Zhang Y J (2018) Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans Wirel Commun 17(6):4177–4190

    Article  Google Scholar 

  11. Huang L, Bi S, Zhang Y -J A (2020) Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks. IEEE Trans Mob Comput 19(11):2581–2593

    Article  Google Scholar 

  12. Li C, Song M, Tang H, Luo Y (2019) Offloading and system resource allocation optimization in TDMA based wireless powered mobile edge computing. J Syst Architect 98:221–230

    Article  Google Scholar 

  13. Li C, Tang J, Luo Y (2019) Dynamic multi-user computation offloading for wireless powered mobile edge computing. J Netw Comput Appl 131:1–15

    Article  Google Scholar 

  14. Zhou F, Wu Y, Hu R Q, Qian Y (2018) Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems. IEEE J Sel Areas Commun 36(9):1927–1941

    Article  Google Scholar 

  15. Zhu S, Gui L, Zhao D, Cheng N, Zhang Q, Lang X (2021) Learning-based computation offloading approaches in UAVs-assisted edge computing. IEEE Trans Veh Technol 70(1):928–944

    Article  Google Scholar 

  16. Huang J, Li S, Chen Y (2020) Revenue-optimal task scheduling and resource management for IoT batch jobs in mobile edge computing. Peer-to-Peer Netw Appl 13(5):1776–1787

    Article  Google Scholar 

  17. Wu H, Lyu X, Tian H (2019) Online optimization of wireless powered mobile-edge computing for heterogeneous industrial internet of things. IEEE Internet Things J 6(6):9880–9892

    Article  Google Scholar 

  18. Xu Y, Gui G (2020) Optimal resource allocation for wireless powered multi-carrier backscatter communication networks. IEEE Wirel Commun Lett 9(8):1191–1195

    Article  Google Scholar 

  19. Xu Y, Qin Z, Gui G, Gacanin H, Sari H, Adachi F (2021) Energy efficiency maximization in NOMA enabled backscatter communications with QoS guarantee. IEEE Wirel Commun Lett 10(2):353–357

    Article  Google Scholar 

  20. Li M, Cheng N, Gao J, Wang Y, Zhao L, Shen X (2020) Energy-efficient UAV-assisted mobile edge computing: resource allocation and trajectory optimization. IEEE Trans Veh Technol 69(3):3424–3438

    Article  Google Scholar 

  21. Xu Y, Li G, Yang Y, Liu M, Gui G (2019) Robust resource allocation and power splitting in SWIPT enabled heterogeneous networks: a robust minimax approach. IEEE Internet Things J 6(6):10799–10811

    Article  Google Scholar 

  22. Wang F, Xu J, Wang X, Cui S (2018) Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Trans Wirel Commun 17(3):1784–1797

    Article  Google Scholar 

  23. Wang F, Xu J, Cui S (2020) Optimal energy allocation and task offloading policy for wireless powered mobile edge computing systems. IEEE Trans Wirel Commun 19(4):2443–2459

    Article  Google Scholar 

  24. Hu X, Wong K -K, Yang K (2018) Wireless powered cooperation-assisted mobile edge computing. IEEE Trans Wirel Commun 17(4):2375–2388

    Article  Google Scholar 

  25. Feng J, Pei Q, Yu F R, Chu X, Shang B (2019) Computation offloading and resource allocation for wireless powered mobile edge computing with latency constraint. IEEE Wirel Commun Lett 8 (5):1320–1323

    Article  Google Scholar 

  26. Mao S, Leng S, Maharjan S, Zhang Y (2020) Energy efficiency and delay tradeoff for wireless powered mobile-edge computing systems with multi-access schemes. IEEE Trans Wirel Commun 19(3):1855–1867

    Article  Google Scholar 

  27. Boshkovska E, Ng D W K, Zlatanov N, Schober R (2015) Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Commun Lett 19(12):2082–2085

    Article  Google Scholar 

  28. Jiang R, Xiong K, Fan P, Zhang Y, Zhong Z (2019) Power minimization in SWIPT networks with coexisting power-splitting and time-switching users under nonlinear eh model. IEEE Internet Things J 6(5):8853–8869

    Article  Google Scholar 

  29. Tuan P V, Koo I (2020) Optimizing efficient energy transmission on a SWIPT interference channel under linear/nonlinear eh models. IEEE Syst J 14(1):457–468

    Article  Google Scholar 

  30. Zhou F, Hu R Q (2020) Computation efficiency maximization in wireless-powered mobile edge computing networks. IEEE Trans Wirel Commun 19(5):3170–3184

    Article  Google Scholar 

  31. Li X, You C, Andreev S, Gong Y, Huang K (2019) Wirelessly powered crowd sensing: joint power transfer, sensing, compression, and transmission. IEEE J Sel Areas Commun 37(2):391–406

    Article  Google Scholar 

  32. Li X, Zhu G, Gong Y, Huang K (2019) Wirelessly powered data aggregation for IoT via over-the-air function computation: Beamforming and power control. IEEE Trans Wirel Commun 18(7):3437–3452

    Article  Google Scholar 

  33. Xu J, Zhang R (2014) Energy beamforming with one-bit feedback. IEEE Trans Signal Process 62(20):5370–5381

    Article  MathSciNet  Google Scholar 

  34. Lin Y, Wang M, Zhou X, Ding G, Mao S (2020) Dynamic spectrum interaction of UAV flight formation communication with priority: a deep reinforcement learning approach. IEEE Trans Cogn Commun Netw 6(3):892–903

    Article  Google Scholar 

  35. Cheng N, Xu W, Shi W, Zhou Y, Lu N, Zhou H, Shen X (2018) Air-ground integrated mobile edge networks: architecture, challenges, and opportunities. IEEE Commun Mag 56(8):26–32

    Article  Google Scholar 

  36. Shu Y, Zhu F (2018) Green communication mobile convergence mechanism for computing self-offloading in 5G networks. Peer-to-Peer Netw Appl 12(6):1511–1518

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Shi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No.19KJB510030) and in part by the open research fund of National Mobile Communications Research Laboratory, Southeast University (No. 2020D18).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Luo, R. & Gui, G. Joint offloading and energy optimization for wireless powered mobile edge computing under nonlinear EH Model. Peer-to-Peer Netw. Appl. 14, 2248–2261 (2021). https://doi.org/10.1007/s12083-021-01172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-021-01172-9

Keywords

Navigation