
O�oading Dependent Tasks in MEC-enabled IoT
Systems: A Preference-based Hybrid Optimization
Method
Kuanishbay Sadatdiynov

Shenzhen University
Laizhong Cui (cuilz@szu.edu.cn)

Shenzhen University
Joshua Zhexue Huang

Shenzhen University

Research Article

Keywords: Multi-access Edge Computing, computation o�oading optimization, latency, energy
consumption, and task failure

Posted Date: July 15th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1824328/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1824328/v1
mailto:cuilz@szu.edu.cn
https://doi.org/10.21203/rs.3.rs-1824328/v1
https://creativecommons.org/licenses/by/4.0/

Springer Nature 2021 LATEX template

Offloading Dependent Tasks in MEC-enabled

IoT Systems: A Preference-based Hybrid

Optimization Method

Kuanishbay Sadatdiynov, Laizhong Cui and Joshua Zhexue

Huang

College of Computer Science and Engineering, Shenzhen
University, Shenzhen, 518061, Guangdong, China.

*Corresponding author(s). E-mail(s): cuilz@szu.edu.cn;
Contributing authors: kuanishbay@szu.edu.cn;

zx.huang@szu.edu.cn;

Abstract

The rapid development of IoT-based services has resulted in an exponen-
tial increase in the number of connected smart mobile devices (SMDs).
Processing the massive data generated by the large number of SMDs is
becoming a big problem for mobile devices, servers, and wireless com-
munication channels. A Multi-access Edge Computing (MEC) paradigm
partially mitigates this problem by deploying edge server nodes at the
edge of wireless networks nearby SMDs, but the challenge still remains
due to the limited computation capacity of MEC servers and the band-
width of wireless channels. In addition, the dependency of tasks generated
by applications on SMDs increases the complexity of the problem. In
this paper, we propose a constrained multiobjective computation offload-
ing optimization solution to resolve the problem of task dependency
under limited resources. This solution improves the Quality of Ser-
vice (QoS) through minimizing the latency, energy consumption, and
rate of task failure caused by limited resources. We propose a two-
staged hybrid computation offloading optimization method to solve the
problem. In the first stage, the computation offloading decisions are
made based on the preferences of tasks. Then, in the second stage,
global optimal solutions are found using the modified Non-Dominated
Sorting Genetic Algorithm (NSGA-III). The overall efficiency of the
proposed method is increased owing to the preference-based algorithm

1

Springer Nature 2021 LATEX template

2 Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference

reinforcing the NSGA-III algorithm by generating a better initial popu-
lation. The results of extensive experiments show that the efficiency of
the proposed method is significantly better than the existing methods.

Keywords: Multi-access Edge Computing, computation offloading
optimization, latency, energy consumption, and task failure

1 Introduction

With the fast development of services on the Internet of Things (IoT) networks
(e.g., smart cities, building & home automation, smart manufacturing, health
care, automotive, and wearables), the number of smart mobile devices (SMDs)
is increasing exponentially [1, 2]. A challenge is how to timely handle the
massive amount of data generated by them. Multi-access Edge Computing
(MEC) is a perspective paradigm in which edge server nodes are deployed at
the edge of wireless networks to process the data of nearby SMDs. The MEC
paradigm is aimed at ensuring short latency and data privacy because the
data is processed within a wireless network area [3]. However, it also creates
a local computation burden when multiple SMDs connect simultaneously on
an MEC server node, because many applications running on SMDs generate
computation-intensive and/or data-intensive tasks that require MEC nodes
to complete, but the MEC nodes do not have sufficient computing capacity
and storage [4]. This dilema can be mitigated by optimizing the computation
offloading of SMDs to the edge server to improve the QoS.

Real-time applications (e.g., mobile games, augmented reality (AR), and
autonomous vehicles) require instantly processed computation tasks. There-
fore, the completion time (latency) of tasks is an important factor for them.
Some authors addressed latency as a metric for computation offloading opti-
mization [5–9]. Other applications (e.g., health care sensors, drones, wearables)
require a prolonged battery lifetime. Hence, the energy consumption of SMDs
is another objective for computation offloading optimization [10–13]. Some
authors considered latency and energy consumption as joint metrics for mul-
tiobjective computation offloading optimization [14–18]. However, from the
comprehensive review of these existing studies, we can find that task failure,
caused by the limitation of resources, has not been considered as an opti-
mization metric jointly with latency and energy consumption. This metric is
important because the limitation of resources leads to task failure when over-
loading the resources. We should consider the rate of task failure when seeking
the optimal solutions to minimize latency and energy consumption. This aspect
is a rigorous challenge in the case of interdependent tasks that must maintain
the order of execution.

Partial computation offloading is aimed at avoiding overloading an SMD by
full local execution, or a wireless channel and a MEC server by fully offloading
the tasks. In partial computation offloading, tasks are executed either locally or

Springer Nature 2021 LATEX template

Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference 3

offloaded onto a MEC server. The last one consists of two processes: transmis-
sion of a task through a wireless channel and execution of the task on a MEC
server. We can model the local computing, wireless transmission, and edge
computing processes as a queueing system network using three queueing the-
ory models. The models allow us to evaluate the latency, energy consumption,
and probability of task failure caused by limitations of processors or wireless
channels. We formulate it as a constrained multiobjective computation offload-
ing optimization (CMCOO) problem to minimize the mentioned objectives.
The optimal solution is found by considering the dependencies of the tasks.
To achieve this, we propose a two-stage hybrid method. In the first stage, the
tasks are classified into computation-intensive or data-intensive tasks. After
that, we make offloading decisions in advance for some tasks based on pref-
erences. In the second stage, a modified Non-Dominated Genetic Algorithm
(NSGA-III) is used to find the best offloading decisions for the remaining tasks
that don’t meet the preferences.

Current solutions to computation offloading optimization do not consider
the situations of task dependency and failure. To optimize the multiple objec-
tives of latency and energy consumption, some authors solve the problems by
giving weight values to each objective and converting it to a single-objective
optimization problem [19–21]. These solutions require rerunning the optimiza-
tion algorithm when the weights of the objectives are changed. Other solutions
choose to optimize one objective by treating other objective functions as con-
straints [15, 22]. Some solutions use the Lagrange multiplier method to solve
the CMCOO problem [23, 24]. However, when constraints are complex, this
approach becomes difficult to use. The Non-dominated Sorting Algorithm was
proposed because it is faster than other multiobjective optimization algorithms
[14]. It gives Pareto optimal solutions in which a user can select the optimal
solution according to real-time requirements. The performance of the NSGA-
III algorithm depends on the randomly generated initial population. A good
initial population can lead to faster convergence of the algorithm.

In this paper, we propose a method that categorizes the computation tasks
of SMD applications and makes offloading decisions in two stages on the
classified computation tasks: making offloading decisions on some classes of
computation tasks based on preferences; and using the NSGA-III algorithm
to optimize the offloading decisions on the remaining tasks left from the first
stage. The initial population of the NSGA-III algorithm is generated consid-
ering the decisions of the first stage. Thus, the first stage helps to generate a
better initial population. This approach can help improve the performance of
the overall optimization process.

The main contributions of this paper are as follows:

1. The local computing, task transmission, and edge computing processes are
modeled using queueing theory models that consider the limitations of
processors and wireless channels.

Springer Nature 2021 LATEX template

4 Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference

2. We optimize task failure rate jointly with latency and energy consumption
in a MEC-based IoT system with interdependent tasks. To our knowl-
edge, this is the first work to take task failure and task dependency into
consideration.

3. We propose a preferences-based hybrid computation offloading multiobjec-
tive optimization method to minimize the mentioned objectives.

4. We conduct extensive simulation experiments in various cases with the pro-
posed and existing methods. The results of the experiments show that the
proposed method can give better results compared with existing methods.

The rest of the paper is organized as follows. The literature on the com-
putation offloading problem is reviewed in Section 2. We describe our system
model and formulate the optimization problem in Section 3. The proposed
method is described in Section 4. We present the experiment results and com-
pare our findings to the baseline methods in Section 5. In Section 6, we state
our conclusions and remark on possible directions for future research.

2 Related work

Offloading part of computation tasks (referred to as tasks hereafter) onto
remote resources (cloud/edge computing) is widely used in practice. MEC is
suitable for latency-sensitive applications because the edge server nodes are
deployed at the edge of a wireless network. MEC has significant advantages in
terms of latency and data privacy compared to cloud computing. Computa-
tion offloading in MEC, its limitations, and issues with them were studied in
[3, 25]. Also, Gasmi et al. [26] pointed out several research problems in compu-
tation offloading in MEC, including issues related to computation offloading
of dependent tasks.

Recent studies on methods and frameworks of optimal computation
offloading and task scheduling to increase the performance of SMDs were com-
prehensively reviewed in [27]. Offloading dependent tasks were considered in
[12, 14, 15, 28–31]. Here, we discuss some examples of applications that use
the NSGA algorithms [32–34] to solve multiobjective computation offloading
optimization problems.

Afrin et al. [14] proposed a computation offloading method using the
NSGA-II algorithm to minimize the makespan, energy consumption, and mon-
etary cost in an edge cloud-based multi-robot system. To solve the problem,
they proposed a modified NSGA-II algorithm that pre-sorts the initial popu-
lation based on the task size and processing speed of the resources. Then, to
balance the values of all objectives in subsequent generations, it selects the
chromosomes having the minimum distance solution from the Pareto-front to
the origin.

Another example is the method provided by Cui et al. [16] to minimize
the latency and energy consumption of SMDs. The authors explained that
utilizing the multiobjective optimization algorithm allows for selecting the best
solution among the Pareto optimal set and avoiding rerunning the algorithm

Springer Nature 2021 LATEX template

Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference 5

when the condition changes. They used the M/M/1 type of queue for modeling
computing processes on SMDs and a MEC server. The latency was considered
as the sum of waiting time in the queue and execution time of a task. This
system works well when tasks are executed on a computer with unlimited
resources.

Xu et al. [15] proposed a computation offloading method for cases with mul-
tiple computing units, for instance, edge servers with several virtual machines
(VMs). They modeled the task execution process on a cloudlet using a
M/M/c/∞ queue. A task can be offloaded to an idle one of the c VMs on the
cloudlet. The objective of the work was to minimize the energy consumption
under deadline constraints in a system that consists of a collaboration of local,
edge, and cloud computing resources. They successfully used the NSGA-II
algorithm to achieve the goal.

Xu et al. [35] proposed an NSGA-III algorithm-based method to minimize
the completion time and energy consumption of IoT devices. They applied sim-
ple additive weighting (SAW) and multiple-criteria decision-making (MCDM)
techniques to select an optimal schedule strategy. The tasks are executed either
on the mobile device, or on the cloudlet, or on the cloud server. That is, the
tasks are offloaded onto the cloud server if the cloudlet is busy. If all VMs are
busy, then tasks are lost. However, they did not consider the number of lost
tasks in their work.

Mao et al. in [36] proposed a Lyapunov optimization-based dynamic com-
putation offloading algorithm. They considered latency and task failure as the
performance metrics of the multiobjective optimization problem, then con-
verted it into a single optimization. Their proposed algorithm was oriented to
the independent task case.

The works mentioned above were aimed at interesting solutions to improve
the performance of SMDs in various situations. Two gaps can be observed in
modeling the task computation or transmission processes and in performance
metrics. Using the M/M/1 or M/M/c/infty queueing models, for example,
is not appropriate for systems with limited resources. Using these models, we
cannot evaluate the number of lost tasks due to the limited resources of the
computing unit or wireless channel. Therefore, the latency calculated by those
models may differ from the actual value. Also, the performance of the NSGA
algorithm depends on the initial randomly generated populations.

In this work, we use the M/M/c/K queueing to model the local com-
puting, transmission, and edge computing processes. It allows us to evaluate
the number of lost tasks in computing units and wireless channels with lim-
ited resources. Thus, we optimize the latency, energy consumption, and task
failure as a constrained multiobjective optimization computation offloading
problem. To solve the problem, we propose a two-staged preference-based
hybrid method. In the first stage, offloading decisions are made based on pref-
erences. In the second stage, the modified NSGA-III algorithm is adopted. The
differences between this work and existing works are given in Table 1. The
initial population of the NSGA-III algorithm is generated according to the

Springer Nature 2021 LATEX template

6 Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference

Table 1 Comparison of the proposed method to existing computation offloading methods

Ref. Contributions
Optimizes

latency

Optimizes

energy

consump-

tion

Optimizes

task

failure

Follows

task

depen-

dency

require-

ments

[8]
Joint computation offloading, resource allocation, and

migration optimization
✓ × × ×

[9]
A heuristic task migration computation offloading

scheme
✓ × × ×

[12]
A combination of two algorithms, using the
advantages of edge and cloud computing

× ✓ × ✓

[13] Method based on decentralized Federated Learning × ✓ × ×

[14] A multiobjective evolutionary approach (NSGA-II) ✓ ✓ × ✓

[15] A multiobjective evolutionary approach (NSGA-II) ✓ ✓ × ✓

[16] A multiobjective evolutionary approach (NSGA-II) ✓ ✓ × ×

[17] Experiments on real-world and synthetic datasets × ✓ × ×

[18] An online distributed computation offloading algorithm ✓ ✓ × ×

[21]
Green Energy and Latency Aware Task Assignment;

experiments on a real-world dataset
✓ ✓ × ×

[22]
A method for dynamic selection of edge cloud for

offloading tasks
✓ ✓ × ✓

[31] A model-free approach based on reinforcement learning ✓ ✓ × ✓

[35] A multiobjective evolutionary approach (NSGA-III) ✓ ✓ × ✓

[36]
A Lyapunov optimization dynamic computation

offloading method
✓ × ✓ ×

This
work

A hybrid preference-based method employing the
NSGA-III algorithm

✓ ✓ ✓ ✓

result of the first stage. Thus, we can improve the overall performance of the
optimization algorithm. The details are presented in the following sections.

3 Queueing Models and Problem Formulation

We consider a MEC system consisting of a MEC server, a set of SMDs, and
several small cells, as shown in Fig. 1. A small cell eNodeB (SeNB) is con-
nected wirelessly with SMDs in a small cell. The bandwidth of the wireless
channel is assigned to SMDs equally within the small cell. The SeNBs are con-
nected in a wired manner to Macro eNodeB (MeNB), where a MEC server
is deployed. It is allowed to offload the tasks of several SMDs onto the MEC
server simultaneously.

Let M SMDs be denoted by the set of M = {U1, U2, ..., UM}. On
an SMD, an application generates N tasks, denoted by the set of N =
{τm,1, τm,2, ..., τm,N}. We assume the rate of generated tasks λ (i.e., the num-
ber of tasks per time unit) follows the exponential distribution. The tasks are
compound, i.e., each task can contain several dependent subtasks. The depen-
dency of subtasks is given by the directed acyclic graph (DAG) G = (V,E),
where V denotes a subtask and E denotes the precedence constraint between
subtasks i and k. Any subtasks might be executed either on SMD or the MEC
server, except for the first and the last ones, because a task is generated at
SMD and its final result is shown at SMD. Each subtask τm,n,k is defined by
two parameters (dm,n,k, cm,n,k), where dm,n,k represents the data size (DS) of
the subtask and cm,n,k represents the number of cycles required to complete

Springer Nature 2021 LATEX template

Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference 7

MeNB MEC
server

SeNB

SMD

Small cell

Fig. 1 Illustration of the model of a MEC system.

(NRCC). The values of DS and NRCC are given by the exponential distribu-
tion. An example of a compound task with interdependent subtasks is given
in Fig. 2.

1
2

3

4

5

6

7

8

9

10

Fig. 2 An example of one task which consists of interdependent subtasks.

Since subtasks can be executed either locally or on a MEC server, the flow
of subtasks is divided into two parts. Assume δm part of the flow is offloaded
through a wireless channel and executed on the MEC server. The remaining
γm part of flow is executed locally, where γm = (1 − δm). We model these
processes by adopting models from queueing theory. In the queueing models,
we consider the limitations of the computation capacities of SMDs, the MEC
server, and the bandwidth of the wireless channel. The fraction of offloaded
subtasks can be calculated as

δm =

∑Nm

n=1

∑10
k=1 xm,n,k

Nm

(1)

Springer Nature 2021 LATEX template

8 Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference

1

CPU

QS-3
MEC

server

Applications

Wireless
channel CPU

QS-2 QS-1

SMD

CPU

CPU

Applications

Wireless
channel CPU

QS-2 QS-1

SMD

Applications

Wireless
channel CPU

QS-2 QS-1

SMD

Fig. 3 Queueing system network.

where Nm is the number of tasks of SMD Um. xm,n,k ∈ {0, 1} represents an
offloading decision, where xm,n,k = 0 means the subtask is executed locally,
and xm,n,k = 1 means the subtask is offloaded onto the edge server.

Fig. 3 depicts the network model of the queueing system, which has three
queueing system models denoted as QS-1, QS-2, and QS-3. QS-1 models the
γm part of the subtask flow λm arriving at the CPU of an SMD to process. An
SMD has a single computing unit and a limited buffer Kl to keep the subtasks
in a queue. An arriving subtask is lost if the buffer of an SMD is full. Thus,
the local subtask execution process is modeled using the M/M/1/Kl type of
queueing system with loss. In QS-2, a subtask transmission by wireless channel
is modeled using the M/M/1/1. Because we assume the wireless channel does
not have any buffer to keep the queue, a subtask is lost directly if the wireless
channel bandwidth is busy with the transmission of the previous subtask. The
probability of losing a task (task failure) in transmission is defined using πtr

m.

At the MEC server in QS-3, all flows are aggregated, i.e.,
∑M

m=1 ϖmδmλm,
where ϖm = 1 − πtr

m. A MEC server has several virtual machines (VMs) and
a limited buffer. A task is assigned to and executed in a VM randomly. As
a result, we model the edge computing process as M/M/c/K, where c is the
number of VMs and K is the buffer size of the MEC server. The input flow
is the sum of the output flows of SMDs following the same distribution. The
values of Kl, c, and K are given.

3.1 Local Computing

An SMD has a single computation unit, and its capacity is limited. The CPU
of the SMD only serves one subtask at a time, and Kl − 1 subtasks are held
waiting for service in the SMD’s buffer. The service time of the computation
unit follows an exponential distribution. Therefore, the task execution process
on the SMD is modeled by the M/M/1/Kl type of the queueing system. The

Springer Nature 2021 LATEX template

Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference 9

average service time of an SMD can be calculated as

b̃m =

∑Nm

n=1

∑10
k=1(1− xm,n,k)cm,n,k∑Nm

n=1

∑10
k=1(1− xm,n,k)fm

(2)

where fm is the computation rate of the SMD, which is given by the number
of CPU cycles.

The SMD utilization coefficient is calculated as ρm = γmλmb̃m, where γm
represents the QS-1 input flow, defined as γm = 1 − δm. The average waiting
time for service of a subtask τm,n,k on an SMD can be calculated as [37]:

w̃m =

1
γmλm

(
ρm

1−ρm
− ρm(Klρ

Kl
m +1)

1−ρ
Kl+1

m

)
, ρm ̸= 1

Kl(Kl−1)
2γmλm(Kl+1) , ρm = 1

(3)

where Kl is the number of subtasks held in QS-1.
The local execution time of a subtask on an SMD is equal to the sum of the

service time by the CPU and the average waiting time for service in a queue,
and it is calculated as

T l
m,n,k = (1− xm,n,k)(

cm,n,k

fm
+ w̃m) (4)

Considering the dependency of subtasks, we define the ready time of a
subtask for local execution as follows:

RT l
m,n,k = max

z∈pred(k)
max{FT l

m,n,z, FT e
m,n,z} (5)

where pred(k) is the set of immediate predecessors of the subtask τm,n,k.
The completion time of the subtask τm,n,k in the local execution can be

calculated as
FT l

m,n,k = T l
m,n,k +RT l

m,n,k (6)

The probability of task failure caused by buffer limitation of an SMD can
be calculated as [37]

πl
m =

ρ
Kl+1

m (1−ρm)

1−ρ
Kl+1

m

, ρm ̸= 1

1
Kl+1 , ρm = 1

(7)

The amount of energy used by an SMD while a subtask is being executed
locally is calculated as

El
m,n,k = (1− xm,n,k)κcm,n,kf

2
m (8)

where κ = 10−26 is the switched capacitance coefficient, and it depends on
chip architecture [11].

Springer Nature 2021 LATEX template

10 Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference

3.2 Communication Model

The subtask uploading transmission rate Rm from SMD Um to access point
(AP) is calculated according to the Shannon–Hartley theorem

Rm =
B

s
log2

(
1 +

PmGm

σ + Im

)
(9)

where B denotes the bandwidth of a wireless channel, s is the number of
channels, and Pm denotes the transmission power of SMD Um. Furthermore,
Gm represents the channel gain between the SMD Um and the AP, σ represents
the background noise power, and Im is the interference parameter caused by
SMDs in other cells on the same channel, and it is calculated as follows

Im =

M∑

l=1,l ̸=m

al,m pl Gl (10)

where al,m ∈ {0, 1} is a binary variable. If the channel used by SMD Um and
SMD Ul is the same, al,m = 1; otherwise, al,m = 0. The transmission power of
SMD Ul is pl, and the channel gain between SMD Ul and AP is Gl.

We assume the wireless channel does not have a buffer to store subtask
data. The arriving subtasks are dropped when a wireless channel is overloaded.
We model this process as anM/M/1/1 type queueing system, which means the
system has a single computation unit and can operate only a single subtask at
a time. When Kl = 1, the average waiting time for service is w̃ = 0 according
to Eq. (3). Therefore, the transmission time of a task from SMD to AP is
calculated as

T tr
m,n,k =

xm,n,kdm,n,k

Rm

(11)

The probability of task failure due to a wireless channel’s bandwidth
limitation can be computed as [37]

πtr
m =

ρR
1 + ρR

(12)

where ρR = δmλmb̃tr is the utilization coefficient of a wireless channel. The
average service time of a wireless channel is calculated as

b̃tr =

∑Nm

n=1

∑10
k=1 xm,n,kdm,n,k∑Nm

n=1

∑10
k=1 xm,n,kRm

(13)

The energy consumption of an SMD during transmission of a subtask is
calculated as

Etr
m,n,k = PmT tr

m,n,k (14)

Springer Nature 2021 LATEX template

Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference 11

3.3 Edge Computing

In Edge Computing, subtask flows from all SMDs are aggregated. We assume
the edge server has c virtual machines and a limited buffer. Other arriving
subtasks are lost because the Edge server can only operate and holdK subtasks
in the buffer. We model the edge computing process as an M/M/c/K queueing
system.

The average service time of the Edge server is calculated by the average
workload from all SMDs over the computation rate of the Edge server as

b̃E =

∑M

m=1

∑N

n=1

∑10
k=1 xm,n,kcm,n,k∑M

m=1

∑N

n=1

∑10
k=1 xm,n,kF

(15)

where F denotes the computation rate of the Edge server, which is given by
the number of CPU cycles.

The utilization coefficient of an edge server is indicated by r =∑M

m=1 δmλmb̃E , where ρE = r/c. The probability that an edge server is in idle
status is defined as [37]

p0 =

[
rc

c!

(
1−ρ

K−c+1

E

1−ρE

)
+
∑c−1

n=0
rn

n!

]−1

, ρm ̸= 1
[
rc

c! (K − c+ 1) +
∑c−1

n=0
rn

n!

]−1

, ρm = 1
(16)

The average waiting time of a subtask for service by an edge server is
calculated as follows:

w̃E =
p0r

cρE
[
1− ρK−c+1

E − (1− ρE)(K − c+ 1)ρK−c
E

]
∑M

m=1 δmλmc!(1− ρE)2
(17)

If ρE = 1, L’Hôpital’s rule is applied twice, as shown in [37].
Thus, the execution time of a subtask on the Edge server is equal to the

sum of service time and waiting time in a queue, and it is calculated as

T e
m,n,k = xm,n,k(

cm,n,k

F
+ w̃E) (18)

The ready time of the subtask τm,n,k on the computing edge is calculated
as

RT e
m,n,k = max

{
T tr
m,n,k, max

z∈pred(k)

{
FT l

m,k,z, FT e
m,k,z

}}
(19)

The completion time of a subtask on the edge server is calculated as

FT e
m,n,k = T e

m,n,k +RT e
m,n,k (20)

Springer Nature 2021 LATEX template

12 Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference

The probability of task failure caused by overloading on the Edge server is
calculated as [37]

πe =
rKp0
cK−cc!

, (21)

We ignore the energy consumption of the Edge server because its power
is provided by the power network. In Edge computing, we consider only the
energy consumption by SMDs while offloading the subtasks onto the edge
server.

3.4 Problem Formulation

The overall completion time of any subtask is equal to the sum of the comple-
tion times of all subtasks on local computing and edge computing, and it can
be calculated as

Tm,n,k = FT l
m,n,k + FT e

m,n,k (22)

Similarly, the overall energy consumption of any subtask can be calculated
as

Em,n,k = El
m,n,k + Etr

m,n,k (23)

The average task completion time of tasks for all SMDs is calculated as

T =
1

MN

M∑

m=1

N∑

n=1

Tm,n,10 (24)

where the completion time of the 10th subtask is the completion time of a task.
The average energy consumption of tasks across all SMDs is calculated as

E =
1

MN

M∑

m=1

N∑

n=1

10∑

k=1

Em,n,k (25)

The value of the probability of task failure in the whole system is calculated
by the sum of probabilities in all queueing systems as follows:

Π =

M∑

m=1

πl
m + πtr

m + πe (26)

To minimize the energy consumption of SMDs, the average task completion
time, and the probability of task failure by finding the optimal computa-
tion offloading decisions, a constrained multiobjective optimization problem is
formulated as follows:

P1 : min
xm,n,k

{T,E,Π}

s.t.

C1 : Tm,n,10 ≤ θm,n

Springer Nature 2021 LATEX template

Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference 13

C2 : xm,n,k ∈ {0, 1} k ∈ [2; 9]

C3 : xm,n,k = 0, k ∈ {1, 10}

C4 : Tm,n,k ≥ Tm,n,z, z ∈ pred(k) (27)

Constraint C1 defines that the completion time of each task cannot exceed
the deadline given by an application. Constraint C2 defines that offloading
decision is binary. Constraint C3 defines that optimal offloading decisions are
sought for subtasks from the second to the ninth in each task. The first and
tenth subtasks are executed locally. Constraint C4 shows that the subtask k
not be finished before its predecessor.

To solve P1, we propose a preference-based hybrid computation offloading
method, which is described in detail in the next section.

4 A Hybrid Offloading Method

As a solution to the problem P1, we propose a two-staged hybrid computation
optimization method. Assume there are M SMDs, each generating Nm tasks,
and the total number of tasks is N , whereas each task contains 10 dependent
subtasks according to the system model. It is required to build a computation
offloading framework that finds the optimal offloading decision for each subtask
and optimizes the objective functions under given constraints.

Let α be the proportion of subtasks that get the offloading decisions based
on preferences. Assume that the initial values of the population size and the
number of iterations, Gi and Ii, are given. The population size and the num-
ber of iterations are reduced to 10 during the process, which depends on the
number of tasks. We assume these volumes of population and iterations are
enough for the algorithm to converge when the selected number of tasks is at
its minimum. To begin with, given a set ofNs tasks, a task is selected from each
SMD. Thus, there are totally Ns × 10 subtasks that wait for offloading deci-
sions. In addition, the offloading decisions for some subtasks are made based
on preferences. Furthermore, the modified NSGA-III algorithm is adopted to
find the optimal decisions for the remaining subtasks. Finally, the selected
task is removed from the task set, and the next task is selected to find the
optimal offloading decisions for its subtasks. This process continues until all
tasks receive offloading decisions. A general description of the proposed hybrid
method is given in Fig. 4, and its pseudo-code is given in Algorithm 1. The
following sections are dedicated to showing how the proposed method works
in detail.

4.1 Making Offloading Decisions by Preferences

As mentioned in Section 3, a subtask has two parameters: dm,n,k, the data size
(DS) of the subtask, and cm,n,k, the number of required CPU cycles (NRCC)
to complete the subtask. Offloading a subtask with a big DS onto the MEC
server through a limited wireless channel leads to high latency and more energy

Springer Nature 2021 LATEX template

14 Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference

Task

Task

Task

SMD

Task

Task

Task

SMD

Task

Task

Task

SMD

Select a task from
all SMDs

Offloading decisions
are made based on

preferences

Offloading decisions
are made using the

NSGA-III

Remove the task

0 0

0 0

0 0

Task

Task

Task

0 0 1 0

0 1 1 0

0 0 0 0

0 1 0 0 0 1 1 0 0 0

0 0 1 1 0 0 0 1 1 0

0 0 1 1 0 0 1 0 1 0

All tasks defined? Finish

Start

YesNo

Su
bt

as
k

1

Su
bt

as
k

2

Su
bt

as
k

10

Task

Task

Task

Task

Task

Task

Fig. 4 A general description of the proposed solution.

Algorithm 1 A hybrid computation offloading algorithm

Require: N , α, Gi, Ii
Ensure: Offloading decisions
1: while N ̸= ∅ do
2: Select a task from each SMD
3: Ns ← number of selected tasks
4: ξ = Ns/N
5: G = ⌊ξ ·Gi + 10⌋
6: I = ⌊ξ · Ii + 10⌋
7: Making offloading decisions based on preferences (α)
8: Making offloading decisions using the NSGA-III (Ns, G, I)
9: Remove tasks Ns

10: end while

consumption. In contrast, if a subtask is computation-intensive, then executing
the subtask locally with limited computation capability is also not efficient.
Taking the above considerations into account, we define two preferences for
making immediate offloading decisions:

1. Preference 1: If a subtask is not computation-intensive but its DS is large,
then it is executed locally.

2. Preference 2: If a subtask is computation-intensive and its DS is small, then
it is offloaded onto the MEC server.

Note that the preferences are applicable for all subtasks of a task except
for the first and last ones. According to the system model, the first and last
subtasks are always executed on the SMD.

Thus, we make immediate offloading decisions based on preferences for
some subtasks in a set. For the remaining subtasks that do not satisfy the
preferences, the offloading decisions are made by using the modified NSGA-III
algorithm in stage 2 (see Table 2).

Springer Nature 2021 LATEX template

Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference 15

Table 2 Decisions made using different methods on different conditions

dm,n,k cm,n,k Decision xm,n,k

large big * *
large small execute locally 0
small small * *
small big offload onto the MEC server 1

* - decisions made using the NSGA-II algorithm

The proportion α of subtasks that satisfy immediate offloading decisions
is determined as follows. We intuitively assume that less than 50% of tasks
can be offloaded based on preferences (α < 0.5). The default value of α is
found through trial and error. The immediate offloading decisions based on
preferences are made as follows.

The default value of α is found through trial and error. The immediate
offloading decisions based on preferences are are made as follows.

1. The weighted values of two parameters for each subtask are calculated
by

dwm,n,k =
dm,n,k∑9
k=2 dm,n,k

, (28)

cwm,n,k =
cm,n,k∑9
k=2 cm,n,k

. (29)

where n ∈ {1, N} is the index of a selected task from the SMD. The maximum
values of the weighted DS dwm,max and weighted NRCC cwm,max are determined.

2. Thresholds are used to classify the tasks, and they are determined by α,
dwm,max, and cwm,max as

dt1 = αdwm,max,

dt2 = (1− α)dwm,max,

ct1 = αcwm,max,

ct2 = (1− α)cwm,max.

(30)

where 0 < α < 0.5.
3. Identify the subtasks that can get immediate offloading decisions.

According to the preferences, the subtasks with the largest DS and the lowest
NRCC and the subtasks with the smallest DS and the highest NRCC can be
found by the following rules:

O
′

m,n,k = (dwm,n,k ≥ dt2) & (cwm,n,k < ct1), (31)

O
′′

m,n,k = (dwm,n,k < dt1) & (cwm,n,k ≥ ct2). (32)

4. Finally, immediate offloading decisions are made as: the subtasks which
satisfy the condition in (31) are executed locally, and the subtasks which satisfy
the condition in (32) are offloaded onto the MEC server as follows:

xm,n,k =

{
0, if O

′

m,n,k = TRUE,

1, if O
′′

m,n,k = TRUE.
(33)

Springer Nature 2021 LATEX template

16 Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference

The subtasks that do not meet both conditions remain undecided, and
decisions are made in the next stage.

Fig. 5 illustrates how the subtasks get immediate offloading decisions based
on preferences. The subtasks are shown in a two-dimensional space (blue
points) by their weighted DS and NRCC values. The thresholds (red dotted
lines) are drawn using the α value and the maximum values of the weighted DS
and NRCC. The subtasks in the squares S1 and S2 are identified to assign the
offloading decisions in advance based on preferences. Herewith, the subtasks
in the square S1 are executed locally, and the subtasks in the square S2 are
offloaded onto the MEC server. A process of finding the immediate offloading
decisions based on preferences is given in Algorithm 2. The offloading deci-
sions for the remaining subtasks are made by using the modified NSGA-III
algorithm in the next stage.

Fig. 5 Classification of subtasks based on preferences.

4.2 Find Optimal Offloading Decisions using the

Modified NSGA-III Algorithm

The variant of the Non-dominated Sorting Genetic Algorithm, i.e., NSGA-II,
has shown high performance among multiobjective optimization algorithms
[14]. However, the crowding distance operation in the NSGA-II algorithm does
not work well for many-objective problems [34]. The problem P1 in (27) seeks
optimal solutions to minimize the three objective functions under its complex
constraints. That is why we adopted and modified the third version of the
NSGA to solve the P1.

Algorithm 2 returns a set of offloading decisions that is incomplete. It
means offloading decisions were defined based on preferences for the first and

Springer Nature 2021 LATEX template

Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference 17

Algorithm 2 Finding offloading decisions based on preferences

Require: N , α, A = ∅
Ensure: Offloading decisions, A
1: while N ̸= ∅ do
2: Calculate weighted values of the parameters by Eqs. (28) and (29)
3: Calculate thresholds by Eq. (30)
4: Identify the tasks which get the offloading decisions based on prefer-

ences by Eqs. (31) and (32)
5: if (dwm,n,k ≥ dt2) & (cwm,n,k < ct1 then

6: xm,n,k = 0
7: else

8: A = A ∪ {τm,n,k}
9: end if

10: if (dwm,n,k < dt1) & (cwm,n,k ≥ ct2) then
11: xm,n,k = 1
12: else

13: A = A ∪ {τm,n,k}
14: end if

15: end while

last subtasks and some subtasks between them. We need to find offloading
decisions for the remaining subtasks to solve the P1. Usually, the performance
of the NSGA-III algorithm depends on the randomly generated population. A
good population serves to find an optimal solution faster. We use that property
of the NSGA-III algorithm in our hybrid method, i.e., the modified NSGA-III
algorithm, which we will explain step by step below.

1. Generate reference points: The reference directions are selected as the
base model for the optimization. We use the known Das and Dennis [38] sys-
tematic approach to determine the set of reference points in each generation, as
described in [33]. This approach defines reference points uniformly distributed
on the entire normalized hyperplane. There is only one reference point to which
all the individuals will be associated. In the reference points array, each row
represents a reference line and each column is a variable. The total number of
reference points W in a problem with Y objectives is calculated as

W =

(
(Y + a− 1)

a

)
(34)

where a refers to the number of divisions considered along each objective axis.
2. Generate at random the initial populations: The diversity of the pop-

ulation should be maintained; otherwise, it leads to premature convergence.
Conversely, the population size should not be kept very large as it can cause a
genetic algorithm to slow down, while a smaller population is not enough for
a good mating pool. The size of the population is given by G.

Springer Nature 2021 LATEX template

18 Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference

We generate a random initial population considering the result of the pre-
vious stage. The initial population contains M chromosomes. The number of
chromosomes is equal to the number of tasks selected from M SMDs. Each
chromosome represents a set of offloading decisions for a task that consists of
10 genes. Each gene is denoted by {0, 1} that represents the offloading decision
of a subtask. Note that the initial population is generated for the remaining
subtasks, which do not satisfy the preferences in the previous stage. It means
some genes on a chromosome are predefined.

3. Evaluate the solutions: We calculate the objective functions using Eqs.
(24), (25), and (26). Constraints in (27) are defined as constraint violations
(CVs) as follows:

CV 1
m,n =

{
0, if Tm,n,10 ≤ θm,n

Tm,n,10 − θm,n otherwise
(35)

CV 2
m,n,k =

{
0, if Tm,n,k ≥ Tm,n,z

Tm,n,k − Tm,n,z otherwise
(36)

CV =

M∑

m=1

N∑

n=1

(CV 1
m,n +

10∑

k=1

CV 2
m,n,k) (37)

The chromosomes that satisfy constraints in (27) are feasible solutions. In the
next step, the best chromosomes are picked out based on the values of the
objective functions and the CV.

4. Sorting and selection: The selection phase is to select the fittest chromo-
somes and let them pass their genes to the next generation. First, the values
of objective functions are normalized (5). Then, a fast nondominated sorting
is performed according (6) Definition 1 :

Definition 1 : A solution u1 dominates another solution u2, if any one of
the following conditions is true:

1. u1 is a feasible solution, and u2 is an infeasible solution.
2. u1 and u2 are feasible and f(u1) ⪯ f(u2)
3. u1 and u2 are infeasible and CV (u1) < CV (u2)

Furthermore, solutions are associated with reference points (7), and the fast
nondominated sorting is performed on an updated population (8). Two pairs of
chromosomes (parents) are selected randomly according to their fitness scores
and CV to produce new offspring using different recombination and mutation
operators.

10. Crossover: Crossover is the most significant phase in a genetic algo-
rithm. It creates offspring by combining pairs of parents in the current
population during evolution. Two chromosomes are randomly selected for pick-
ing out from the population. The crossover operation is performed for a certain

Springer Nature 2021 LATEX template

Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference 19

percentage (pC) of the population as follows:

{
u′
1 = ϑu1 + (1− ϑ)u2

u′
2 = (1− ϑ)u1 + ϑu2

(38)

where u′
1 and u′

2 are both offspring, and ϑ ∈ {0, 1} is the random integer
variable.

11. Mutation: Certain new offspring are formed by the crossover operation.
Then, the algorithm creates mutations by randomly changing the genes of
individual parents. The mutation operation is applied with a probability of
mutation of pM . A high probability of mutation will increase the diversity in
the population and prevent premature convergence. The values of the crossover
and mutation probabilities are given as the simulation parameters in the next
section.

u′
i =

{
1− ui, if rand < pM
ui, otherwise

(39)

where u′
i is the offspring of ui, i ∈ [1, 10] is the gene of chromosome.

In the next step, the parent and offspring populations are combined (12).
The combined population is evaluated (13), sorted and selected (14). According
to the sorting result, a new parent population is created (15). This process
continues until the stop condition is met (9). A stopping criterion is defined as
the given number of iterations. After several iterations, the algorithm returns
a Pareto optimal set. All steps of the working process are given in Algorithm 3.

5 Experiments

In this section, we present several experiments to evaluate the performance
of the proposed hybrid method. The evaluation is made by comparing this
method with existing methods based on algorithms such as Multi-Objective
Particle Swarm Optimization (MOPSO), NSGA-II, and random offloading.
Experiments were performed on a PC with an Intel Core i5 CPU (3.2 GHz
and 16 Gb of RAM), and MATLAB 2021a was used for simulation.

5.1 Simulation Environment

Based on the system model, we created a simulation environment which
consists of the models of a MEC server, SMDs, and wireless channels. We con-
ducted the experiments in the environment with 5-10 small cells. The number
of SMDs in each small cell was in the range of [20-45]. The number of tasks
generated by an SMD was in the range of [50-300]. According to the statistics
by Google, the arrival time of computation tasks follows an exponential dis-
tribution [39]. The data size (DS) of the subtask and the number of required
CPU cycles to complete (NRCC) of the subtask were generated by the expo-
nential distribution of an average value of 200 kbit, 5 MHz, respectively. Initial
values of the size of the population (G) and a maximum number of iterations

Springer Nature 2021 LATEX template

20 Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference

Algorithm 3 Finding optimal offloading decisions using the NSGA-III
algorithm

Require: N , A, Gi, Ii, pC, pM
Ensure: Offloading decisions
1: Generate reference points
2: Generate the initial population
3: Determine objective functions and CV
4: Sorting and Selection:
5: text Normalize the fitness values of solutions
6: text Fast nondominated sorting
7: text Associate each solution with reference points
8: text Fast nondominated sorting
9: while stopping condition is met do

10: Crossover
11: Mutation
12: Combine parent and offspring populations
13: Calculate objective functions and CV
14: Sorting and Selection
15: Create a new parent population
16: end while

17: return Pareto optimal set

Table 3 Simulation parameters

Parameter Value

Number of SeNBs 5-10

Number of SMDs, M 20-45

Number of tasks, N 50-300

Number of subtasks in each task, K 10

Average DS of a subtask, dm,n,k 200 kbit

Average NRCC of a subtask, cm,n,k 5 MHz

Computation capability of an SMD, fm 100 MHz

Computation capability of the Edge node, F 1 GHz

Bandwidth of wireless channel, B 40 MHz

Average deadline to complete a task, θm,n 2 ms

Initial population size (Gi) 100

Initial number of iteration (Ii) 100

Probability of crossover (pC) 0.8

Probability of mutation (pM) 0.3

(P) were given, and they were adjusted during the simulation according to the
number of computation tasks. The values of all variables used in the simulation
are listed in Table 3.

Springer Nature 2021 LATEX template

Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference 21

5.2 Comparisons on Pareto Optimal Solutions

The computation offloading methods optimized with multiobjectives return
several optimal solutions called Pareto Optimal set (Fig. 6). When the con-
dition changes, the user selects the best one according to the real situation
without rerunning the optimization algorithm. Fig. 6(a) shows the results
of three methods produced by genetic algorithms and a random offloading
method. The random offloading method produced only one solution shown as
a triangle in the figures. The solutions of other three methods are shown with
different symbols explained in the legend. We can see that, compared with
other three methods, the results of the random offloading method are the worst
in all three objectives: Latency, Task failure and Energy consumption. Among
the other three methods, our proposed method produced the best results.

Fig. 6(a) shows the results of all methods together. We can see that the
results from optimization methods are much better than the random offloading
method. Fig. 6(b) is the comparison of the proposed method and the random
offloading method. Fig. 6(c) shows the comparison results of the proposed
method and the NSGA-II algorithm-based optimization method. Although
both methods produced good results, we can see that the NSGA-II algorithm-
based optimization method also produced solutions with high probability of
task failure. Similar results can also be observed in Fig. 6(d) where the MOPSO
algorithm-based optimization method produced high probability of task fail-
ure. These comparisons demonstrate that our method is able to reduce the
task failure.

5.3 Comparison on Resource Utilization

The resources such as computation units of SMDs and MEC servers and the
bandwidth of wireless channels are limited. Overloading the task workload
with limited resources leads to long latency or even failure of the task. We
test the proposed and existing methods in cases with overloading the task
workload. For this purpose, we conducted experiments with varied workloads
by increasing the number of tasks and SMDs. In each experiment, the value of
the resource utilization coefficient was computed. The values of the resource
utilization coefficient of an SMD, wireless channel, and the MEC server were
calculated using ρm = γmλmb̃m, ρR = δmλmb̃tr, and r =

∑M

m=1 δmλmb̃E
respectively. The experiments were performed 100 times and the average and
standard deviation of the utilization coefficient were calculated.

We evaluated the proposed method and other three methods in the settings
of computations tasks from 50 to 300, where each task consists of 10 sub-
tasks. The best results of the experiments are highlighted in bold in Table 4.
The results show that the number of tasks does not affect resource utilization
significantly. This is because the proposed computation offloading framework
selects only one task from each SMD to find the optimal decision each time.
The next task is selected after the decision on the previous one is made. The
highest utilization of the resource appeared on the wireless channel. Since the

Springer Nature 2021 LATEX template

22 Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference

(a) Comparison of all Pareto-optimal solutions (b) Our proposed method vs Random offloading

(c) Our proposed method vs NSGA-II (d) Our proposed method vs MOPSO

Fig. 6 Comparison of Pareto-optimal solutions.

Table 4 Impact of number of tasks to resource utilization (%) in varied methods (mean
± std)

Number of tasks

50 100 150 200 250 300

Average resource
utilization of SMD

(%)

Random 18.31± 2.05 25.38± 1.35 18.01± 0.60 28.45± 1.28 14.54± 0.92 13.29± 0.52

NSGA-II 19.74± 0.08 34.83± 0.24 23.17± 0.22 55.92± 0.34 16.48± 0.06 23.81± 0.13
MOPSO 21.06± 0.00 36.75± 0.00 25.90± 0.00 82.37± 0.00 16.55± 0.00 31.43± 0.00

Our method 17.80± 0.52 27.04± 0.87 17.98± 0.32 27.74± 0.74 13.65± 0.21 16.20± 0.32

Average resource
utilization of wireless

channel (%)

Random 95.43± 46.26 142.80± 64.09 122.78± 26.19 90.13± 16.07 269.63± 52.65 144.04± 30.24
NSGA-II 27.27± 3.29 33.29± 1.97 35.75± 1.68 33.42± 1.16 38.04± 1.17 41.64± 0.65
MOPSO 29.91± 0.00 43.96± 0.00 40.19± 0.00 47.36± 2.64 39.87± 0.00 38.29± 1.07

Our method 24.74± 2.12 31.31± 1.68 32.53± 1.62 37.57± 2.66 36.84± 1.35 37.86± 2.20

Average resource
utilization of edge

server (%)

Random 11.64± 1.05 22.80± 1.17 15.11± 0.69 19.45± 0.59 26.46± 0.92 23.72± 0.72
NSGA-II 1.37± 0.02 2.33± 0.25 2.61± 0.07 2.68± 0.20 3.18± 0.02 3.13± 0.03
MOPSO 1.34± 0.00 2.91± 0.00 1.93± 0.00 2.64± 0.83 3.67± 0.00 3.76± 0.19

Our method 1.69± 0.14 1.98± 0.58 2.55± 0.14 2.54± 0.43 2.84± 0.11 2.51± 0.07

resource utilization is less than 85-90%, the probability of task lost is low. In
the table, we can see that most best results were produced by our proposed
method.

In the experiments, we also investigated the impact of increase of the num-
ber of SMDs on resource utilization by gradually putting more SMDs to the
SeNBs. The nominal bandwidth of the wireless channel was divided equally
by the number of connected SMDs. In addition, the increase of SMDs created

Springer Nature 2021 LATEX template

Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference 23

Table 5 Impact of number of SMDs to resource utilization (%) in varied methods (mean
± std)

Number of SMDs

20 25 30 35 40 45

Average resource
utilization of SMD

(%)

Random 15.21± 0.52 12.40± 0.46 14.25± 0.48 14.40± 0.44 11.94± 0.34 15.60± 0.40

NSGA-II 23.6± 0.11 20.19± 0.02 21.45± 0.05 21.82± 0.03 22.53± 0.03 20.70± 0.04
MOPSO 22.17± 0.00 18.40± 0.00 20.22± 0.00 19.94± 0.00 22.88± 0.00 19.50± 0.45

Our method 22.01± 0.32 17.42± 0.38 17.83± 0.39 18.43± 0.38 19.07± 0.65 17.04± 0.38

Average resource
utilization of wireless

channel (%)

Random 112.62± 15.0 110.34± 16.0 165.34± 21.4 172.40± 17.92 205.71± 26.37 331.39± 21.2
NSGA-II 45.40± 2.48 71.31± 3.04 84.81± 4.13 91.27± 5.28 104.38± 6.14 128.18± 0.02
MOPSO 61.97± 7.41 98.94± 0.00 117.43± 2.05 115.23± 0.00 127.56± 15.75 248.16± 19.83

Our method 42.14± 3.58 68.20± 6.41 82.57± 7.46 89.21± 8.23 98.24± 8.43 112.71± 13.22

Average resource
utilization of edge

server (%)

Random 29.63± 1.46 28.47± 1.30 39.88± 1.75 43.54± 1.88 43± 1.55 64.24± 2.56
NSGA-II 4.35± 0.05 6.17± 0.02 8.23± 1.03 15.24± 1.02 19.45± 1.83 27.26± 1.73
MOPSO 4.67± 0.04 6.65± 0.10 7.54± 0.91 15.53± 1.29 24.58± 2.07 26.44± 2.25

Our method 3.85± 0.09 5.72± 0.57 8.42± 0.84 16.80± 1.46 18.87± 1.58 23.00± 1.61

more computation workload for the MEC server. When the random computa-
tion method is used to make the offloading decisions, the local server resources
were less utilized, but the wireless channel was overloaded, resulting in high
probability of failure tasks. However, The multiobjective optimization meth-
ods can better balance the resource utilization by finding optimal solutions
on offloaded tasks. Table 5 shows the experiment results of four methods on
resource utilization. We can see that the proposed method produced good over-
all results. The increase in the number of SMDs does not affect the utilization
of local computing resources. It affects only the utilization of wireless channels
and the MEC server. These results demonstrate that increasing the number of
tasks does not affect the utilization of resources significantly in the case when
the framework selects one task at a time from each SMD.

5.4 Impact of Varied Numbers of SMDs on Performance

Metrics

From the previous section, we see that the increase on the number of SMDs
significantly affects resource utilization. To understand how the number of
SMDs affects the performance of the optimization algorithms, we conducted
experiments to find the relations between the elapsed time of the optimiza-
tion algorithms and the number of SMDs in the SeNBs. The elapsed time
was obtained from the internal function of MATLAB. The number of SMDs
used in the experiments was from 20 to 45. For each given number of SMDs,
we used the same input datasets for all methods. However, the datasets were
randomly generated on the fly for experiments. Therefore, the values of objec-
tive functions depend on the generated datasets. The values of bandwidth and
computing capacity of the MEC servers were fixed during all experiments.

Table 6 shows the experiment results. The same experiment in each set-
ting was executed one hundred times. The average values and their standard
deviations are given in column. We can see in the bottom line that our pro-
posed method is 58% and 21% faster than NSGA-II and MOPSO. In addition,
it shows better results in optimizing the three objectives. For instance, the
latency of our method is reduced by 72% (Random), 18% (NSGA-II), and 30%
(MOPSO) compared with other methods. The probability of task failure is

Springer Nature 2021 LATEX template

24 Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference

Table 6 Impact of the number of SMDs to the performance (mean ± std)

Number of SMDs

20 25 30 35 40 45

Latency

Random 0.78± 0.06 1.41± 0.07 1.05± 0.04 1.27± 0.05 0.91± 0.03 2.08± 0.15
NSGA-II 0.21± 0.07 0.42± 0.14 0.27± 0.10 1.14± 1.08 0.13± 0.06 0.35± 0.29
MOPSO 0.24± 0.08 0.50± 0.20 0.30± 0.10 1.33± 1.21 0.16± 0.10 0.42± 0.45

Our method 0.20± 0.04 0.41± 0.11 0.22± 0.03 0.58± 0.17 0.32± 0.14 0.32± 0.19

Energy
Consumption

Random 0.24± 0.01 0.27± 0.01 0.23± 0.01 0.31± 0.01 0.29± 0.01 0.23± 0.01
NSGA-II 0.02± 0.04 0.01± 0.02 0.01± 0.02 0.08± 0.12 0.01± 0.01 0.02± 0.04

MOPSO 0.04± 0.06 0.04± 0.04 0.04± 0.05 0.13± 0.15 0.01± 0.02 0.04± 0.06
Our method 0.02± 0.01 0.11± 0.05 0.03± 0.01 0.22± 0.08 0.09± 0.06 0.08± 0.06

Probability of
task failure

(%)

Random 1.04± 0.17 3.23± 1.39 9.07± 2.49 13.81± 3.52 18.93± 6.56 25.38± 4.08
NSGA-II 0.09± 0.01 1.65± 0.57 2.89± 0.79 2.22± 0.46 3.12± 0.46 6.59± 2.72
MOPSO 0.12± 0.08 4.69± 0.62 6.99± 1.10 5.19± 1.85 6.80± 1.26 19.04± 3.69

Our method 0.03± 0.00 0.25± 0.06 0.85± 0.44 0.98± 0.67 2.47± 0.96 6.18± 2.31

Elapsed time
NSGA-II 437.45± 22.66 533.52± 35.50 833.30± 46.58 1160.06± 60.59 1130.91± 64.95 1332.13± 82.58
MOPSO 147.49± 14.01 304.61± 28.41 418.81± 29.99 718.55± 51.46 511.60± 43.16 793.55± 61.07

Our method 140.88± 8.42 201.72± 10.67 409.39± 20.31 463.67± 22.58 453.28± 20.73 608.27± 30.18

reduced by 84% (Random), 35% (NSGA-II), and 74% (MOPSO). Regarding
the energy consumption, the proposed method showed positive result com-
pared with the random offloading, and negative result compared with the
NSGA-II and MOPSO algorithms.

6 Conclusion

The rapidly increasing number of IoT devices creates new opportunities for
users to have more services, and it also causes a problem of processing massive
data. Partial offloading of the computation tasks from IoT devices onto nearby
MEC edge nodes partially solves the problem. The problem remains challeng-
ing with designing a fast and effective computation offloading framework in
resource-limited systems. A combination of preferences based on logical rules
and an optimization tool can help to solve the problem. This paper is aimed
to propose a hybrid method for fast optimal offloading of dependent computa-
tion tasks in a resource-limited IoT-MEC environment. The proposed method
achieved better performance compared with existing methods. Especially, the
time to search for optimal offloading decisions is reduced. This work will be
tested in real-world experiments, and a decentralized method of computation
offloading will be investigated.

Declarations

Ethical Approval and Consent to participate

Yes.

Human and Animal Ethics

Not applicable.

Consent for publication

Yes.

Springer Nature 2021 LATEX template

Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference 25

Availability of supporting data

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding

This work has been partially supported by the National Key R&D Program of
China under Grant No. 2018YFB1800805, the National Natural Science Foun-
dation of China under Grant No. 61772345, 61902257, 61972261, the Pearl
River Young Scholars funding of Shenzhen University, and the Shenzhen Sci-
ence and Technology Program under Grant No. RCYX20200-714114645048,
No. JCYJ20190808142207420, and No. GJHZ2-0190822095416463.

Authors’ contributions

Kuanishbay Sadatdiynov: Conceptualization, Investigation, Software,
Methodology, Writing - original draft. Laizhong Cui: Conceptualization,
Project administration, Resources, Validation. Joshua Zhexue Huang:
Supervision, Funding acquisition, Methodology, Writing - review & editing.

Acknowledgments

In our experiments, we used the NSGA-II [40], NSGA-III [41], and MOPSO
[42] algorithms. Dr. Mostapha Kalami Heris is acknowledged for delivering the
implementations.

Author information

Authors and Affiliations
College of Computer Science and Software Engineering, Shen-

zhen University, Shenzhen, 518061, Guangdong, P.R. China

Kuanishbay Sadatdiynov, Laizhong Cui and Joshua Zhexue Huang

References

[1] Bharadwaj, H.K., Agarwal, A., Chamola, V., Lakkaniga, N.R., Hassija,
V., Guizani, M., Sikdar, B.: A review on the role of Machine Learning in
enabling IoT based healthcare applications. IEEE Access 9, 38859–38890
(2021). https://doi.org/10.1109/ACCESS.2021.3059858

[2] Khanna, A., Kaur, S.: Internet of things (IoT), applications and chal-
lenges: A comprehensive review. Wirel. Pers. Commun. 114(2), 1687–1762
(2020). https://doi.org/10.1007/s11277-020-07446-4

https://doi.org/10.1109/ACCESS.2021.3059858
https://doi.org/10.1007/s11277-020-07446-4

Springer Nature 2021 LATEX template

26 Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference

[3] Mach, P., Becvar, Z.: Mobile edge computing: A survey on architecture
and computation offloading. IEEE Commun. Surv. Tutorials 19(3), 1628–
1656 (2017). https://doi.org/10.1109/COMST.2017.2682318

[4] Hu, J., Li, K., Liu, C., Li, K.: Game-based task offloading of multiple
mobile devices with qos in mobile edge computing systems of limited
computation capacity. ACM Trans. Embed. Comput. Syst. 19(4) (2020).
https://doi.org/10.1145/3398038

[5] Liu, M., Yu, F.R., Teng, Y., Leung, V.C.M., Song, M.: Distributed
resource allocation in blockchain-based video streaming systems with
mobile edge computing. IEEE Trans. Wireless Communications 18(1),
695–708 (2019). https://doi.org/10.1109/TWC.2018.2885266

[6] Zhou, J., Zhang, X., Wang, W.: Joint resource allocation and user associ-
ation for heterogeneous services in multi-access edge computing networks.
IEEE Access 7, 12272–12282 (2019). https://doi.org/10.1109/ACCESS.
2019.2892466

[7] Yi, C., Cai, J., Su, Z.: A multi-user mobile computation offloading
and transmission scheduling mechanism for delay-sensitive applications.
IEEE Trans. Mob. Comput. 19(1), 29–43 (2020). https://doi.org/10.
1109/TMC.2019.2891736

[8] Zhang, L., Cao, B., Li, Y., Peng, M., Feng, G.: A multi-stage stochastic
programming-based offloading policy for Fog enabled IoT-eHealth. IEEE
J. Sel. Areas Commun. 39(2), 411–425 (2021). https://doi.org/10.1109/
JSAC.2020.3020659

[9] Qiao, B., Liu, C., Liu, J., Hu, Y., Li, K., Li, K.: Task migration compu-
tation offloading with low delay for mobile edge computing in vehicular
networks. Concurrency and Computation: Practice and Experience 34(1)
(2021). https://doi.org/10.1002/cpe.6494

[10] Zhang, J., Xia, W., Yan, F., Shen, L.: Joint computation offloading and
resource allocation optimization in heterogeneous networks with mobile
edge computing. IEEE Access 6, 19324–19337 (2018). https://doi.org/10.
1109/ACCESS.2018.2819690

[11] Liu, P., Xu, G., Yang, K., Wang, K., Meng, X.: Jointly optimized energy-
minimal resource allocation in cache-enhanced mobile edge computing
systems. IEEE Access 7, 3336–3347 (2019). https://doi.org/10.1109/
ACCESS.2018.2889815

[12] Yang, L., Zhong, C., Yang, Q., Zou, W., Fathalla, A.: Task offloading for
directed acyclic graph applications based on edge computing in industrial
internet. Inf. Sci. 540, 51–68 (2020). https://doi.org/10.1016/j.ins.2020.

https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1145/3398038
https://doi.org/10.1109/TWC.2018.2885266
https://doi.org/10.1109/ACCESS.2019.2892466
https://doi.org/10.1109/ACCESS.2019.2892466
https://doi.org/10.1109/TMC.2019.2891736
https://doi.org/10.1109/TMC.2019.2891736
https://doi.org/10.1109/JSAC.2020.3020659
https://doi.org/10.1109/JSAC.2020.3020659
https://doi.org/10.1002/cpe.6494
https://doi.org/10.1109/ACCESS.2018.2819690
https://doi.org/10.1109/ACCESS.2018.2819690
https://doi.org/10.1109/ACCESS.2018.2889815
https://doi.org/10.1109/ACCESS.2018.2889815
https://doi.org/10.1016/j.ins.2020.06.001
https://doi.org/10.1016/j.ins.2020.06.001

Springer Nature 2021 LATEX template

Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference 27

06.001

[13] Shen, S., Han, Y., Wang, X., Wang, Y.: Computation offloading with
multiple agents in edge-computing-supported IoT. TOSN 16(1), 8–1827
(2020). https://doi.org/10.1145/3372025

[14] Afrin, M., Jin, J., Rahman, A., Tian, Y., Kulkarni, A.: Multi-objective
resource allocation for edge cloud based robotic workflow in smart fac-
tory. Future Gener. Comput. Syst. 97, 119–130 (2019). https://doi.org/
10.1016/j.future.2019.02.062

[15] Xu, X., Fu, S., Yuan, Y., Luo, Y., Qi, L., Lin, W., Dou, W.: Multiobjec-
tive computation offloading for workflow management in cloudlet-based
mobile cloud using NSGA-II. Comput. Intell. 35(3), 476–495 (2019).
https://doi.org/10.1111/coin.12197

[16] Cui, L., Xu, C., Yang, S., Huang, J.Z., Li, J., Wang, X., Ming, Z., Lu,
N.: Joint optimization of energy consumption and latency in mobile edge
computing for Internet of Things. IEEE Internet of Things Journal 6(3),
4791–4803 (2019). https://doi.org/10.1109/JIOT.2018.2869226

[17] Alkhalaileh, M., Calheiros, R.N., Nguyen, Q.V., Javadi, B.: Data-intensive
application scheduling on mobile edge cloud computing. J. Netw. Comput.
Appl. 167, 102735 (2020). https://doi.org/10.1016/j.jnca.2020.102735

[18] Xia, S., Yao, Z., Li, Y., Mao, S.: Online distributed offloading and com-
puting resource management with energy harvesting for heterogeneous
MEC-enabled IoT. IEEE Transactions on Wireless Communications 20,
6743–6757 (2021). https://doi.org/10.1109/TWC.2021.3076201

[19] Cui, Y., Zhang, D., Zhang, T., Chen, L., Piao, M., Zhu, H.: Novel
method of mobile edge computation offloading based on evolutionary
game strategy for iot devices. AEU - International Journal of Electron-
ics and Communications 118, 153134 (2020). https://doi.org/10.1016/J.
AEUE.2020.153134

[20] Tong, Z., Deng, X., Ye, F., Basodi, S., Xiao, X., Pan, Y.: Adaptive com-
putation offloading and resource allocation strategy in a mobile edge
computing environment. Inf. Sci. 537, 116–131 (2020). https://doi.org/
10.1016/j.ins.2020.05.057

[21] Chalapathi, G.S.S., Chamola, V., Johal, W., Aryal, J., Buyya, R.: Energy
and latency aware mobile task assignment for green cloudlets. Simulation
Modelling Practice and Theory, (2022). https://doi.org/10.1016/j.simpat.
2022.102531

[22] Chakraborty, S., Mazumdar, K.: Sustainable task offloading decision using

https://doi.org/10.1016/j.ins.2020.06.001
https://doi.org/10.1016/j.ins.2020.06.001
https://doi.org/10.1145/3372025
https://doi.org/10.1016/j.future.2019.02.062
https://doi.org/10.1016/j.future.2019.02.062
https://doi.org/10.1111/coin.12197
https://doi.org/10.1109/JIOT.2018.2869226
https://doi.org/10.1016/j.jnca.2020.102735
https://doi.org/10.1109/TWC.2021.3076201
https://doi.org/10.1016/J.AEUE.2020.153134
https://doi.org/10.1016/J.AEUE.2020.153134
https://doi.org/10.1016/j.ins.2020.05.057
https://doi.org/10.1016/j.ins.2020.05.057
https://doi.org/10.1016/j.simpat.2022.102531
https://doi.org/10.1016/j.simpat.2022.102531

Springer Nature 2021 LATEX template

28 Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference

genetic algorithm in sensor mobile edge computing. Journal of King Saud
University - Computer and Information Sciences 34(4), 1552–1568 (2022).
https://doi.org/10.1016/j.jksuci.2022.02.014

[23] Zhang, W., Wen, Y.: Energy-efficient task execution for application as a
general topology in mobile cloud computing. IEEE Trans. Cloud Comput.
6(3), 708–719 (2018). https://doi.org/10.1109/TCC.2015.2511727

[24] Li, Y., Xia, S., Zheng, M., Cao, B., Liu, Q.: Lyapunov optimization-
based trade-off policy for mobile cloud offloading in heterogeneous wireless
networks. IEEE Trans. Cloud Comput. 10(1), 491–505 (2022). https:
//doi.org/10.1109/TCC.2019.2938504

[25] Jiang, C., Cheng, X., Gao, H., Zhou, X., Wan, J.: Toward computation
offloading in edge computing: A survey. IEEE Access 7, 131543–131558
(2019). https://doi.org/10.1109/ACCESS.2019.2938660

[26] Gasmi, K., Dilek, S., Tosun, S., Ozdemir, S.: A survey on compu-
tation offloading and service placement in fog computing-based IoT.
J. Supercomput. 78(2), 1983–2014 (2022). https://doi.org/10.1007/
s11227-021-03941-y

[27] Sadatdiynov, K., Cui, L., Zhang, L., Huang, J.Z., Salloum, S., Mahmud,
M.S.: A review of optimization methods for computation offloading in
edge computing networks. Digital Communications and Networks, (2022).
https://doi.org/10.1016/j.dcan.2022.03.003

[28] Guo, S., Liu, J., Yang, Y., Xiao, B., Li, Z.: Energy-efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud
computing. IEEE Trans. Mob. Comput. 18(2), 319–333 (2019). https:
//doi.org/10.1109/TMC.2018.2831230

[29] Yang, L., Cao, J., Cheng, H., Ji, Y.: Multi-user computation partitioning
for latency sensitive mobile cloud applications. IEEE Trans. Computers
64(8), 2253–2266 (2015). https://doi.org/10.1109/TC.2014.2366735

[30] Orhean, A.I., Pop, F., Raicu, I.: New scheduling approach using rein-
forcement learning for heterogeneous distributed systems. J. Parallel
Distributed Comput. 117, 292–302 (2018). https://doi.org/10.1016/j.
jpdc.2017.05.001

[31] Pan, S., Zhang, Z., Zhang, Z., Zeng, D.: Dependency-aware compu-
tation offloading in mobile edge computing: A reinforcement learning
approach. IEEE Access 7, 134742–134753 (2019). https://doi.org/10.
1109/ACCESS.2019.2942052

[32] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist

https://doi.org/10.1016/j.jksuci.2022.02.014
https://doi.org/10.1109/TCC.2015.2511727
https://doi.org/10.1109/TCC.2019.2938504
https://doi.org/10.1109/TCC.2019.2938504
https://doi.org/10.1109/ACCESS.2019.2938660
https://doi.org/10.1007/s11227-021-03941-y
https://doi.org/10.1007/s11227-021-03941-y
https://doi.org/10.1016/j.dcan.2022.03.003
https://doi.org/10.1109/TMC.2018.2831230
https://doi.org/10.1109/TMC.2018.2831230
https://doi.org/10.1109/TC.2014.2366735
https://doi.org/10.1016/j.jpdc.2017.05.001
https://doi.org/10.1016/j.jpdc.2017.05.001
https://doi.org/10.1109/ACCESS.2019.2942052
https://doi.org/10.1109/ACCESS.2019.2942052

Springer Nature 2021 LATEX template

Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference 29

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evo-
lutionary Computation 6(2), 182–197 (2002). https://doi.org/10.1109/
4235.996017

[33] Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, part I: solv-
ing problems with box constraints. IEEE Trans. Evol. Comput. 18(4),
577–601 (2014). https://doi.org/10.1109/TEVC.2013.2281535

[34] Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm
using reference-point based nondominated sorting approach, part II: han-
dling constraints and extending to an adaptive approach. IEEE Trans.
Evol. Comput. 18(4), 602–622 (2014). https://doi.org/10.1109/TEVC.
2013.2281534

[35] Xu, X., Liu, Q., Luo, Y., Peng, K., Zhang, X., Meng, S., Qi, L.: A
computation offloading method over big data for IoT-enabled cloud-
edge computing. Future Gener. Comput. Syst. 95, 522–533 (2019). https:
//doi.org/10.1016/j.future.2018.12.055

[36] Mao, Y., Zhang, J., Letaief, K.B.: Dynamic computation offloading for
mobile-edge computing with energy harvesting devices. IEEE Journal on
Selected Areas in Communications 34(12), 3590–3605 (2016). https://doi.
org/10.1109/JSAC.2016.2611964

[37] Shortle, J.F., Thompson, J.M., Gross, D., Harris, C.M.: Fundamentals
of Queueing Theory, 5th edn. Wiley Series in Probability and Statistics.
Wiley, ??? (2018)

[38] Das, I., Dennis, J.E.: Normal-boundary intersection: A new method for
generating the pareto surface in nonlinear multicriteria optimization prob-
lems. SIAM J. Optim. 8(3), 631–657 (1998). https://doi.org/10.1137/
S1052623496307510

[39] Zhao, T., Zhou, S., Guo, X., Niu, Z.: Tasks scheduling and resource allo-
cation in heterogeneous cloud for delay-bounded mobile edge computing.
In: IEEE International Conference on Communications, ICC 2017, Paris,
France, May 21-25, 2017, pp. 1–7. IEEE, ??? (2017). https://doi.org/10.
1109/ICC.2017.7996858

[40] Heris, M.K.: NSGA-II in MATLAB. Yarpiz (2015). https://yarpiz.com/
56/ypea120-nsga2 Accessed 2022-07-05

[41] Heris, M.K.: NSGA-III: Non-dominated Sorting Genetic Algorithm, the
Third Version — MATLAB Implementation. Yarpiz (2016). https://
yarpiz.com/456/ypea126-nsga3 Accessed 2022-07-05

https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TEVC.2013.2281534
https://doi.org/10.1109/TEVC.2013.2281534
https://doi.org/10.1016/j.future.2018.12.055
https://doi.org/10.1016/j.future.2018.12.055
https://doi.org/10.1109/JSAC.2016.2611964
https://doi.org/10.1109/JSAC.2016.2611964
https://doi.org/10.1137/S1052623496307510
https://doi.org/10.1137/S1052623496307510
https://doi.org/10.1109/ICC.2017.7996858
https://doi.org/10.1109/ICC.2017.7996858
https://yarpiz.com/56/ypea120-nsga2
https://yarpiz.com/56/ypea120-nsga2
https://yarpiz.com/456/ypea126-nsga3
https://yarpiz.com/456/ypea126-nsga3

Springer Nature 2021 LATEX template

30 Offloading Dependent Tasks in MEC-enabled IoT Systems: A Preference

[42] Heris, M.K.: Multi-Objective PSO in MATLAB. Yarpiz (2015). https:
//yarpiz.com/59/ypea121-mopso Accessed 2022-07-05

https://yarpiz.com/59/ypea121-mopso
https://yarpiz.com/59/ypea121-mopso

	Introduction
	Related work
	Queueing Models and Problem Formulation
	Local Computing
	Communication Model
	Edge Computing
	Problem Formulation

	A Hybrid Offloading Method
	Making Offloading Decisions by Preferences
	Find Optimal Offloading Decisions using the Modified NSGA-III Algorithm

	Experiments
	Simulation Environment
	Comparisons on Pareto Optimal Solutions
	Comparison on Resource Utilization
	Impact of Varied Numbers of SMDs on Performance Metrics

	Conclusion

