Skip to main content
Log in

Joint linear complexity of multisequences consisting of linear recurring sequences

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

The linear complexity of sequences is one of the important security measures for stream cipher systems. Recently, in the study of vectorized stream cipher systems, the joint linear complexity of multisequences has been investigated. In this paper, we study the joint linear complexity of multisequences consisting of linear recurring sequences. The expectation and variance of the joint linear complexity of random multisequences consisting of linear recurring sequences are determined. These results extend the corresponding results on the expectation and variance of the joint linear complexity of random periodic multisequences. Then we enumerate the multisequences consisting of linear recurring sequences with fixed joint linear complexity. A general formula for the appropriate counting function is derived. Some convenient closed-form expressions for the counting function are determined in special cases. Furthermore, we derive tight upper and lower bounds on the counting function in general. Some interesting relationships among the counting functions of certain cases are established. The generating polynomial for the distribution of joint linear complexities is determined. The proofs use new methods that enable us to obtain results of great generality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cusick, T.W., Ding, C., Renvall, A.: Stream Ciphers and Number Theory. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  2. Dai, Z., Imamura, K., Yang, J.: Asymptotic behavior of normalized linear complexity of multi-sequences. In: Helleseth, T., et al. (eds.) Sequences and Their Applications—SETA 2004. Lecture Notes in Computer Science, vol. 3486, pp. 129–142. Springer, Berlin (2005)

    Google Scholar 

  3. Dai, Z.-D., Yang, J.-H.: Linear complexity of periodically repeated random sequences. In: Davies, D.W. (ed.) Advances in Cryptology—EUROCRYPT ’91. Lecture Notes in Computer Science, vol. 547, pp. 168–175. Springer, Berlin (1991)

    Google Scholar 

  4. Dawson, E., Simpson, L.: Analysis and design issues for synchronous stream ciphers. In: Niederreiter, H. (ed.) Coding Theory and Cryptology, pp. 49–90. World Scientific, Singapore (2002)

    Google Scholar 

  5. Ding, C., Xiao, G., Shan, W.: The Stability Theory of Stream Ciphers. Lecture Notes in Computer Science, vol. 561. Springer, Berlin (1991)

    MATH  Google Scholar 

  6. Dorfer, G.: Lattice profile and linear complexity profile of pseudorandom number sequences. In: Mullen, G.L., Poli, A., Stichtenoth, H. (eds.) Finite Fields and Applications. Lecture Notes in Computer Science, vol. 2948, pp. 69–78. Springer, Berlin (2004)

    Google Scholar 

  7. Dorfer, G., Meidl, W., Winterhof, A.: Counting functions and expected values for the lattice profile at n. Finite Fields Appl. 10, 636–652 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dorfer, G., Winterhof, A.: Lattice structure and linear complexity profile of nonlinear pseudorandom number generators. Appl. Algebra Eng. Commun. Comput. 13, 499–508 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dorfer, G., Winterhof, A.: Lattice structure of nonlinear pseudorandom number generators in parts of the period. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 199–211. Springer, Berlin (2004)

    Google Scholar 

  10. Feng, G.L., Tzeng, K.K.: A generalized Euclidean algorithm for multisequence shift-register synthesis. IEEE Trans. Inf. Theory 35, 584–594 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feng, G.L., Tzeng, K.K.: A generalization of the Berlekamp–Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes. IEEE Trans. Inf. Theory 37, 1274–1287 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Feng, X., Dai, Z.: Expected value of the linear complexity of two-dimensional binary sequences. In: Helleseth, T., et al. (eds.) Sequences and Their Applications—SETA 2004. Lecture Notes in Computer Science, vol. 3486, pp. 113–128. Springer, Berlin (2005)

    Google Scholar 

  13. Feng, X., Wang, Q., Dai, Z.: Multi-sequences with d-perfect property. J. Complex. 21, 230–242 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fu, F.-W., Niederreiter, H.: On the counting function of the lattice profile of periodic sequences. J. Complex. 23, 423–435 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fu, F.-W., Niederreiter, H., Su, M.: The expectation and variance of the joint linear complexity of random periodic multisequences. J. Complex. 21, 804–822 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fu, F.-W., Niederreiter, H., Su, M.: The characterization of 2n-periodic binary sequences with fixed 1-error linear complexity. In: Gong, G., et al. (eds.) Sequences and Their Applications—SETA 2006. Lecture Notes in Computer Science, vol. 4086, pp. 88–103. Springer, Berlin (2006)

    Chapter  Google Scholar 

  17. Gustavson, F.G.: Analysis of the Berlekamp–Massey linear feedback shift-register synthesis algorithm. IBM J. Res. Develop. 20, 204–212 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hawkes, P., Rose, G.G.: Exploiting multiples of the connection polynomial in word-oriented stream ciphers. In: Okamoto, T. (ed.) Advances in Cryptology—ASIACRYPT 2000. Lecture Notes in Computer Science, vol. 1976, pp. 303–316. Springer, Berlin (2000)

    Chapter  Google Scholar 

  19. Kamiya, N.: On multisequence shift register synthesis and generalized-minimum-distance decoding of Reed-Solomon codes. Finite Fields Appl. 1, 440–457 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  21. Massey, J.L., Serconek, S.: A Fourier transform approach to the linear complexity of nonlinearly filtered sequences. In: Desmedt, Y.G. (ed.) Advances in Cryptology—CRYPTO ’94. Lecture Notes in Computer Science, vol. 839, pp. 332–340. Springer, Berlin (1994)

    Google Scholar 

  22. Massey, J.L., Serconek, S.: Linear complexity of periodic sequences: a general theory. In: Koblitz, N. (ed.) Advances in Cryptology—CRYPTO ’96. Lecture Notes in Computer Science, vol. 1109, pp. 358–371. Springer, Berlin (1996)

    Google Scholar 

  23. Meidl, W.: How many bits have to be changed to decrease the linear complexity? Des. Codes Cryptogr. 33, 109–122 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Meidl, W.: Discrete Fourier transform, joint linear complexity and generalized joint linear complexity of multisequences. In: Helleseth, T., et al. (eds.) Sequences and Their Applications—SETA 2004. Lecture Notes in Computer Science, vol. 3486, pp. 101–112. Springer, Berlin (2005)

    Google Scholar 

  25. Meidl, W.: On the stability of 2n-periodic binary sequences. IEEE Trans. Inf. Theory 51, 1151–1155 (2005)

    Article  MathSciNet  Google Scholar 

  26. Meidl, W., Niederreiter, H.: Counting functions and expected values for the k-error linear complexity. Finite Fields Appl. 8, 142–154 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Meidl, W., Niederreiter, H.: Linear complexity, k-error linear complexity, and the discrete Fourier transform. J. Complex. 18, 87–103 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Meidl, W., Niederreiter, H.: On the expected value of the linear complexity and the k-error linear complexity of periodic sequences. IEEE Trans. Inf. Theory 48, 2817–2825 (2002)

    Article  MathSciNet  Google Scholar 

  29. Meidl, W., Niederreiter, H.: The expected value of the joint linear complexity of periodic multisequences. J. Complex. 19, 61–72 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Meidl, W., Niederreiter, H.: Periodic sequences with maximal linear complexity and large k-error linear complexity. Appl. Algebra Eng. Commun. Comput. 14, 273–286 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Meidl, W., Niederreiter, H., Venkateswarlu, A.: Error linear complexity measures for multisequences. J. Complex. 23, 169–192 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Meidl, W., Winterhof, A.: On the joint linear complexity profile of explicit inversive multisequences. J. Complex. 21, 324–336 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Niederreiter, H.: Sequences with almost perfect linear complexity profile. In: Chaum, D., Price, W.L. (eds.) Advances in Cryptology—EUROCRYPT ’87. Lecture Notes in Computer Science, vol. 304, pp. 37–51. Springer, Berlin (1988)

    Google Scholar 

  34. Niederreiter, H.: Some computable complexity measures for binary sequences. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, pp. 67–78. Springer, London (1999)

    Google Scholar 

  35. Niederreiter, H.: Linear complexity and related complexity measures for sequences. In: Johansson, T., Maitra, S. (eds.) Progress in Cryptology—INDOCRYPT 2003. Lecture Notes in Computer Science, vol. 2904, pp. 1–17. Springer, Berlin (2003)

    Google Scholar 

  36. Niederreiter, H.: The probabilistic theory of the joint linear complexity of multisequences. In: Gong, G., et al. (eds.) Sequences and Their Applications—SETA 2006. Lecture Notes in Computer Science, vol. 4086, pp. 5–16. Springer, Berlin (2006)

    Chapter  Google Scholar 

  37. Niederreiter, H., Paschinger, H.: Counting functions and expected values in the stability theory of stream ciphers. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, pp. 318–329. Springer, London (1999)

    Google Scholar 

  38. Niederreiter, H., Wang, L.P.: Proof of a conjecture on the joint linear complexity profile of multisequences. In: Maitra, S., et al. (eds.) Progress in Cryptology—INDOCRYPT 2005. Lecture Notes in Computer Science, vol. 3797, pp. 13–22. Springer, Berlin (2005)

    Chapter  Google Scholar 

  39. Niederreiter, H., Wang, L.P.: The asymptotic behavior of the joint linear complexity profile of multisequences. Monatsh. Math. 150, 141–155 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  40. Niederreiter, H., Winterhof, A.: Lattice structure and linear complexity of nonlinear pseudorandom numbers. Appl. Algebra Eng. Commun. Comput. 13, 319–326 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  41. Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Berlin (1986)

    MATH  Google Scholar 

  42. Rueppel, R.A.: Stream ciphers. In: Simmons, G.J. (ed.) Contemporary Cryptology: the Science of Information Integrity, pp. 65–134. IEEE Press, New York (1992)

    Google Scholar 

  43. Sakata, S.: Extension of the Berlekamp–Massey algorithm to N dimensions. Inf. Comput. 84, 207–239 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wang, L.P.: The vector key equation and multisequence shift register synthesis. In: Fossorier, M., et al. (eds.) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Lecture Notes in Computer Science, vol. 3857, pp. 68–75. Springer, Berlin (2006)

    Chapter  Google Scholar 

  45. Wang, L.P., Niederreiter, H.: Enumeration results on the joint linear complexity of multisequences. Finite Fields Appl. 12, 613–637 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  46. Xing, C.P.: Multi-sequences with almost perfect linear complexity profile and function fields over finite fields. J. Complex. 16, 661–675 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

A part of this paper was written while Fang-Wei Fu and Ferruh Özbudak were with Temasek Laboratories, National University of Singapore. They would like to express their thanks to Temasek Laboratories and the Department of Mathematics at the National University of Singapore for the hospitality.

This research was supported by the DSTA grant R-394-000-025-422 with Temasek Laboratories in Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Niederreiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, FW., Niederreiter, H. & Özbudak, F. Joint linear complexity of multisequences consisting of linear recurring sequences. Cryptogr. Commun. 1, 3–29 (2009). https://doi.org/10.1007/s12095-007-0001-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-007-0001-4

Keywords

Mathematics Subject Classifications (2000)

Navigation