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Abstract

A boolean function of n boolean variables is correlation-immune of order k if the

function value is uncorrelated with the values of any k of the arguments. Such func-

tions are of considerable interest due to their cryptographic properties, and are also

related to the orthogonal arrays of statistics and the balanced hypercube colourings

of combinatorics. The weight of a boolean function is the number of argument val-

ues that produce a function value of 1. If this is exactly half the argument values,

that is, 2n−1 values, a correlation-immune function is called resilient.

An asymptotic estimate of the number N(n, k) of n-variable correlation-immune

boolean functions of order k was obtained in 1992 by Denisov for constant k. Denisov

repudiated that estimate in 2000, but we will show that the repudiation was a

mistake.

The main contribution of this paper is an asymptotic estimate of N(n, k) which

holds if k increases with n within generous limits and specialises to functions with

a given weight, including the resilient functions. In the case of k = 1, our estimates

are valid for all weights.

1 Introduction

Let n, k, q be integers satisfying 1 ≤ k ≤ n and 0 ≤ 2kq ≤ 2n, and define λ = 2kq/2n.

A correlation-immune boolean function of n variables, order k and weight 2kq is a boolean-

valued function of n boolean variables with this property: if any k arguments are given

arbitrary values, exactly the fraction λ of the 2n−k possible assignments to the remaining

arguments give a function value of 1. (See for example [9, 13, 15] and [5, Chapter 4].)

Let N(n, k, q) denote the number of such functions. An important special case is the

resilient functions , which have λ = 1
2
. Correlation-immune functions, and in particular

the resilient functions, have desirable cryptographic properties: see for example [2, 13].

In this paper we will derive an asymptotic estimate of N(n, k, q) for a wide range of k and

q values, and deduce an asymptotic formula for the sum N(n, k) =
∑

q N(n, k, q), which

is the number of correlation-immune boolean functions of n variables and order k.

An n-variable boolean function can be represented as a matrix of n columns over {0, 1}
whose rows consist of those argument lists which give the function value 1. A correlation-

immune boolean function of n variables, order k and weight 2kq gives rise to a matrix with

2kq distinct rows and n columns, such that in any set of k columns each of the 2k possible

0-1 patterns appears exactly q times. In statistics, such a matrix is called an orthogonal

array of 2 levels, n variables, 2kq runs, and strength k; see [8] for a detailed exposition.

Since the 2kq rows are by definition distinct, and permuting the rows does not change
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the associated function, there is an uninteresting ratio of (2kq)! between the number of

matrices and the number of functions. We will work with functions rather than matrices.

The special case k = 1 has also been studied under the name of balanced colourings of

a hypercube. These are placements of equal weights on some of the vertices of a hypercube

such that the centroid is at the center of the hypercube. Exact enumerations have been

found in this case [11, 21], but they do not appear suitable for asymptotics.

Early papers on the number of correlation-immune functions focussed on the case

k = 1. Upper and lower bounds for N(n, 1) were given in [9, 10, 12, 20] but these do not

appear as sharp as the bounds given by Bach [1].

The case of general k was first considered by Schneider [15], who gave upper bounds for

N(n, k, q) as well as for N(n, k). For large k an improved upper bound is given by Carlet

and Klapper [4], both for N(n, k) and for the resilient functions of order k. Carlet and

Gouget [3] gave an upper bound for the number of resilient functions of order k, which

improves upon Schneider’s bound for k > n/2 − 1 and which partially improves upon

the upper bound of [4]. Tarannikov [16] proved that when c is a fixed positive integer,

the function N(n, n − c) is bounded above by a polynomial in n. Exact expressions for

N(n, n− c) when c = 1, 2, 3 are also given in [16, Theorem 3]. (See also [17].)

The first asymptotic enumeration of correlation-immune functions was achieved by

Denisov. Define

M =
k
∑

j=0

(

n

j

)

and Q =
k
∑

j=1

j

(

n

j

)

.

Theorem 1.1 (Denisov [6]). If k ≥ 1 is a constant integer then, as n → ∞,

N(n, k) ∼ 22
n+Q−k(2n−1π)−(M−1)/2.

Denisov’s formula for N(n, 1) was refined by Bach [1], who showed that an asymptotic

expansion for N(n, 1) exists and calculated the first few terms of it.

In a later paper [7], Denisov repudiated Theorem 1.1 and proposed a different value.

However, we will show that Denisov’s repudiation was a mistake, and Theorem 1.1 is

correct. More discussion of [7] is given in Section 8.

We now state our results. Define

A = λ(1− λ).

In addition to common asymptotic notations like O(·), we use ω(f(n)) to represent any

function g(n) such that g(n)/f(n) → ∞ as n → ∞.
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Theorem 1.2. Consider a sequence of triples (n, k, q) of positive integers such that n →
∞ and

ω
(

25kn6k+3M3
)

≤ q ≤ 2n−k − ω
(

25kn6k+3M3
)

. (1.1)

Then

N(n, k, q) = 2Q
(

λλ(1− λ)1−λ
)−2n (

πA 2n+1
)−M/2 (

1 +O(η(n, k, q))
)

, (1.2)

where η(n, k, q) = 2−n/2+3kn3k+3/2M3/2λ−1/2(1−λ)−1/2 = o(1).

Remark 1.1. Given a function g in the class counted by N(n, k, q), we can form another,

namely 1− g, counted by N(n, k, 2n−k−q). This complementation operation is a bijection

which exchanges q with 2n−k−q and λ with 1−λ. This means, for example, that we can

assume λ ≤ 1
2
in our proof when it is convenient.

Remark 1.2. By Stirling’s formula, logM = o(n) whenever k = O(n/ logn). From this

it follows that (1.1) is non-vacuous whenever

1 ≤ k ≤
(

log 2

6
− ε

)

n

logn
(1.3)

for some ε > 0.

Corollary 1.1. If k = k(n) satisfies (1.3) then, as n → ∞, the number of k-resilient

boolean functions of n variables is

22
n+Q(2n−1π)−M/2

(

1 +O(2−n/2+3kn3k+3/2M3/2)
)

∼ 22
n+Q(2n−1π)−M/2.

Corollary 1.2. If k = k(n) satisfies (1.3) then, as n → ∞, the number of order k

correlation-immune boolean functions of n variables is

N(n, k) = 22
n+Q−k(2n−1π)−(M−1)/2

(

1 +O(2−n/2+3kn3k+3/2M3/2)
)

(1.4)

∼ 22
n+Q−k(2n−1π)−(M−1)/2.

Corollary 1.2 shows that Denisov’s result Theorem 1.1 is true, despite his later retrac-

tion.

In Section 2, we write N(n, k, q) as an integral in many complex dimensions. In

Section 3 we identify the points where the integrand has maximum magnitude and define

a region R+C consisting of a small hypercuboid surrounding each of those points. The

integral is then bounded outside R+C in Section 4 and estimated inside R+C in Section 5.

The proof of Theorem 1.2 is completed in Section 6 where we also prove Corollaries 1.1

and 1.2. In the final sections we consider some additional topics including a closer look

at the case k = 1 and a connection with Hadamard matrices.
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2 The desired quantity as a complex integral

Define [n] = {1, 2, . . . , n} and Ik = {S ∈ 2[n] : |S| ≤ k}. We will identify N(n, k, q) as the

constant term in a generating function over the M variables {xS : S ∈ Ik}. Let x denote

a vector of all these variables, in arbitrary order. For D = λ/(1− λ), define the rational

function F (x) by

F (x) =
∏

α∈{±1}n

(

1 +D
∏

S∈Ik

xαS

S

)

,

where

αS =
∏

j∈S

αj

for each S (including the case α∅ = 1). The value of D is determined by a saddle point

condition, as will become apparent in Section 5.

Lemma 2.1. N(n, k, q) is the constant term of (Dx∅)
−2kqF (x).

Proof. For a boolean function g(y1, . . . , yn), the Walsh transform of g is the real-valued

function ĝ over {0, 1}n defined by

ĝ(w1, . . . , wn) =
∑

(y1,...,yn)∈{0,1}n

g(y1, . . . , yn) (−1)w1y1+···+wnyn.

Given α ∈ {±1}n, form ᾱ ∈ {0, 1}n from α by changing each 1 entry into 0 and each −1

entry into 1.

For S ∈ Ik, let wS ∈ {0, 1}n be the characteristic vector of S. Then, given a vector

α ∈ {±1}n and any S ∈ Ik, we have

αS = (−1)ᾱ·wS .

We can view F (x) as the sum of 22
n

terms, with one term for each boolean function g of n

variables. Specifically, the term corresponding to a boolean function g : {0, 1}n → {0, 1}
is exactly

∏

α∈{±1}n

g(ᾱ)=1

(

D
∏

S∈Ik

xαS

S

)

= Dĝ(w∅)
∏

S∈Ik

x
ĝ(wS)
S .

By the spectral characterisation of correlation-immune functions [14, 19], the boolean

function g is correlation-immune of order k if and only if ĝ(wS) = 0 for all S ∈ Ik \ {∅}.
Moreover, the functions counted by N(n, k, q) have ĝ(w∅) = 2kq. Therefore the coefficient

of the monomial x2kq
∅ in F (x) is exactly D2kq N(n, k, q).
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By Cauchy’s integral formula, it follows from Lemma 2.1 that

N(n, k, q) =
1

(2πi)MD2kq

∮

· · ·
∮

F (x)

x2kq
∅

∏

S∈Ik
xS

dx,

where each xS is integrated anticlockwise around a circle of radius 1 centred at the origin.

Now introduce variables θS (S ∈ Ik) and the M-dimensional vector θ of the θS variables

in arbitrary order. Change variables from x to θ using xS = eiθS for each S. Then

N(n, k, q) =
(1 +D)2

n

(2π)MD2kq
I(n, k, q), (2.1)

where

I(n, k, q) =

∫ π

−π

· · ·
∫ π

−π

G(θ) dθ,

G(θ) = e−i2kqθ∅
∏

α∈{±1}n

1 +Deifα(θ)

1 +D
, (2.2)

and

fα(θ) =
∑

S∈Ik

αSθS. (2.3)

The elements of θ belong to the set R2π of real numbers modulo 2π. In this set,

addition, and multiplication by integers, have their usual meanings. We use ≡ to indicate

equality in R2π. For example, θ ≡ 0 means that θ is the element of R2π corresponding to

the real number 2πt for any integer t. Also let

z : R2π → (−π, π]

be the standard mapping of R2π onto the real interval (−π, π] and define the absolute value

d(θ) = |z(θ)| for any θ ∈ R2π. Clearly d(·) satisfies the triangle inequality: d(θ + θ′) ≤
d(θ) + d(θ′).

3 Analysis of the domain of integration

The integrand G(θ) defined in (2.2) has modulus at most 1. We will later show that the

value of the integral I(n, k, q) comes mostly from the near vicinity of those points where

equality occurs, so our next task will be to identify those points. Define

C =
{

θ ∈ R
M
2π : |G(θ)| = 1

}

.
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Lemma 3.1.

C =
{

θ ∈ R
M
2π : 2|S|

∑

T∈Ik,T⊇S

θT ≡ 0 for each S ∈ Ik

}

, (3.1)

and moreover |C| = 2Q.

Proof. Throughout the proof we work in R2π. For 1 ≤ j ≤ n, define the linear difference

operator δj by

δjf(α1,...,αj ,...,αn) = f(α1,...,αj ,...,αn) − f(α1,...,αj−1,−αj ,αj+1,...,αn).

For S ∈ Ik, define δS =
∏

j∈S δj , noting that the product is commutative. From the

definition of fα(θ) we can easily prove by induction on |S| that

δSfα(θ) = 2|S|
∑

T∈Ik,T⊇S

αT θT . (3.2)

Since
∣

∣

∣

∣

1 +Deix

1 +D

∣

∣

∣

∣

=

√

1 + 2D cos(x) +D2

1 +D
≤ 1,

a necessary and sufficient condition for θ ∈ C is that fα(θ) ≡ 0 for all α ∈ {±1}n.
Suppose that θ ∈ C. Then, since fα(θ) ≡ 0 for all α, the difference δSfα0

(θ) satisfies

δSfα0
(θ) ≡ 0 for all S ∈ Ik, where α0 = (1, 1, . . . , 1). By (3.2) we conclude that θ lies in

the set C∗ given by the right hand side of (3.1), and hence C ⊆ C∗. Conversely, if θ ∈ C∗

then every fα(θ) ≡ 0 since

fα(θ) ≡
(

∏

{j:αj=−1}(1− δj)
)

fα0
(θ).

Therefore, C = C∗.

Since the set of equations in (3.1) is triangular, we can find all solutions by choosing

each θS in order of decreasing |S|. There are exactly 2|S| choices for θS, so the total

number of solutions is |C| = 2Q.

As noted in Remark 1.1, we will assume that λ ≤ 1
2
without losing generality. Let ∆

be the positive number defined by

∆ = 2−n/2+k+3λ−1/2nk+1/2M1/2.

The left side of (1.1) is equivalent to

∆ = o
(

2−2kn−2k−1M−1
)

. (3.3)

Let R be the subset of RM
2π defined by

R =
{

θ ∈ R
M
2π : d(θS) ≤ ∆(2n)−|S| for all S ∈ Ik

}

.
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This is a hypercuboid centred at the origin. Denote the union of 2Q copies of R centred

at the points in C by

R+C =
⋃

θ
∗∈C

{R+ θ
∗} ⊆ R

M
2π.

Since all the elements of vectors in C are integer multiples of 2π/2k, it follows from (3.3)

that these copies are disjoint. The region R+C includes all the points where |G(θ)| is
maximal; we will prove in the following sections that in fact it includes all the points

which contribute substantially to I(n, k, q).

4 The integral outside the critical region

Lemma 4.1. If the conditions of Theorem 1.2 are satisfied and λ ≤ 1
2
then

∫

(R+C)c
|G(θ)| dθ < (2π)M exp

(

−4
5
nM

)

,

where (R+C)c = R
M
2π \ (R+C).

Proof. Fix θ ∈ (R+C)c. First we show that there exists some set S0 = S0(θ) ∈ Ik such

that

d(δS0
fα(θ)) > (2− e1/2)∆n−|S0| (4.1)

for all α ∈ {±1}n. Define θ
∗ = θ

∗(θ) ∈ C recursively, as follows: starting with sets

S ∈ Ik with |S| = k, and then proceeding to smaller k, choose θ∗S ∈ R2π such that

2|S|
∑

T∈Ik,T⊇S θ
∗
T ≡ 0 and d(θS − θ∗S) is minimal over all such choices of θ∗S. (Break ties

arbitrarily.) Since θ /∈ R+C, there is a set S0 ∈ Ik of maximum cardinality such that

d(θS0
− θ∗S0

) > (2n)−|S0|∆. (4.2)

By the maximality of S0 we have

∑

T∈Ik,T⊃S0

d(θT − θ∗T ) ≤
∑

j≥1

(

n

j

)

∆(2n)−|S0|−j

≤ ∆(2n)−|S0|
∑

j≥1

2−j

j!

= (e1/2 − 1)∆(2n)−|S0|. (4.3)

Now take any α ∈ {±1}n and write, using (3.2),

δS0
fα(θ) ≡ 2|S0|

∑

T∈Ik,T⊇S0

αT θT ≡ Σ1 + Σ2 + U

8



where

Σ1 ≡ 2|S0|
∑

T∈Ik,T⊇S0

αT θ
∗
T ,

Σ2 ≡ 2|S0|
∑

T∈Ik,T⊃S0

αT (θT − θ∗T ),

U ≡ 2|S0|αS0
(θS0

− θ∗S0
).

Since θ
∗ ∈ C, (3.1) implies that Σ1 ≡ 0. Next, since d(αT θT ) = d(θT ), (4.3) implies that

d(Σ2) ≤ (e1/2 − 1)∆n−|S0|.

Finally,

d(U) > ∆n−|S0|,

by (4.2) and the fact that d(θS0
− θ∗S0

) < 2−|S0|π. Therefore, using the triangle inequality,

d(δS0
fα(θ)) = d(U + Σ2) ≥ d(U)− d(Σ2) > (2− e1/2)∆n−|S0|.

Since α ∈ {±1}n was arbitrary, this establishes the existence of the desired set S0.

Next, partition the set {±1}n into 2n−|S0| parts, each of size 2|S0|, such that two vectors

α, α′ belong to the same part if and only if they agree in every coordinate j 6∈ S0. Let P

be an arbitrary part of the partition. For any α ∈ P , the difference δS0
fα(θ) is a linear

combination, with coefficients ±1, of the elements of the set {fα′(θ) : α′ ∈ P}. Therefore,
by (4.1) and using the triangle inequality,

(2− e1/2)∆n−|S0| < d(δS0
fα(θ)) ≤

∑

α′∈P

d(fα′(θ)). (4.4)

As 1− cosx ≤ 2x2/π2 for −π ≤ x ≤ π, we find that for all x ∈ R,
∣

∣

∣

∣

1 +Deix

1 +D

∣

∣

∣

∣

2

= 1− 2D(1− cos x)

(1 +D)2

≤ exp
(

− 4D d(x)2

(1 +D)2π2

)

= exp
(

−4λ(1− λ)

π2
d(x)2

)

≤ exp
(

−2λ

π2
d(x)2

)

using the assumption λ ≤ 1
2
for the last inequality. Thus, using the Cauchy-Schwarz
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inequality and (4.4),

∏

α∈P

∣

∣

∣

∣

1 +Deifα(θ)

1 +D

∣

∣

∣

∣

≤ exp

(

− λ

π2

∑

α∈P

d(fα(θ))
2

)

≤ exp

(

− λ

π2|P |

(

∑

α∈P

d(fα(θ))

)2)

≤ exp

(

− λ

π2
2−|S0| ((2− e1/2)∆n−|S0|)2

)

.

Since there are 2n−|S0| parts in the partition, taking the product over all parts and applying

the definition of ∆ gives

|G(θ)| ≤ exp
(

−(2− e1/2)2π−222k−2|S0|+6n2k−2|S0|+1M
)

≤ exp
(

−26 (2− e1/2)2π−2nM
)

,

as |S0| ≤ k. Finally we note that 26 (2− e1/2)2 π−2 > 4
5
, so we have

|G(θ)| < exp
(

−4
5
nM

)

.

As this inequality holds for any θ /∈ R+C and the volume of (R+C)c is at most (2π)M ,

the proof is complete.

5 The integral inside the critical region

Lemma 5.1. If the conditions of Theorem 1.2 are satisfied and λ ≤ 1
2
then

∫

R

G(θ) dθ =

(

2π

λ(1− λ)2n

)M/2
(

1 +O(25k/2n3k+3/2M3/2q−1/2)
)

.

Proof. Let θ = (θS)S∈Ik ∈ R. In this section we perform expansions that are valid in R

rather than R2π, so we identify θ with
(

z(θS)
)

S∈Ik
. Since

exp

(

i
∑

S∈Ik

αSθS

)

= exp

(

i
∑

S∈Ik

αSz(θS)

)

,

this identification has no effect on G(θ). Also note that

|fα(θ)| =
∣

∣

∣

∣

∑

S∈Ik

αSz(θS)

∣

∣

∣

∣

≤ ∆
k
∑

j=0

(

n

j

)

(2n)−j ≤ e1/2∆. (5.1)

Define

h(x) = log

(

1 +Deix

1 +D

)

.

10



By Taylor’s Theorem with the integral form of the remainder (which also holds for

complex-valued functions),

h(fα(θ)) = i
D

1 +D
fα(θ)− 1

2

D

(1 +D)2
fα(θ)

2 +R(fα(θ))

where

R(fα(θ)) =

∫ fα(θ)

0

1
2
h′′′(t)(fα(θ)− t)2dt. (5.2)

Now cos(·) is unimodal on [−e1/2∆, e1/2∆] by (3.3). Therefore for |t| ≤ e1/2∆ we have

|h′′′(t)| = D
√

1− 2D cos(t) +D2

(1 + 2D cos(t) +D2)3/2
≤ D ≤ 2λ

using the assumption that λ ≤ 1
2
. Hence by (5.1) and (5.2),

|R(fα(θ))| ≤
λ e3/2∆3

3
≤ 2λ∆3.

Then

G(θ) = exp

(

−i2kqθ∅ +
∑

α∈{±1}n

(

i
D

1 +D
fα(θ)− 1

2

D

(1 +D)2
fα(θ)

2 +R(fα(θ))

))

= exp

(

∑

α∈{±1}n

(

−1
2

D

(1 +D)2
fα(θ)

2 +R(fα(θ))

))

= exp(a(θ)) exp

(

−1
2
A

∑

α∈{±1}n

fα(θ)
2

)

where

a(θ) =
∑

α∈{±1}n

R(fα(θ)).

The vanishing of the linear terms explains our choice of D. Note that a(θ) is a complex

number which is bounded in modulus by

|a(θ)| ≤ λ 2n+1∆3. (5.3)

Next, note that the reflection θ 7→ −θ preserves the region R and maps G(θ) to its

complex conjugate. It follows that
∫

R

G(θ) dθ

11



is real, and therefore is equal to the integral of the real part of its integrand. Hence
∫

R

G(θ) dθ =

∫

R

Re(exp(a(θ))) exp

(

−1
2
A

∑

α∈{±1}n

fα(θ)
2

)

dθ

= Re(exp(a(θ0)))

∫

R

exp

(

−1
2
A

∑

α∈{±1}n

fα(θ)
2

)

dθ

for some θ0 ∈ R, using the Intermediate Value Theorem.

Since λ2n∆3 = o(1) using (1.1), it follows from (5.3) that |a(θ0)| ≤ 1 when n is

sufficiently large. It is routine to check that for any complex number z with |z| ≤ 1,

exp(−|z|) ≤ Re(exp(z)) ≤ exp(|z|).

By (5.3) we can apply this with z = a(θ0) to find that
∫

R

G(θ) dθ = exp
(

O(λ 2n∆3)
)

∫

R

exp

(

−1
2
A

∑

α∈{±1}n

fα(θ)
2

)

dθ. (5.4)

Now we calculate that
∑

α∈{±1}n

fα(θ)
2 = 2n

∑

S∈Ik

θ2S.

Since this quantity is real and λ2n∆3 = o(1), we have that

∫

R

G(θ) dθ =
(

1 +O(λ2n∆3)
)

∏

S∈Ik

∫ ∆(2n)−|S|

−∆(2n)−|S|

exp
(

−1
2
λ(1− λ)2nθ2S

)

dθS.

Next we apply the well-known estimate
∫ xσ

−xσ

e−u2/(2σ2) du = σ
√
2π
(

1 + o(e−x2/2)
)

for x → ∞,

with σ =
(

λ(1− λ)2n)−1/2 and x = ∆(2n)−|S|σ−1 >
√
32nM → ∞. This gives

∫

R

G(θ) dθ =

(

2π

λ(1− λ)2n

)M/2
(

1 +O(λ2n∆3) +O(Me−16nM )
)

.

The lemma follows on noting that the second error term is subsumed by the first.

6 Proofs of Theorem 1.2 and its corollaries

The theory we have developed over the preceding sections allows us to complete the proofs

of our main results.
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Proof of Theorem 1.2. By (2.1) we have that

N(n, k, q) =
(1 +D)2

n

(2π)MD2kq

(∫

R+C

G(θ) dθ +

∫

(R+C)c
G(θ) dθ

)

.

First suppose that λ ≤ 1
2
. Then the first integral is 2Q

∫

R
G, where

∫

R
G has been evalu-

ated in Lemma 5.1, while the second integral is bounded in absolute value by Lemma 4.1

and hence is covered by the error term of Lemma 5.1. This completes the proof when

λ ≤ 1
2
, and the result follows for λ > 1

2
by Remark 1.1.

Corollary 1.1 follows from Theorem 1.2 by setting λ = 1
2
. Corollary 1.2 requires a

little more effort.

Proof of Corollary 1.2. We divide the interval of summation into five ranges. Define

q1 = ⌈2n−k−1n−1⌉, q2 = ⌈2n−k−1 − 2n/2−kn⌉, q3 = 2n−k − q2, q4 = 2n−k − q1.

Also define

W (λ) = W (λ, k, n) = 2Q
(

πA2n+1
)−M/2(

λλ(1− λ)1−λ
)−2n

,

which is the right side of (1.2) apart from the error term.

We start with the range q ∈ [q2, q3], for which λ = 1
2
+O(2−n/2n). By Taylor expansion,

we have for x = O(2−n/2n) that

W
(

1
2
+ x
)

= W
(

1
2

)

exp
(

−(2n+1 − 2M)x2 +O(2−nn4)
)

. (6.1)

The error term in (6.1) is smaller than 2−n/2+3kn3k+3/2M3/2 for any λ in this range so, by

Theorem 1.2,

q3
∑

q=q2

N(n, k, q) =
(

1 +O(2−n/2+3kn3k+3/2M3/2)
)

W
(

1
2

)

q3
∑

q=q2

h(q),

where h(q) = exp
(

−2−2n+2k+1(2n − M)(q − 2n−k−1)2
)

. By Euler-Maclaurin summation

(see for example [18, p. 36]),

q3
∑

q=q2

h(q) = O(e−n2

) +
(

1 +O(2−n)
)

∫ q3

q2

h(q) dq

=
(

1 +O(2−n)
)

π1/22n−k−1/2(2n −M)−1/2

=
(

1 +O(2−nM)
)

π1/22n/2−k−1/2.

This proves that
∑q3

q=q2
N(n, k, q) is given by an expression of the same form as the right

side of (1.4).
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Next consider the range q ∈ [q1, q2), which is the mirror image of the range q ∈ (q3, q4].

Then

d logW (λ)

dλ
= a1(λ)2

n + a2(λ)
(

λ(1−λ)2n −M
)

, where

a1(λ) = log(λ−1 − 1) + λ− 1
2

and a2(λ) =
1− 2λ

2λ(1−λ)
.

For 1
2n

≤ λ ≤ 1 − 1
2n

we find that λ(1−λ)2n > M , while a1(λ) and a2(λ) have the same

sign as 1
2
− λ. Therefore W (λ) is unimodal in this range. Since η(n, k, q) = o(1), we have

q2−1
∑

q=q1

N(n, k, q) = O(2n)W
(

1
2
− 2−n/2n

)

= O(2n) exp
(

−(2− o(1))n2
)

W
(

1
2

)

= e−O(n2)W
(

1
2

)

using (6.1). This shows that the sum over [q1, q2) is covered by the error term of the

Corollary. By Remark 1.1 the same conclusion holds for the summation from q3+1 to q4.

Finally consider the range q ∈ [0, q1), which is the mirror image of the range q ∈
(q4, 2

n−k]. Here we use the trivial bound

q1−1
∑

q=0

N(n, k, q) <
(

2n
)2kq1 = 22

n−1+O(n2k)

which also fits into the error term of the corollary. By Remark 1.1, the same conclusion

holds for the summation from q4 + 1 to 2n−k, which completes the proof.

7 More on the case k = 1

In the case of k = 1, which corresponds to the “balanced colourings” enumerated by

Palmer, Read and Robinson [11], it is possible to fill in the range of very small or very

large values of q excluded by (1.1).

Lemma 7.1. If 0 ≤ q = o(2n/2) then

(2q)!N(n, 1, q) =

(

2q

q

)n
(

1 +O(q2/2n)
)

.

Proof. Generate a 2q × n matrix by a random process: for each column independently,

randomly insert 0 in q rows and 1 in the other q. This matrix is one of those counted by

(2q)!N(n, 1, q) provided all the rows are different. (Recall that N(n, 1, q) counts matrices

up to row order.)
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The probability that a specified pair of rows are equal is

2n
((

2q−2

q

)

/

(

2q

q

))n

=

(

q − 1

2q − 1

)n

< 2−n,

so, by the Bonferroni inequality, the probability that no two rows are equal is 1−O(q2/2n).

This completes the proof.

Theorem 7.1. Uniformly for 0 ≤ q ≤ 2n−1,

N(n, 1, q) =

(

2n

2q

)











(

2n−1

q

)2

(

2n

2q

)











n

(

1 + o(n52−n/5)
)

.

Proof. We begin by motivating the given formula. Choose, uniformly at random, a set of

2q distinct elements of {0, 1}n. The event that exactly q of these elements have 1 in some

specified position has probability
(

2n−1

q

)2
/

(

2n

2q

)

.

Therefore, the theorem is stating that these n events are very close to being independent

in some sense.

We can derive the theorem from Theorem 1.2 and Lemma 7.1. First consider the case

that 22n/5n12/5 ≤ q ≤ 2n−2. Then, by Stirling’s formula,
(

(

2n−1

q

)2
/

(

2n

2q

)

)n

=
(

πA2n−1
)−n/2(

1 +O(n/q)
)

and
(

2n

2q

)

= (πA2n+1)−1/2
(

λλ(1− λ)1−λ)−2n (1 +O(1/q))

and the theorem follows from Theorem 1.2.

In the case that 0 ≤ q ≤ 22n/5n12/5, we calculate that
(

2n−1

q

)2
/

(

2n

2q

)

=

(

2q

q

)(

2n − 2q

2n−1 − q

)

/

(

2n

2n−1

)

=

(

2q

q

)

2−2q
(

1 +O(q/2n)
)

,

so the theorem follows from Lemma 7.1.

Finally, for 2n−2 ≤ q ≤ 2n−1, take the complement as in Remark 1.1, noting that the

binomial coefficients in the statement of the theorem are symmetric around q = 2n−2.
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8 Final remarks

As mentioned in the Introduction, Denisov in [7] incorrectly repudiated the result from [6]

that we quoted as Theorem 1.1. Denisov’s mistake was due to the incorrect computation

of the matrix inverse A−1 on page 95 of [7]. In fact the I, J element of A−1 is (−1)|J |−|I|2|I|

for I ⊆ J and 0 otherwise. Correcting the mistake shows that the critical value z̄TQ−1z̄

on page 97 equals 22k−n+2 and not the value stated. Except for this error, Denisov would

have extended Theorem 1.1 to k = o(n1/2) and in fact would have matched Theorem 1.2

(with a different vanishing error term) for k = o(n1/2) and

|q − 2n−k−1| < ρ 2n/2−k n1/2

for any positive constant ρ <
√

log 2
2

. Note that our coverage of both k and q is consid-

erably wider than that.

Finally we mention a connection between correlation-immune boolean function and

Hadamard matrices. Recall that a Hadamard matrix of order n is an n × n matrix over

±1 whose columns are pairwise orthogonal. Such matrices are known to exist for n = 1,

n = 2, and for infinitely many other n. If n > 2 then n ≡ 0 mod 4 is a necessary condition

for the existence of a Hadamard matrix of order n. It is a long-standing open problem to

show that this necessary condition is also sufficient. Let Hn be the number of Hadamard

matrices of order n. By a simple normalization, it can be seen that Hn equals 2n times the

number of Hadamard matrices whose leftmost column equals all +1’s. If such a column

is removed, and each −1 changed to 0, there remains an n × (n−1) matrix of the sort

counted (up to row permutation) by N(n−1, 2, n/4). Hence, Hn = 2nn!N(n−1, 2, n/4)

for n > 2. This connection raises the possibility of proving the Hadamard conjecture by

asymptotic methods. Unfortunately, the coverage of Theorem 1.2 is inadequate for that

purpose.

References

[1] E. Bach, Improved asymptotic formulas for counting correlation-immune Boolean

functions, Technical Report 1616, Computer Sciences Dept., University of Wisconsin,

2007.

[2] C. Carlet, Boolean functions for cryptography and error correcting codes, Preprint.

To appear as a chapter of Boolean Functions: Theory, Algorithms and Applications

(Y. Crama and P. Hammer, eds.), Cambridge University Press.

16



[3] C. Carlet and A. Gouget, An upper bound on the number of m-resilient Boolean

functions, ASIACRYPT 2002, Lecture Notes in Comput. Sci. 2501 (2002) 484–496.

[4] C. Carlet and A. Klapper, Upper bounds on the number of resilient functions and

of bent functions, Springer-Verlag, Lecture Notes dedicated to Philippe Delsarte (to

appear). A shorter version has appeared in the Proceedings of the 23rd Symposium

on Information Theory in the Benelux, Louvain-La-Neuve, Belgian, 2002.

[5] T.W. Cusick and P. Stanica, Cryptographic Boolean Functions and Applications,

Elsevier, 2009.

[6] O.V. Denisov, An asymptotic formula for the number of correlation-immune of or-

der q boolean functions, Discrete Math. Appl., 2 (1992) 279–288. originally published

in Diskretnaya Matematika 3 (1990) 25–46 (in Russian). Translated by A.V. Kolchin.

[7] O.V. Denisov, A local limit theorem for the distribution of a part of the spectrum

of a random binary function, Discrete Math. Appl., 10 (2000) 87–101. originally

published in Diskretnaya Matematika, 12,1 (2000) (in Russian). Translated by the

author.

[8] A. S. Heydayat, N. J.A. Sloane, J. Stufken, Orthogonal arrays : theory and applica-

tions, Springer-Verlag, 1999.

[9] S. Maitra and P. Sarkar, Enumeration of correlation immune boolean functions, AC-

SIP’99, Lecture Notes in Comput. Sci., 1587 (1999) 12–25.

[10] C. Mitchell, Enumerating Boolean functions of cryptographic significance, J. Cryp-

tology, 2 (1990), 155-170.

[11] E.M. Palmer, R.C. Read and R.W. Robinson, Balancing the n-cube: a census of

colorings, J. Algebraic Combin., 1 (1992) 257–273.

[12] S.M. Park, S. J. Lee, S.H. Sung and K. J. Kim, Improving bounds for the number of

correlation immune Boolean functions, Inform. Process. Lett., 61 (1997), 209–212.

[13] N. Roy, A brief outline of research on correlation immune functions, ACISP 2002,

Lecture Notes in Comput. Sci., 2384 (2002) 379–394.

[14] P. Sarkar, A note on the spectral characterization of correlation immune Boolean

functions, Inform. Process. Lett., 74 (2000) 191–195.

17



[15] M. Schneider, A note on the construction and upper bounds of correlation-immune

functions, Lecture Notes in Comput. Sci., 1355 (1997) 295–306.

[16] Y. Tarannikov, On the structure and numbers of higher order correlation-immune

functions, in Proceedings of IEEE International Symposium on Information Theory,

2000, 185.

[17] Y. Tarannikov and D. Kirienko, Spectral analysis of high order correlation immune

functions, Proceedings of 2001 IEEE International Symposium on Information The-

ory, 2001, 69.

[18] R. Wong, Asymptotic approximations of integrals, Academic Press, Boston, 1989.

[19] G-Z. Xiao and J. L. Massey, A spectral characterization of correlation-immune com-

bining functions. IEEE Trans. Inform. Theory, 34 (1988) 569–571.

[20] Y.X. Yang and B. Guo, Further enumerating Boolean functions of cryptographic

significance, J. Cryptology, 8 (1995), 115–122.

[21] J-Z. Zhang, Z-S. You and Z-L. Li, Enumeration of binary orthogonal arrays of

strength 1, Discrete Math., 239 (2001) 191–198.

18


	Introduction
	The desired quantity as a complex integral
	Analysis of the domain of integration
	The integral outside the critical region
	The integral inside the critical region
	Proofs of Theorem ?? and its corollaries
	More on the case k=1
	Final remarks

