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A FOURIER-ANALYTIC APPROACH TO COUNTING

PARTIAL HADAMARD MATRICES

WARWICK DE LAUNEY AND DAVID A. LEVIN

Abstract. In this paper, we study a family of lattice walks which
are related to the Hadamard conjecture. There is a bijection be-
tween paths of these walks which originate and terminate at the ori-
gin and equivalence classes of partial Hadamard matrices. There-
fore, the existence of partial Hadamard matrices can be proved by
showing that there is positive probability of a random walk return-
ing to the origin after a specified number of steps. Moreover, the
number of these designs can be approximated by estimating the
return probabilities. We use the inversion formula for the Fourier
transform of the random walk to provide such estimates. We also
include here an upper bound, derived by elementary methods, on
the number of partial Hadamard.

1. Introduction

In this paper, we introduce a family of non-symmetric lattice random
walks with importance to combinatorial design theory. Paths of these
walks starting and ending at the origin correspond to partial Hadamard
matrices (see below for the definition). These walks provide a tool for
counting the number of partial Hadamard matrices, without recourse
to the usual constructive methods adopted in design theory.
For non-negative integers n and t, a partial Hadamard matrix is an

n× t matrix with ±1 entries such that the inner product between any
two distinct rows equals zero. Note that, since the rows of a par-
tial Hadamard matrix D form a set of n independent t-dimensional
real vectors, we must have t ≥ n. Notice also that if we negate all
the entries in a column of D, then the resulting matrix is also a par-
tial Hadamard matrix. We say the two matrices are column-negation

equivalent. Column-negation equivalence divides the set of n×t partial
Hadamard matrices into equivalence classes of cardinality 2t.
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We now define our walk, and show that each distinct column-negation
equivalence class of n× t partial Hadamard matrices corresponds to a
distinct walk of length t terminating at 0. For an integer n ≥ 2, set
d :=

(

n
2

)

, set Vm := {−1, 1}m, and let Z : Vn → Vd be defined by

Z(y) = (y1y2, y1y3, . . . , yn−1yn) , (1)

so that the components of Z(y) enumerate all pairwise products be-
tween the components of y. If Y = [y(1) · · · y(t)] is an n× t matrix with
t column vectors y(1), . . . , y(t) belonging to Vn, then

Z(y(1)) + · · ·+ Z(y(t)) = 0

if and only if the inner product between any two rows of Y is zero.
Let

M := {Z(y) : y ∈ {−1, 1}n} ,
then the map Z : Vn → M is two-to-one, since Z(−y) = Z(y). In-
deed, the column-negation equivalence class of n× t partial Hadamard
matrices

[±y(1),±y(2), . . . ,±y(t)]
maps to the single M-sequence

(m(1), m(2), . . . , m(t)) = (Z(y(1)), Z(y(2)), . . . , Z(y(t)))

of length t such that
∑t

im
(i) = 0. Thus, the number of n × t partial

Hadamard matrices is equal to 2nt times the probability that a random
walk (Xt) with increments drawn uniformly from M returns to the
origin.
We write P t

n(x, y) for the t-step transition matrix for (Xt):

P t
n(x, y) := P(Xt = y | X0 = x) .

The random walk (Xt) has a number of unusual features. It has dimen-
sion d =

(

n
2

)

but exponentially many (i.e., 2n−1) possible increments,

each with norm approximately n/
√
2. Thus, although, for n fixed, the

usual functional central limit theorem applies (after proper rescaling
of space and time, the walk converges in distribution to Brownian mo-
tion), the walk has special discrete structure which cannot be ignored.
In particular,

• The support Ld of the walk, the smallest subgroup of Zd con-
taining M , is a strict subgroup of Zd,

• the walk has period 4, and
• the set of increments is non-symmetric.

Moreover, since there is no n × t partial Hadamard matrix for t < n
or t 6≡ 0 (mod 4), we must have P t

n(0, 0) = 0 if either t < n or t 6≡ 0
(mod 4). It is conjectured, but not proved, that the converse is true:
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Conjecture 1. For n ≥ 3, P t
n(0, 0) > 0 if and only if t ≥ n and t ≡ 0

(mod 4).

This conjecture is equivalent to the Hadamard Conjecture, which
asserts that there is a Hadamard matrix of order n for all n divisible
by four. The following result is implied by recent work by de Launey
and Gordon [3] and Graham and Shparlinski [4].

Theorem A. For ε > 0 and all sufficiently large n, if t− 2t
113
132

+ε > 2n
and t ≡ 0 (mod 4), then P t

n(0, 0) > 0.

Proof. Towards the end of their paper [4], Graham and Shparlinski
note that the construction described in [3] applies without recourse to
the Extended Riemann Hypothesis if one replaces the exponent 7/12
in Theorem Theorem 1.2 of [3] with the exponent 113/132. Thus for all
sufficiently large n, there is an n×t partial Hadamard matrix whenever
n ≤ t

2
− t

113
132

+ε. �

Thus, even before we begin our investigation of the walk (Xt), we
know that there is a non-zero probability that our random walk returns
to its start after about 2n steps. However, the proof depends on deep
number-theoretic results concerning the existence of primes in short
arithmetic sequences and special combinatorial constructions needed
to prove the asymptotic existence of Hadamard matrices [2]. We hope
that analytic techniques along the lines described in this paper will
provide more direct proofs for theorems like Theorem A. Indeed, this
paper contains a direct proof for the following result:

Theorem 1. Let ε > 0. For all sufficiently large n, if t ≥ n12+ε and

t ≡ 0 (mod 4), then P t
n(0, 0) > 0.

This result is much weaker than Theorem A. However, the proof of
Theorem 1 offers a number of advantages. Firstly, it generalizes to give
results (which we derive elsewhere) for other kinds of designs such as
balanced incomplete block designs and difference matrices.
Secondly, our analysis provides an accurate asymptotic formula for

the number of distinct designs – a result which is not available even in
the special case of partial Hadamard matrices. Specifically, for t large
and n fixed, it is possible to prove a local central limit theorem for
P t
n(0, 0), yielding the following asymptotic formula for the number of

partial Hadamard matrices:

Theorem 2. Let Nn,t be the number of partial Hadamard matrices of

dimension n× t, and let d =
(

n
2

)

. Then

Nn,4t = [1 + o(1)]22d−n+nt+1(8πt)−d/2 as t→ ∞ . (2)



4 WARWICK DE LAUNEY AND DAVID A. LEVIN

It should be emphasized that to apply the standard local limit theo-
rem (e.g. [5, P9 on p. 79]) to our walk, we must first transform the walk
so that, when sampled at multiples of 4, it is strongly aperiodic on Z

d.
However, as indicated above, the lattice Ld has a non-trivial structure,
leading us to instead prove Theorem 2 directly from first principles.
The proof uses the inversion formula (see, for example, [5, P3, p. 57])

P t
n(0, 0) =

1

(2π)d

∫

[−π,π]d
ψ(λ)tdλ , (3)

where, for λ ∈ Rd, the characteristic function ψ(λ) is defined to be the
expectation ψ(λ) := 2−n+1

∑

x∈M eiλ·x. Following the general approach
outlined in [5], we observe that the dominant contribution to the in-
tegral on the right-hand side of (3) is from the neighborhoods of λ
with |ψ(λ)| = 1. The number and deployment of these neighborhoods
depends on the type of design being investigated. This paper gives a
complete discussion of these neighborhoods for the walk corresponding
to partial Hadamard matrices. This direct approach has the benefit of
yielding error estimates in (2), and indeed these are strong enough to
prove Theorem 1.
Thirdly, we obtain upper bounds for the number of partial Hadamard

matrices. For example, we will prove the following theorem.

Theorem 3. There are at most 2(
n+1
2 ) distinct Hadamard matrices of

order n.

Since there are precisely 2n
2
distinct n×n (−1, 1)-matrices, our result

shows that the set of Hadamard matrices occupies at most about one
square root of the entire search space. While our result is doubtless
very weak, it shows that even for small orders being Hadamard is very
rare.
It is worth pausing to emphasize that, when t = n, the integral

on the right-hand side of (3) exactly counts the number of Hadamard

matrices. Therefore, a positive resolution to the Hadamard conjecture
is possible if it can be shown that this integral is positive. While we
have not thus succeeded, we have been able to approximate the integral
to obtain new results on the number of partial Hadamard matrices, and
we have done so without constructing a single design. Thus the integral
on the right-hand side of (3) might lead to a non-constructive proof
of the Hadamard Conjecture. While we have left open the important
(and probably difficult) problem of obtaining sharper estimates for the
integral in equation (3) in the region close to t = n, this paper at
the very least introduces an interesting non-symmetric lattice random
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walk, where an understanding of the early (rather than the asymptotic)
behavior of the transition probabilities for the walk is paramount.

The rest of this paper is organized as follows: In Section 2, we break
up the integral on the right-hand side of (3) into manageable pieces.
In Section 3, we obtain estimates on the characteristic function ψ(λ).
These estimates are used in Section 4 to obtain bounds on the return
probabilities P t

n(0, 0), from which Theorem 2 is derived. Theorem 1 is
contained in Theorem 5.1. In Section 6, we prove Theorem 3, which is
part of Corollary 6.3.

2. Anatomy of the Integral

In this section, we divide the region of integration for the integral

I(d, t) :=

∫

[−π,π]d
ψ(λ)tdλ , (4)

into manageable pieces.
We define the closed boxes

Bδ(λ) := λ+ [−δ, δ]d =
{

µ ∈ R
d : max

1≤i<j≤n
|µ{i,j} − λ{i,j}| ≤ δ

}

,

Bδ := [−δ, δ]d = Bδ(0) .

Let
Λ := {λ ∈ Bπ : |ψ(λ)| = 1} .

Since 0 ∈ Λ, the set Λ is non-empty. Since, whenever |ψ(λ)| < 1, the
magnitude of ψ(λ)t drops rapidly as t grows, it is natural to suppose
that the bulk of the integral (4) is accounted for by points in Bπ which
are near an element of Λ. Consequently, we divide the region Bπ of
integration into the small pieces, {Bδ(λ) : λ ∈ Λ}, and the remaining
piece

Rδ := Bπ \
⋃

λ∈Λ

Bδ(λ) . (5)

We then estimate the integral (4) by combining our estimates for each
of the pieces. The parameter δ ∈ (0, π/4) determines the sizes of the
regions, and will be adjusted as needed.

Proposition 2.1. For δ ∈ (0, π/4),

I(n, 4t) = 22d−n+1

∫

Bδ

ψ(λ)4tdλ+

∫

Rδ

ψ(λ)4tdλ , (6)

and, if t 6≡ 0 (mod 4), then I(n, t) =
∫

Rδ
ψ(λ)tdλ.

Proposition 2.1 will follow from the following two lemmas.
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Lemma 2.2. Let Λ be the set of λ with |ψ(λ)| = 1.

(i) If λ ∈ Λ, then ψ(λ+ γ) = ψ(λ)ψ(γ).
(ii) If

Λ0 := {λ ∈ R
d : λ{i,j} ∈ {0,±π/2, π} for all 1 ≤ i < j ≤ n} ,

then Λ ⊂ Λ0.

Remark 2.1. Notice that if |ψ(λ)| = |ψ(γ)| = 1, then Lemma 2.2(i)
implies that |ψ(λ+ γ)| = 1. In other words, Λ is closed under addition
modulo 2π.

Lemma 2.3. The multi-set {ψ(λ) : λ ∈ Λ} contains exactly the ele-

ments ±1,±i, each appearing 22d−n−1 times.

We will prove Lemma 2.2 and Lemma 2.3 after deriving Proposition
2.1 from them.

Proof of Proposition 2.1. For δ < π/4, by Lemma 2.2(ii), the boxes
{Bδ(λ)}λ∈Λ are disjoint. Thus,

I(n, t) =
∑

λ∈Λ

∫

Bδ(λ)

ψ(γ)tdγ +

∫

Rδ

ψ(γ)tdγ . (7)

By Lemma 2.2(i), we have
∫

Bδ(λ)
ψ(γ)dγ = ψ(λ)

∫

Bδ
ψ(γ)dγ, which to-

gether with (7) shows that

I(n, t) =
∑

λ∈Λ

ψ(λ)

∫

Bδ

ψ(γ)dγ +

∫

Rδ

ψ(γ)tdγ . (8)

This identity together with Lemma 2.3 yield

I(n, t) = 22d−n−1
[

1t + it + (−1)t + (−i)t
]

∫

Bδ

ψ(γ)tdγ

+

∫

Rδ

ψ(γ)tdγ . (9)

The sum 1t + it + (−1)t + (−i)t vanishes unless t ≡ 0 (mod 4), in
which case it equals 4. This observation together with (9) finishes the
proof. �

Proof of Lemma 2.2. We prove Part (i). First, observe that

λ ∈ Λ ⇐⇒ eiλ·Z(y) = eiλ·Z(w) (∀ y, w ∈ Vn) . (10)

That is, if λ ∈ Λ, then ψ(λ) = eiλ·Z(y) for all y ∈ Vn. Consequently,

ψ(λ+ γ) = 2−n
∑

y∈Vn

eiZ(y)·(λ+γ) = 2−n
∑

y∈Vn

ψ(λ)eiZ(y)·γ = ψ(λ)ψ(γ) .
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Next, we prove Part (ii). The equations in the right-hand statement
of the equivalence (10) are equivalent to the following system of modulo
2π linear equations:

∑

i<j

λ{i,j}yiyj ≡
∑

i<j

λ{i,j}wiwj (mod 2π) (∀ y, w ∈ Vn) . (11)

Fix λ ∈ Λ. For y ∈ Vn and k ∈ {1, 2, . . . , n}, define

ŷ
(k)
j =

{

yj if j 6= k,
−yk if j = k .

Taking w = ŷ(k) in (11) shows that

2
∑

i : i 6=k

λ{i,k}yi ≡ 0 (mod 2π) (∀k ∈ {1, 2, . . . , k}) . (12)

Since this holds for any choice of y ∈ Vn, it holds also for ŷ(j), whence
we have the following two instances of (12):

2λ{j,k}yj + 2
∑

i : i/∈{j,k}

λ{i,k}yi ≡ 0 (mod 2π) ,

−2λ{j,k}yj + 2
∑

i : i/∈{j,k}

λ{i,k}yi ≡ 0 (mod 2π) .

Therefore, for all 1 ≤ j < k ≤ n, it follows that 4λ{j,k} ≡ 0 (mod 2π),
that is, λ{j,k} ∈ {0,±π/2, π}. �

From Lemma 2.2(ii), we know that Λ ⊂ Λ0. In fact, this inclusion is
strict. To prove Lemma 2.3, we need to characterize further the set Λ.
In view of this, we introduce the following two sets: Let

Λ1 = {λ ∈ R
d : λ{i,j} ∈ {0, π} for all 1 ≤ i < j ≤ n} ,

Λ2 = {λ ∈ R
d : λ{i,j} ∈ {0, π/2} for all 1 ≤ i < j ≤ n} .

These sets have several important properties. The set Λ1 is closed
under addition modulo 2π, and Λ2 is closed under addition modulo
π. Furthermore, Λ0 = Λ1 + Λ2, meaning that every λ(0) ∈ Λ0 can be
written in the form

λ(0) ≡ λ(1) + λ(2) (mod 2π), where λ(1) ∈ Λ1, λ
(2) ∈ Λ2 . (13)

Moreover, because Λ0 contains 4d elements, and the sets Λ1 and Λ2

each contain 2d elements, this representation is unique.
Recall, as noted in Remark 2.1, Λ is closed under addition modulo

2π. Notice that, since e±πi = −1, the set Λ contains Λ1. Therefore,
the element λ(0) = λ(1) + λ(2) of Λ0 is in Λ if and only if λ(2) ∈ Λ.
Consequently, if we define Λ⋆

2 = Λ ∩ Λ2, then Λ = Λ1 + Λ⋆
2. We will
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now identify the set Λ⋆
2. Note that (13) implies that any λ ∈ Λ can be

written uniquely as

λ ≡ λ(1) + λ⋆ (mod 2π), where λ(1) ∈ Λ1, λ
⋆ ∈ Λ⋆

2 . (14)

Each Λ(2) ∈ Λ2 has a combinatorial characterization. For each
element λ(2) ∈ Λ2 we define a weighted graph Gλ on the vertices
{1, 2, . . . , n} by including an edge {i, j} if and only if λ{i,j} > 0. We
say a graph is even-degree if all of its vertices have even degree. We
define

Λeven
2 = {λ ∈ Λ2 : Gλ is even-degree} .

We can now provide a useful characterization of the set Λ⋆.

Lemma 2.4. We have Λ⋆
2 = Λeven

2 .

To prove Lemma 2.4, we will need to know that even-degree graphs
are built-up from triangle graphs. We denote by T{a,b,c} the graph on
the vertices {1, 2, . . . , n} with the edges {a, b}, {b, c}, {c, b}. Let G and
H be graphs on the vertex set {1, 2, . . . , n}. Then G⊕H is the graph
with vertices {1, 2, . . . , n} which contains the edge {i, j} if and only if
{i, j} is an edge of exactly one of G and H .

Lemma 2.5. The set Λeven
2 consists of the elements λ ∈ Λ2 such that

Gλ = ⊕{a,b,c}∈TλT{a,b,c} for some set of triples Tλ.

Proof. We proceed by induction on the number E of edges. The state-
ment is true for E = 0. There are no non-empty, even-degree graphs
with fewer than three edges, and the only even-degree graph with three
edges is a triangle. Thus, the claim is true for E = 3. Suppose now
that it holds for all even-degree graphs with strictly fewer than m > 0
edges, and suppose that Gλ has m edges. Since Gλ has all degrees
even, at least two edges, say {a, b} and {a, c}, emanate from the same
vertex, say a. So the mod 2 sum Gλ⊕T{a,b,c} has strictly fewer than m
edges, and, since T{a,b,c} has all even degrees, so does Gλ ⊕ T{a,b,c}. By
the induction hypothesis, Gλ ⊕ T{a,b,c} can be decomposed in triangles.
Since Gλ = (Gλ ⊕ T{a,b,c})⊕ T{a,b,c}, it follows that Gλ also has such a
decomposition. �

Proof of Lemma 2.4. First, suppose λ ∈ Λ⋆
2 := Λ ∩ Λ2. Then the

equations (12) hold for all k ∈ {1, 2, . . . , n}. Equation (12) holds for
k ∈ {1, 2, . . . , n} if and only if 2λ{i,k} = π for an even number of
i ∈ {1, 2, . . . , n} \ {k}. By definition of Gλ, this holds if and only if the
degree of vertex k in the graph Gλ is even. Thus, Gλ is an even-degree
graph, that is, λ ∈ Λeven

2 . Therefore, Λ⋆
2 ⊂ Λeven

2 .
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Next, suppose that λ ∈ Λeven
2 . By Lemma 2.5, there exists a set of

triples Tλ such that

Gλ = ⊕{a,b,c}∈TλT{a,b,c} .

Let λ({a,b,c}) ∈ Λeven
2 be defined as

λ
({a,b,c})
{i,j} :=

{

π
2

if {i, j} ⊂ {a, b, c},
0 otherwise .

Then,

λ ≡
∑

{a,b,c}∈Tλ

λ({a,b,c}) (mod 2π) .

Now, for all y ∈ Vn,

λ({a,b,c}) · Z(y) = π
2
(yayb + yayc + ybyc) ≡ −π

2
(mod 2π) . (15)

Thus, for all y ∈ Vn,

λ · Z(y) ≡ −π
2
|Tλ| (mod 2π) .

In particular, eiλ·Z(y) = e−iπ
2
|Tλ|, and is independent of y. Therefore,

λ ∈ Λ ∩ Λ2 =: Λ⋆
2. We conclude that Λeven

2 ⊂ Λ⋆
2. �

Lemma 2.6. The cardinality of Λeven
2 is 2(

n−1
2 ).

Proof. Each graph with all degrees even on n vertices corresponds to
a zero-diagonal n × n symmetric (0, 1)-matrix all of whose rows and
columns have even weight, and each such matrix corresponds to a
unique zero-diagonal (n− 1)× (n− 1) symmetric (0, 1)-matrix. Since

there are exactly 2(
n−1
2 ) such matrices, we have |Λeven

2 | = 2(
n−1
2 ). �

Proof of Lemma 2.3. By Lemma 2.6, the size of Λeven
2 equals 2d−n+1.

By (14), |Λ| = 22d−n+1.
Let µ = λ({a,b,c}). By (15), ψ(µ) = −i. For all λ ∈ Λ, by Lemma 2.2(i),

ψ(λ + µ) = −iψ(λ). Therefore, the multi-set {ψ(λ) : λ ∈ Λ} has the
composition as stated in the lemma. �

Proposition 2.1 leaves us with the problem of computing the integral
of ψ(γ)4t over two regions: the primary region Bδ and the secondary

region Rδ = Bπ \
⋃

λ∈Λ Bδ(λ). We conclude this section by dividing the
secondary region Rδ into convenient pieces.

Lemma 2.7. If Λodd
2 is the set of the elements of Λ2 whose associated

graph has at least one odd degree, then

Rδ =

[

⋃

λ∈Λ1+Λeven
2

Bπ
4
(λ) \ Bδ(λ)

]

∪
[

⋃

λ∈Λ1+Λodd
2

Bπ
4
(λ)

]

, (16)
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where the sets in the union are disjoint.

Proof. The unit circle can be divided up into four shifted pieces of

length π
2
centered on the points 1, ei

π
2 , e−i

π
2 , and eiπ. Therefore, any

γ ∈ Bπ may be written uniquely in the form

γ ≡ λ(γ) + δ(γ) (mod 2π) ,

where δ(γ) ∈ Bπ
4
and λ(γ) ∈ Λ0. Thus

Bπ =
⋃

λ∈Λ0

Bπ
4
(λ) ,

and

Rδ =

[

⋃

λ∈Λ0\Λ

Bπ
4
(λ)

]

∪
[

⋃

λ∈Λ

Bπ
4
(λ) \ Bδ(λ)

]

. (17)

Recall that Λ0 = Λ1+Λ2, and Λ2∩Λ = Λeven
2 . Since Λ2 = Λeven

2 ∪Λodd
2 ,

Λ0 \ Λ = Λ1 + Λodd
2 and Λ = Λ1 + Λeven

2 .

The identity (16) now follows from (17). �

In subsequent sections, we derive upper bounds for the integrals
∫

Bρ(λ)

ψ(γ)4tdγ

which depend only on whether λ is in Λeven
2 or Λodd

2 .

3. Estimates for ψ(λ)

In this section, we obtain estimates for the magnitude, the real part,
and the imaginary part of ψ(λ). As a corollary, we obtain an upper
bound for the integral over the secondary region.

Lemma 3.1. The following bounds hold over the entire region Bπ:

|ψ(λ)|2 ≤ 1
2
+ 1

2

n−1
∏

i : i 6=k

cos(2λ{i,k}) , (18)

Re(ψ(λ)) ≥ 1− 1
2
‖λ‖2 . (19)

Suppose δ > 0, and that λ ∈ Bδ. Then

Re(ψ(λ)) = e−
1
2
‖λ‖2

(

1 + ε1(λ)
)

, (20)

Im(ψ(λ)) = −
∑

i<j<k

λ{i,j}λ{j,k}λ{k,i} + ε2(λ) , (21)

where |ε1(λ)| < 1
12
(nδ)4e

1
2
n2δ2 , and |ε2(λ)| < 1

12
(nδ)4.



COUNTING PARTIAL HADAMARD MATRICES 11

Proof. We first prove (18). Let y ∈ Vn and λ ∈ Rd. For i ∈ {1, 2, . . . , n},
define

pi(λ) = (λ{1,i}, λ{2,i}, . . . , λ{i−1,i}, λ{i,i+1}, . . . , λ{i,n}) ,

Zi(y) = (y1, y2, . . . , yi−1, yi+1, . . . , yn) ,

Pi(λ) = (λ{j,k})1≤j<k≤n, j,k 6=i ,

Qi(y) = (yjyk)1≤j<k≤n, j,k 6=i .

Note that pi(λ) and Zi(y) are in R
n−1, and Pi(λ) and Qi(y) are in

Rd−n+1. Also, the maps pi and Pi are linear. Recalling the definition
of Z(y) for y ∈ Vn in (1), observe that for all i ∈ {1, . . . , n},

Z(y) · λ = pi(λ) · yiZi(y) + Pi(λ) ·Qi(y) .

For all k ∈ {1, 2, · · · , n},

ψ(λ) = 2−n
∑

y∈Vn

eipk(λ)·ykZk(y)eiPk(λ)·Qk(Zk(y))

= 21−n
∑

z∈Vn−1

1
2

[

eipk(λ)·z + e−ipk(λ)·z
]

eiPk(λ)·Qk(z) .

Therefore,

|ψ(λ)| ≤ 1

2n−1

∑

z∈Vn−1

1
2

∣

∣eipk(λ)·z + e−ipk(λ)·z
∣

∣

=
1

2n−1

∑

z∈Vn−1

|cos(pk(λ) · z)| .

By Jensen’s inequality,

|ψ(λ)|2 ≤ 2−(n−1)
∑

z∈Vn−1

cos2(pk(λ) · z) . (22)

Since 2 cos2 θ = 1 + cos(2θ),

|ψ(λ)|2 ≤ 1

2



1 + 2−(n−1)
∑

z∈Vn−1

cos(2pk(λ) · z)



 . (23)

Since sin(−θ) = sin(θ), and, since Vn−1 is a symmetric set, it follows
that

∑

z∈Vn−1
sin(2pk(λ) · z) = 0. Thus, since eiθ = cos θ + i sin θ,

2−(n−1)
∑

z∈Vn−1

ei2pk(λ)·z = 2−(n−1)
∑

z∈Vn−1

cos(2pk(λ) · z) . (24)
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Combining (23) and (24) shows that if ξ is a random uniformly dis-
tributed element of Vn−1, then

|ψ(λ)|2 ≤ 1

2

[

1 + E
(

ei2pk(λ)·ξ
)]

. (25)

The coordinates ξ1, . . . , ξn−1 of ξ are independent unbiased random
±1’s. Therefore, because the components of pk(λ) are {λ{i,k} : i 6= k},

E
(

ei2pk(λ)·ξ
)

=
n−1
∏

j=1

E
(

ei2[pk(λ)]jξj
)

=
∏

i : i 6=k

[

1

2
ei2λ{i,k} +

1

2
e−i2λ{i,k}

]

=
∏

i : i 6=k

cos 2λ{i,k} . (26)

Substituting (26) into (25) establishes (18).
Next we deal with the bounds for Re(ψ(λ)) and Im(ψ(λ)). We use

the following bounds on the remainder in the Taylor expansion of the
exponential: For a ≥ 0 and b real,

∣

∣

∣
e−a −

k
∑

s=0

(−a)s
s!

∣

∣

∣
≤ min

{2|a|k
k!

,
|a|k+1

(k + 1)!

}

, (27)

∣

∣

∣
eib −

k
∑

s=0

(ib)s

s!

∣

∣

∣
≤ min

{2|b|k
k!

,
|b|k+1

(k + 1)!

}

. (28)

(Equation (28) can be found as, for example, [1, equation 26.4]; the
derivation of equation (27) is similar.) Equation (27) with k = 2 implies

∣

∣

∣
e−

1
2
‖λ‖2 − (1− 1

2
‖λ‖2)

∣

∣

∣
≤ 1

6
‖λ‖4 ; (29)

equation (28) with k = 2 implies

∣

∣

∣
eiλ·Z(y) −

[

1 + iλ · Z(y)
]

∣

∣

∣
≤ 1

2
(λ · Z(y))2 ;

equation (28) with k = 3 implies

∣

∣

∣
eiλ·Z(y) −

[

1 + iλ · Z(y)− 1
2
(λ · Z(y))2 − i

6
(λ · Z(y))3

]

∣

∣

∣

≤ 1
24
(λ · Z(y))4 .
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Since |Re(z)| ≤ |z| and |Im(z)| ≤ |z| for all z ∈ C, we have
∣

∣

∣
Im(eiλ·Z(y))−

[

λ · Z(y)− 1
6
(λ · Z(y))3

]

∣

∣

∣
≤ 1

24
(λ · Z(y))4 , (30)

∣

∣

∣
Re(eiλ·Z(y))−

[

1− 1
2
(λ · Z(y))2

]

∣

∣

∣
≤ 1

24
(λ · Z(y))4 , (31)

∣

∣

∣
Re(eiλ·Z(y))− 1

∣

∣

∣
≤ 1

2
(λ · Z(y))2 . (32)

Let ξ be a uniform random element of Vn. From (30),
∣

∣

∣
E
[

Im(eiλ·Z(ξ))
]

− E
[

λ · Z(ξ) + 1
6
(λ · Z(ξ))3

]

∣

∣

∣

≤ E
∣

∣Im(eiλ·Z(ξ))−
[

λ · Z(ξ) + 1
6
(λ · Z(ξ))3

]
∣

∣

≤ E
[

1
24
(λ · Z(ξ))4

]

(33)

Since Im is linear, E
[

Im(eiλ·Z(ξ))
]

= Im (ψ(λ)), whence (33) implies
∣

∣

∣
Im (ψ(λ))−E [λ · Z(ξ)]− 1

6
E
[

(λ · Z(ξ))3
]

∣

∣

∣
≤ E

[

1
24
(λ · Z(ξ))4

]

. (34)

Similarly, we have
∣

∣

∣
Re(ψ(λ))−

(

1− 1
2
E[(λ · Z(ξ))2]

)

∣

∣

∣
≤ 1

24
E[(λ · Z(ξ))4] , (35)

and
∣

∣

∣
Re(ψ(λ))− 1

∣

∣

∣
≤ 1

2
E[(λ · Z(ξ))2] . (36)

Our goal now is to compute the above expectations. For all non-
negative integers s,

E[(λ · Z(ξ))s] =
∑

1≤k1<ℓ1≤n

∑

1≤k2<ℓ2≤n

· · ·
∑

1≤ks<ℓs≤n

s
∏

j=1

λkjℓjE
[

s
∏

j=1

ξkjξℓj

]

.

For each multi-set S = {{k1, ℓ1}, {k2, ℓ2}, . . . , {ks, ℓs}}, let NS be the
network on the vertices {1, 2, . . . , n} with the edge set S, where re-
peated elements in S correspond to multiple edges between vertices.
Observe that

E

[

s
∏

j=1

ξkjξℓj

]

=

{

1 if all vertices in Ns have even degree,

0 otherwise .

Therefore,

E[(λ · Z(ξ))s] =
∑

NS

w(NS)
∏

{k,ℓ}∈S

λ{k,ℓ} .

HereNS ranges over all the networks on the vertices {1, 2, . . . , n} having
s edges and all degrees even, and w(NS) is a multinomial coefficient
determined by the number of times each edge appears in NS.
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For s = 1, there are no even-degree networks. Therefore,

E[λ · Z(ξ)] = 0 .

For s = 2, the even-degree networks are the two-vertex networks NS

with a single repeated edge S = {{k1, ℓ1}, {k1, ℓ1}}, and the weights
w(NS) all equal 2!/2! = 1. Thus

E[(λ · Z(ξ))2] = ‖λ‖2 .
Equation (36) therefore implies that

∣

∣

∣
Re(ψ(λ))− 1

∣

∣

∣
≤ 1

2
‖λ‖2 ,

from which (19) follows.
For s = 3, the even-degree networks are just triangles with the edges

{{k1, k2}, {k2, k3}, {k1, k3}} ,
where 1 ≤ k1 < k2 < k3 ≤ n, and the weights w(NS) are all 3!/(1!)3,
as there are three edges and each edge appears just once. Therefore,

E
[

(λ · Z(ξ))3
]

=
∑

i<j<k

3!λ{i,j}λ{j,k}λ{i,k} .

Thus the inequalities (34) and (35) become
∣

∣

∣
Im(ψ(λ)) +

∑

i<j<k

λ{i,j}λ{j,k}λ{i,k}

∣

∣

∣
≤ 1

24
E[(λ · Z(ξ))4] , (37)

∣

∣

∣
Re(ψ(λ))−

(

1− 1
2
‖λ‖2

)

∣

∣

∣
≤ 1

24
E[(λ · Z(ξ))4] . (38)

Moreover, applying the triangle inequality to the inequalities (29) and
(38) shows that

∣

∣

∣
Re(ψ(λ))− e−

1
2
‖λ‖2

∣

∣

∣
≤ 1

6
‖λ‖4 + 1

24
E[(λ · Z(ξ))4] . (39)

Finally, for s = 4, there are several classes: (a) 4-cycles, (b) an edge
repeated four times, (c) two non-adjacent edges repeated twice, and
(d) two adjacent edges repeated twice. Thus

E
[

(λ · Z(ξ))4
]

=
∑

i1<j2

λ4{i1,i2} + 4!/(2!)2
∑

{i1,i2}
6={i3,i4}

λ2{i1,i2}λ
2
{i3,i4}

+ 4!
∑

i1,i2,i3,i4
distinct

λ{i1,i2}λ{i2,i3}λ{i3,i4}λ{i4,i1} .

Therefore, for λ ∈ Bδ,

E
[

(λ · Z(ξ))4
]

≤ 1
2
n2δ4 + 3

4
n4δ4 + n4δ4 ,
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and, because we always assume n ≥ 3,

E
[

(λ · Z(ξ))4
]

≤ ( 1
18

+ 3
4
+ 1)(nδ)4 ≤ 11

6
(nδ)4 . (40)

Consequently, the inequalities (37) and (38) imply
∣

∣

∣
Im(ψ(λ)) +

∑

i<j<k

λ{i,j}λ{j,k}λ{i,k}

∣

∣

∣
≤ 1

12
(nδ)4 ,

∣

∣

∣
Re(ψ(λ))−

(

1− 1
2
‖λ‖2

)

∣

∣

∣
≤ 1

12
(nδ)4 . (41)

This last inequality gives us the estimate on Im(ψ(λ)) claimed in (21).
We now use (41) to prove the estimate on Re(ψ(λ)) stated in (20).

Because n ≥ 3, we have ‖λ‖4 ≤ (1
2
n2δ2)2 ≤ 1

36
(nδ)4. Therefore, the

equations (39) and (40) imply
∣

∣

∣
Re(ψ(λ))− e−

1
2
‖λ‖2

∣

∣

∣
≤ 1

216
(nδ)4 + 11

144
(nδ)4 < 1

12
(nδ)4 .

Therefore, since e−
1
2
‖λ‖2 ≥ e−

1
2
n2δ2 for λ ∈ Bδ, it follows that

∣

∣

∣

Re(ψ(λ))

e−
1
2
‖λ‖2

− 1
∣

∣

∣
≤

1
12
(nδ)4

e−
1
2
‖λ‖2

<
1
12
(nδ)4

e−
1
2
n2δ2

.

Therefore,

Re(ψ(λ)) = e−
1
2
‖λ‖2

[

Re(ψ(λ))

e−
1
2
‖λ‖2

]

= e−
1
2
‖λ‖2(1 + ε1(λ)) ,

where
∣

∣ε1(λ)
∣

∣ =

∣

∣

∣

∣

Re(ψ(λ))

e−
1
2
‖λ‖2

− 1

∣

∣

∣

∣

≤ 1
12
(nδ)4e

1
2
n2δ2 .

�

We now bound the contribution of the secondary region to the inte-
gral I(d, t).

Proposition 3.2.
∣

∣

∣

∣

(2π)−d

∫

Rδ

ψ(λ)tdλ

∣

∣

∣

∣

≤ e−
11
24

tδ2 .

Proof. By (18), for all k ∈ {1, 2, . . . , n},

|ψ(λ)|2 ≤ 1
2
+ 1

2

∏

i : i 6=k

cos(2λ{i,k}) .

Let γ ∈ Rδ. By Lemma 2.7, either there is an element λ ∈ Λ1 + Λeven
2

such that γ ∈ Bπ/4(λ) \ Bδ(λ), or there is an element λ ∈ Λ1 + Λodd
2

such that γ ∈ Bπ/4(λ). In the first case, γ = λ(1) + λ(2) + µ, where
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µ ∈ Bπ/4 \ Bδ and λ(i) ∈ Λi for i = 1, 2. Thus, there are a, b ∈ {0, 1}
such that

| cos(2γ{i,j})| = | cos(2πa+ πb+ 2µ{i,j})| = | cos(2µ{i,j})| .
Whence,

|ψ(γ)|2 ≤ 1
2
+ |1

2
min
{i,j}

{

cos(2γ{i,j})
}

| ≤ 1
2
+ 1

2
cos(2δ) = cos2 δ .

In the second case, there is a choice of k ∈ {1, 2, . . . , n} such that an
odd number of the components λ{i,k} (i 6= k) are π

2
. For this value of

k, we have
∏

i 6=k

cos(2γ{i,k}) ≤ 0 .

Therefore, in this case, we trivially have |ψ(γ)|2 ≤ (1/2) ≤ cos2 δ, since
δ ≤ π/4. Therefore,

|ψ(γ)|2 ≤ cos2 δ (∀ γ ∈ Rδ).

Using the inequalities cos x ≤ 1 − x2/2 + x4/24 and 1 − x ≤ e−x

yields

cos δ ≤ 1− δ2

2
+
δ4

24
≤ e−

δ2

2
(1− δ2

12
) ≤ e−

11
24

δ2 .

Therefore, for all γ ∈ Rδ, we have |ψ(γ)t| < e−
11
24

tδ2 , and hence we
certainly have

(2π)−d

∣

∣

∣

∣

∫

Rδ

ψ(γ)tdγ

∣

∣

∣

∣

≤ (2π)−d

∫

Rδ

|ψ(γ)t|dγ < e−
11
24

tδ2 .

�

4. An Estimate for the Return Probabilities

We use our estimates obtained in the previous section for ψ(λ) to
obtain upper and lower bounds for the integral

P (t)
n (0, 0) =

1

(2π)d

∫

Bπ

ψ(λ)tdλ . (42)

Define

U(n, t, δ) =
[

1 + 1
9
(nδ)6

]t/2[
1 + 1

12
(nδ)4

]t[
1− e−tδ2

]d/2
, (43)

L(n, t, δ) =
[

1 + 4
9
t2(nδ)6

]− 1
2
[

1− 1
12
(nδ)4

]t
[

1− e−
1
2
tδ2
]d/2

. (44)
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U(n, 4t, δ) =
[

1 + 1
9
(nδ)6

]2t[
1 + 1

12
(nδ)4

]4t[
1− e−4tδ2

]d/2
, (45)

L(n, 4t, δ) =
[

1 + 4
9
(4t)2(nδ)6

]− 1
2
[

1− 1
12
(nδ)4

]4t[
1− e−2tδ2

]d/2
. (46)

Theorem 4.1. Suppose that nδ ∈ (0, 1), and let t be a positive in-

teger. Let U(n, 4t, δ) and L(n, 4t, δ) be as defined in (45) and (46),
respectively. Then

P (4t)
n (0, 0) ≤ 22d−n+1(8πt)−d/2U(n, 4t, δ) + e−

11
6
tδ2 . (47)

Moreover, if 4t(nδ)3 < 1, then

P (4t)
n (0, 0) ≥ 22d−n+1(8πt)−d/2L(n, 4t, δ)− e−

11
6
tδ2 . (48)

Proof. Rearranging equation (6) we have

P (4t)
n (0, 0)− 22d−n+1(2π)−d

∫

Bδ

ψ(γ)4tdγ = (2π)−d

∫

Rδ

ψ(γ)tdγ ;

By Proposition 3.2,
∣

∣

∣
P (4t)
n (0, 0)− 22d−n+1(2π)−d

∫

Bδ

ψ(γ)4tdγ
∣

∣

∣
≤ (2π)de−

11
6
tδ2 .

Thus, it is sufficient to prove that, for t satisfying the conditions of the
theorem,

(8πt)−
d
2L(n, 4t, δ) < (2π)−d

∫

Bδ

ψ(γ)4tdγ < (8πt)−
d
2U(n, 4t, δ) . (49)

First note that, since ψ(−γ) is the complex conjugate of ψ(γ),
∫

Bδ

ψ(γ)4tdγ =

∫

Bδ

Re
(

ψ(γ)4t
)

dγ . (50)

Therefore, we only need to understand the real part of the powers
of ψ. In this proof, we employ Proposition A.2 to obtain upper and
lower bounds on Re(zk) in terms of Re(z)k. The bounds are sharpest
when the ratio β(z) := Im(z)/Re(z) has small magnitude. Lemma 3.1
implies that, for λ ∈ Bδ,

|β(ψ(λ))| ≤
∑

i<j<k |λ{i,j}λ{j,k}λ{k,i}|+ ε2(λ)

1− 1
2
‖λ‖2

≤
1
6
(nδ)3 + 1

12
(nδ)4

1− 1
4
(nδ)2

≤ 1
3
(nδ)3 .

The inequality (66) then implies that

Re(ψ(γ)4t) ≤ Re(ψ(γ))4t
[

1 +
(nδ)6

9

]2t

. (51)
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Proposition A.2 also supplies a lower bound for Re(ψ(γ)4t). However,
this bound only holds for powers 4t which satisfy the condition α(z) :=
1−

(

4t
2

)

β2(z) > 0.

We write β and α for β(ψ(γ)) and α(ψ(γ)) = 1−
(

4t
2

)

β2, respectively.
Suppose that 4t < 3(nδ)−3. Then 4tβ < 1, and so α > 1/2. In
particular, α > 0, whence (69) can be applied to obtain

Re(ψ(γ)4t) ≥ Re(ψ(γ))4t
[

1 + β2
]2t[

1 +
(4t

α

)2

β2
]−1/2

≥ Re(ψ(γ))4t
[

1 +
(β

α

)2

β2
]−1/2

.

Since α ≥ 1/2 and β2 ≤ (nδ)3/3, it follows that β2/α2 ≤ (4/9)(nδ)6

and thus

Re(ψ(γ)4t) ≥ Re(ψ(γ))4t
[

1 + 4
9
(4t)2(nδ)6

]− 1
2 .

The above bound and (51) imply that

[

1 + 4
9
(4t)2(nδ)6

]− 1
2

∫

Bδ

Re
(

ψ(γ)
)4t
dγ

≤
∫

Bδ

Re
(

ψ(γ)4t
)

dγ

≤
[

1 + 1
9
(nδ)6

]2t
∫

Bδ

Re
(

ψ(γ)
)4t
dγ (52)

We now turn to bounding
∫

Bδ
Re(ψ(γ))4tdγ. Equation (20) of Lemma 3.1

implies that

ψ(γ) = e
1
2
‖γ‖2 [1 + ε1(γ)] ,

where |ε1(γ)| < 1
12
(nδ)4. Notice that this estimate is ideal when we need

an estimate for powers of ψ(γ). Moreover, the real part of 1 + ε1(γ)
must lie between 1 + 1

12
(nδ)4 and 1− 1

12
(nδ)4. Therefore, we have

[

1 + 1
12
(nδ)4

]4t
e−

4t
2
‖γ‖2 ≥ Re(ψ(λ))4t ≥

[

1− 1
12
(nδ)4

]4t
e−

4t
2
‖γ‖2 . (53)

If we let

J(d, t, δ) :=

∫

Bδ

e−
t
2

∑
j<k γ2

{j,k} dγ ,

then (52) and (53) imply that
[

1 + 4
9
(4t)2(nδ)6

]−1/2
[

1− 1
12
(nδ)4

]4t
J(d, 4t, δ)

≤
∫

Bδ

Re(ψ(γ))4tdγ

≤
[

1 + 1
9
(nδ)6

]2t [
1 + 1

12
(nδ)4

]4t
J(d, 4t, δ) . (54)
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To complete the proof, it remains to obtain suitable bounds for the
integral J(d, n, t). Changing variables by letting µ{j,k} = γ{j,k}

√
t yields

J(d, t, δ) = t−d/2

∫

Bδ
√

t

e−
1
2

∑
j<k µ2

{j,k} dµ .

Now, for all ρ > 0, we have
∫ ρ2

0

2πre−
1
2
r2 dr <

∫

[−ρ, ρ ]2
e−

1
2
(α2+β2) dα dβ <

∫ 2ρ2

0

2πre−
1
2
r2 dr .

So
√

2π (1− e−ρ2/2) <

∫

[−ρ, ρ]

e−µ2
{j,k}/2dµ{j,k} <

√

2π (1− e−ρ2) .

Therefore
(2π

t

)d/2(

1 − e−tδ2/2
)d/2

< J(d, t, δ) <
(2π

t

)d/2(

1 − e−tδ2
)d/2

.

Combining this with (54), and using (50), establishes (49), completing
the proof. �

We can now derive the asymptotic formula for Nn,4t in Theorem 2.

Proof of Theorem 2. Fix n and let δ = t−5/12. Then 4t(nδ)3 = 4n3t−1/4,
which for large enough t is less than 1, so the bound (48) can be used.
Note that t2δ6 = t−1/2, whence [1+(4/9)(4t)2(nδ)6]−1/2 → 1 as t→ ∞.
Also, for any constant cn,

(

1− cnt
−5/3

)t
= e−cnt−2/3

[1 + o(1)] → 1 as t→ ∞ ,

whence [1 − (1/12)(nδ)4]4t → 1 as t → ∞. Finally, tδ2 = t1/6, so

[1 − e−2tδ2 ]d/2 → 1 as t → ∞. We conclude that L(n, 4t, t−5/12) → 1.
This together with (48) implies that

lim inf
t→∞

P 4t
n (0, 0)

22d−n+1(8πt)−d/2

≥ lim
t→∞

[

L(n, 4t, t−5/12)− e−
11
6
t1/6

22d−n+1(8πt)−d/2

]

= 1 . (55)

Similarly, U(n, 4t, t−5/12) → 1, which with (47) implies that

lim sup
t→∞

P 4t
n (0, 0)

22d−n+1(8πt)−d/2

≤ lim
t→∞

[

U(n, 4t, t−5/12)− e−
11
6
t1/6

22d−n+1(8πt)−d/2

]

= 1 . (56)
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The inequalities (55) and (56), with the identity Nn,4t = 2ntP 4t
n (0, 0),

prove (2). �

5. Implications for the Existence and Abundance of

Partial Hadamard Matrices

In this section, we show how our upper and lower bounds for the
integral I(d, t) imply statements about the existence and abundance of
partial Hadamard matrices. We will answer the following questions:

• When does the upper bound (47) imply a non-trivial bound on
the number Nn,t of partial Hadamard matrices?

• When does the lower bound (48) exceed zero, and hence imply
that there is an n× t partial Hadamard matrix?

Let Nn,t denote the number of n× t partial Hadamard matrices, and
let

A(n, t) := 22d−n+1(2πt)−d/2 ,

R(n, t) := Nn,t/2
ntA(n, t) .

Recalling the definitions in (45) and (46), let U(n, t) and L(n, t) be
defined as

U(n, t) := min
δ<n−1

{

U(n, t, δ) + A(n, t)−1e−
11
24

tδ2
}

,

L(n, t) := max
δ<n−1

{

L(n, t, δ)− A(n, t)−1e−
11
24

tδ2
}

.

By Theorem 4.1,

L(n, 4t) ≤ R(n, 4t) ≤ U(n, 4t) .

Theorem 5.1.

(i) Abundance of Designs. For all sufficiently large n, and t > n8,

R(n, t) ≤ en
4t−

1
2 + t

d
2 e−

11
24

t
1
4 .

(ii) Existence of Designs. For all α, β > 0, and n sufficiently large,

we have

L(n, t = n12+3β+2α) > e−
1
4
n−2α

+ A(n, t)−1e−
11
24

n2+β

.

For all sufficiently large n, there is an n × 4t partial Hadamard

matrix for all t > n12.

Proof. We bound the function U(n, t) by obtaining separate bounds for
the logarithms of the two pieces:

u1(n, t, δ) := A(n, t)−1e−
11
24

tδ2 and U(n, t, δ) .
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For U(n, t) to be small, the logarithm

log [u1(n, t, δ)] = −11
24
tδ2 − (2d− n + 1) log 2 + d

2
log(2π) + d

2
log t

of the first piece must be negative and large in absolute value. There-
fore, for fixed n, as t grows the quantity tδ2 must grow. So we put
δ = t−

1
2
+ε, where ε > 0 is small. Since we require δ < n−1, we must be

sure that t
1
2
−ε > n. In any case, setting δ = t−

1
2
+ε, the expression for

log(u1(n, t, δ)) becomes

fε(t) = −11
24
t2ε + d

2
log t− (2d− n + 1) log 2 + d

2
log(2π) .

Notice that
−(2d− n+ 1) log 2 + d

2
log(2π) < 0 .

Therefore
fε(t) ≤ −11

24
t2ε + d

2
log t := gε(t) . (57)

For ε > 0, the function gε(t) attains its maximum

m(ε) = 1
4
dε−1

[

log
(

6
11
dε−1

)

− 1
]

at the point t0(ε) =
(

6
11
dε−1

)1/2ε
. In particular, t0(1/8) = (48

11
d)4 and

m(1/8) = 2d log
(

48
11
de−1

)

. Note that g1/8(n
9) is approximately −n9/4,

so, once t exceeds n8, the function fε(t) rapidly approaches zero. In
any case, putting ε = 1/8 in (57), yields the bound

u1(n, t, t
− 3

8 ) ≤ t
d
2 e−

11
24

t
1
4
. (58)

We now examine the behavior of the second piece

U(n, t, δ) =
[

1 + 1
9
(nδ)6

]t/2[
1 + 1

12
(nδ)4

]t[
1− e−tδ2

]d/2
.

Since 1 + x ≤ ex, we have

logU(n, t, δ) ≤ 1
18
(nδ)6t+ 1

12
(nδ)4t− 1

2
de−tδ2 .

Therefore,

logU(n, t, t−1/2+ε) ≤ 1
18
n6t−2+6ε + 1

12
n4t−1+4ε − 1

2
de−t2ε .

For ε < 1/2, and n fixed, the middle term eventually dominates as t
grows. For ε < 1/4, this term approaches zero. Indeed, for ε = 1/8
and t > n8, we have for n sufficiently large

U(n, t, t−
3
8 ) ≤ en

4t−
1
2 .

Combining this with (58), for t > n8 and n sufficiently large, we have

U(n, t) := min
δ<n−1

{u1(n, t, δ) + U(n, t, δ)}

≤ u1(n, t, t
− 3

8 ) + U(n, t, t−
3
8 ) ≤ en

4t−
1
2 + t

d
2 e−

11
24

t
1
4
.
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This completes the proof of (i).
We now prove (ii). Recall from (46) that

L(n, t, δ) =
[

1 + 4
9
t2(nδ)6

]− 1
2
[

1− 1
12
(nδ)4

]t[
1− e−

1
2
tδ2
]d/2

.

For fixed n and t, we determine when there exists δ ∈ [0, n−1] such that

logL(n, t, δ) > − logA(n, t)− 11
24
tδ2 , (59)

ensuring that L(n, t) > 0. Since e−2x ≤ 1 − x for 0 ≤ x ≤ 1/2, and,
since ex > 1 + x,

logL(n, t, δ) ≥ −2
9
t2(nδ)6 − 1

12
(nδ)4t− 1

4
de−

1
2
tδ2 .

Thus (59) is satisfied if the right-hand side above exceeds the right-
hand side of (59). After rearranging, this is equivalent to

t
(

11
24
δ2 − 1

12
(nδ)4 − 2

9
(nδ)6t

)

≥ 1
2
d log t + 1

2
d
(

log(2π) + 1
2
e−

1
2
tδ2
)

− (2d− n + 1) log(2) .

This inequality certainly holds if we drop the last two terms which
contribute a comparatively small negative quantity as t grows. Thus
we are led to consider the simpler inequality

t(11
24
δ2 − 1

12
(nδ)4 − 2

9
(nδ)6t) ≥ 1

4
n2 log t . (60)

This inequality presents three challenges which we need to overcome.
Firstly, we must ensure that the left-hand side is positive; so we must
have

11
24
δ2 ≥ 1

12
(nδ)4 + 2

9
(nδ)6t . (61)

Secondly, we must find the smallest t for a given n for which the in-
equality has a feasible region for δ. Thirdly, we must ensure that the
conditions

δ < n−1 and t(nδ)3 < 1 , (62)

imposed by Theorem 4.1 hold.
Before we begin, it is helpful to consider the following simplified

version of (60):

fa,b,c(t) =
t(a− bt)

log t
≥ cn2 ,

where a, b, c > 0. For large t, the function fa,b,c(t) is essentially qua-
dratic in t. So ignoring the effect of the log t term, we should expect
there to be a solution if cn2 is less than the maximum 1

4
a2b−1 attained

by the function fa,b,c. Moreover, the solution if it exists will lie in
the interval (0, a/b). The corresponding maximum and interval for
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the inequality (60) are (dropping the constant coefficients which are
immaterial to this argument)

(δ2(nδ)−3 − (nδ))2 and
(

0, (nδ)−2(n−4δ−2 − 1)
)

.

Here we took a = δ2 − (nδ)4 and b = (nδ)6. So, if there is a solution,
we must have

n < δ2(nδ)−3 − (nδ) < δ2(nδ)−3 .

So, for n large, we must have δ−1 > n4. Putting δ = n−4−ε, where
ε > 0, in (60) yields the simplified inequality

t

log t
≥ n10+2ε

(

11
6
− 1

3
n−4−2ε − 8

9
n−10−4εt

)−1
, (63)

where the roles of the various terms on the left-hand side of the original
inequality (60) are now clear. In particular, we now see that for any
ε > 0, as n grows, there is a feasible region for δ when t = n10+2ε+β,
where β > 0, that the term 11

24
tδ2 is the important term, and that

the term 2
9
(nδ)6t presents no difficulty: i.e., the condition (61) can be

satisfied, provided that β < 2ε. Indeed, since δ = n−4−ε, the first part
of condition (62) is already satisfied. However, the second part of (62)
requires that t(nδ)3 < 1, which holds if and only if 4n1−ε+β < 3. Thus
all conditions are satisfied for sufficiently large n provided that β > 0
and ε > 1 + β. Therefore, putting ε = 1 + α+ β, we have

t = n12+3β+2α δ = n−5−β−α (α, β > 0)

and, for all sufficiently large n, these values for t and δ satisfy all
conditions. Feeding these parameters into the lower bound (59) for
log

(

L(n, t, δ)
)

yields the expression:

− 1
12
(4n−4−β−2α)− 2

9
n−2α − 1

4
de−

1
2
n2+β

.

The middle term dominates for large n; so for sufficiently large n,

L(n, t = n12+3β+2α, δ = n−5−β−α) > e−
1
4
n−2α

,

say, and, indeed,

L(n, t = n12+3β+2α) > e−
1
4
n−2α

+ A(n, t)−1e−
11
24

n2+β

.

This completes the proof of (ii). �
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6. The Branching Bound

In this section, we take advantage of the fact that the walk for partial
Hadamard matrices with n rows contains, as projections, the walks for
the partial Hadamard matrices with fewer rows than n. We exploit this
structure to obtain an upper bound on the number of distinct n × 4t
partial Hadamard matrices. We call this the Branching Bound.
The idea is that we can build up any n× t partial Hadamard matrix

by the searching a tree T , say whose nodes at level m correspond to the
m × t partial Hadamard matrices. The parent of the node at level m
corresponding to the matrix A is the node at level m−1 corresponding
to the partial Hadamard matrix obtained by removing the last row of
A. If we choose a total order on Vt, then we can fully specify such a
tree. Any total order on Vt imposes a total order on the set of m × t
partial Hadamard matrices: matrix A is greater than matrix B if their
first j rows agree, and the (j + 1)-th row of matrix A is greater than
the (j + 1)-th row of B. Then we may suppose the i-th node at level
m of T corresponds to the i-th m× t partial Hadamard matrix.
The following lemma allows us to bound the number of nodes at level

m+ 1 in terms of the number of nodes at level m.

Lemma 6.1. If t ≥ m, then any m-dimensional real subspace of Rt

contains at most 2m elements of Vt. Moreover, this bound can be at-

tained for all t ≥ m.

Proof. Let c(1), . . . , c(ℓ) ∈ Vt be ℓ vectors lying in some m-dimensional
real subspace. Form the t× ℓ matrix C whose i-th column is c(i):

C =
[

c(1) c(2) . . . c(ℓ)
]

.

If needs be, we can re-order the columns of C so that the first m
columns of C are linearly independent. (If not, then there is no set of
m linearly independent columns, and the vectors all lie in an m − 1
dimensional subspace.) Moreover, since the t×m matrix comprised of
the first m columns of C has rank m, we may re-order the rows of C
so that the m×m matrix B in the upper-left corner of C is invertible.
Now let s > m, and let b(s) be the m-dimensional vector comprised

of the first m components of c(s). Since c(s) is a linear combination of
the vectors c(1), . . . , c(m), and since B is invertible, there is a unique m-
dimension real vector a(s) such that b(s) = Ba(s). Indeed, c(s) = Ca(s).
Notice that if c(u) is a different column of C such that b(u) = b(s), then
c(u) = c(s). Therefore, since there are at most 2m choices for b(s), we
see that ℓ ≤ 2m. �

We can now prove the following theorem:
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Theorem 6.2. P
(4t)
n (0, 0) ≤ 2n−1−4tP

(4t)
n−1(0, 0).

Proof. For z ∈ Vn−1, define

Q(z) = (zjzk)1≤j<k≤n .

The quantity 11{P} equals 1 if property P holds, and zero otherwise.
The number of n× t partial Hadamard matrices is exactly

∑

y(1)∈Vn

· · ·
∑

y(t)∈Vn

11
{

t
∑

s=1

y
(s)
i y

(s)
j = 0 ∀ 1 ≤ i < j ≤ n

}

.

Letting as = y
(s)
1 for s = 1, . . . , t, this equals

∑

a1∈{−1,1}

(y
(1)
2 ,...,y

(1)
n )∈Vn−1

· · ·
∑

at∈{−1,1}

(y
(t)
2 ,...,y

(t)
n )∈Vn−1

11
{

∑t
s=1 y

(s)
i y

(s)
j = 0

∀ 2 ≤ i < j ≤ n

}

× 11
{

∑t
s=1 asy

(s)
j = 0

∀ 2 ≤ j ≤ n

}

,

and the letting z(s) = (y
(s)
2 , . . . , y

(s)
n ) ∈ Vn−1, we obtain

P (t)
n (0, 0)

= 2−tn
∑

z(1),··· ,z(t)∈Vn−1

11
{

t
∑

j=1

Q(z(j)) = 0
}

∑

a∈Vt

11
{

t
∑

j=1

ajz
(j) = 0

}

. (64)

Next, we apply Lemma 6.1. If {z(1), . . . , z(t)} is a set of t elements
of Vn−1 satisfying

∑t
j=1Q(z

(j)) = 0, then the (n− 1)× t matrix Zt =

[z(1), . . . , z(t)] has rank n − 1. So the solutions to Zta = 0 thus are
contained in a t− (n− 1) vector subspace of Rt. Then, by Lemma 6.1,
the set of a ∈ Vt satisfying

∑t
j=1 ajz

(j) = 0 has cardinality at most

2t−n+1.
Thus,

P (t)
n (0, 0) ≤ 2−n+1 · 2−t(n−1)

∑

z(1),··· ,z(t)∈Vn−1

11
{

t
∑

j=1

Q(z(j)) = 0
}

= 2−(n−1) P
(t)
n−1(0, 0) .

�

The following corollary is immediate:
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Corollary 6.3. For 4t ≥ n ≥ s ≥ 1,

P (4t)
n (0, 0) ≤ 2−(

n
2)+(

s
2) P (4t)

s (0, 0) .

In particular there are at most 2(
n+1
2 ) Hadamard matrices of order n.

This bound is clearly inexact. Direct arguments prove that

P
(4t)
2 (0, 0) = 2−4t

(

4t

2

)

, and P
(4t)
3 (0, 0) = 2−8t(4t)!/(t!)4 .

By using Stirling’s Formula (with error bounds) to approximate the
binomial coefficients above, one can see that the asymptotic formula in
Theorem 2 is actually very good.

7. Conclusion

We have introduced a random walk for each integer n ≥ 3 in which
the probability of returning to the start of the walk after t steps is
proportional to the number of distinct n×t partial Hadamard matrices.
The behavior of this walk when t is close to n is of particular interest.
This paper contains a preliminary analysis of this walk using Fourier
theory on the d-dimensional integer lattice (here d =

(

n
2

)

) which shows
how the walk behaves for t polynomial in n. Consequently, we are able
to estimate the number of distinct n× t partial Hadamard matrices for
t > n12. Even this preliminary analysis yields new facts about designs.
This paper has also completed an important first step in the stan-

dard Fourier-theoretic approach to walks in a discrete lattice. We have
been able to give a fairly complete description of the set of points
λ ∈ Bπ, where the characteristic function ψ(λ) has magnitude equal to
one. In our case, the set has interesting combinatorial structure: for
example, each point in the set corresponds to a graph on n vertices
all of whose degrees are even. We have also obtained some estimates
for the characteristic function by methods which give us a glimpse of
the underlying combinatorial questions which will need to be studied
in order to obtain better more global estimates for the characteristic
function.
Finally, we note that the walks discussed in this paper are just one

example of a walk corresponding to a familiar kind of combinatorial
design. For example, we have carried out elsewhere most of the steps
in this paper for the walks corresponding to balanced incomplete block
designs.
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Appendix A. Some Inequalities

In this appendix, we record and prove inequalities which relate Re(z)t

and Re(zt).
We employ the following version of the Neyman-Pearson Lemma:

Lemma A.1. Let λ0, λ1, . . . , λn be positive real numbers, and let

A0, A1, . . . , An and B0, B1, . . . , Bn

be non-negative real numbers. Then

min
0≤s≤n

{Bs

As

}

≤
∑n

s=0 λsBs
∑n

s=0 λsAs
≤ max

0≤s≤n

{Bs

As

}

.

Proof. Let s0 and s1 satisfy

Bs0

As0

= min
0≤s≤n

{Bs

As

}

and
Bs1

As1

= max
0≤s≤n

{Bs

As

}

.

Then

Bs0

As0

=

∑

0≤s≤n λsAs(Bs0/As0)
∑

0≤s≤n λsAs
≤

∑

0≤s≤n λsBs
∑

0≤s≤n λsAs

≤
∑

0≤s≤n λsAs(Bs1/As1)
∑

0≤s≤n λsAs
=
Bs1

As1

.

�

We can now prove the required inequalities relating Re(zt) to Re(z)t.

Proposition A.2. Let t > 0 be an integer.

(i) For any complex number we have
{

Re(z4t)
(

1 +
[Im(z4t)

Re(z4t)

]2) 1
2
}2

=
{(

1 +
[Im(z)

Re(z)

]2)2t

Re(z)4t
}2

. (65)

In particular,

Re(z4t) ≤ Re(z)4t
(

1 +
[Im(z)

Re(z)

]2)2t

. (66)

(ii) If α = 1−
(

4t
2

)

{

Im(z)
Re(z)

}2

> 0, then

Re(z4t) = Re(z)4t
(

1 +
[Im(z4t)

Re(z4t)

]2)− 1
2
(

1 +
[Im(z)

Re(z)

]2)2t

. (67)

(iii) If α = 1−
(

4t
2

)

{

Im(z)
Re(z)

}2

> 0, then

[Im(z4t)

Re(z4t)

]2

≤
[4t

α

]2[Im(z)

Re(z)

]2

. (68)
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(iv) If α = 1−
(

4t
2

)

{

Im(z)
Re(z)

}2

> 0, then

Re(z4t) ≥ Re(z)4t
(

1 +
[Im(z)

Re(z)

]2)2t(

1 +
[4t

α

]2[Im(z)

Re(z)

]2)− 1
2
. (69)

Proof. For any complex number z and any natural number t, we have

[

Re(z4t)
{

1 +
(Im(z4t)

Re(z4t)

)2} 1
2
]2

= Re(z4t)2
{

1 +
(Im(z4t)

Re(z4t)

)2}

= |z4t|2 ,

and

(|z|2)4t =
[{

1 +
(Im(z)

Re(z)

)2}

Re(z)2
]4t

=
[{

1 +
(Im(z)

Re(z)

)2}2t

Re(z)4t
]2

.

So equation (65) holds. This proves part (i).
To prove part (ii), we must show that if α > 0, then Re(z4t) is

non-negative. Suppose z = a+ ib where a and b are real. Then

Re(z4t) = b4t + a4t
t−1
∑

s=0

(

4t

4s

)

( b

a

)4s[

1− (4t− 4s)(4t− 4s− 1)

(4s+ 1)(4s+ 2)

( b

a

)2]

,

and

Im(z4t) = a4t
t−1
∑

s=0

{

(

4t

4s+ 1

)

( b

a

)4s+1

×
[

1− (4t− 4s− 1)(4t− 4s− 2)

(4s+ 2)(4s+ 3)

( b

a

)2]
}

.

Since, for s ∈ {0, 1, . . . , t− 1},
[

1− (4t− 4s)(4t− 4s− 1)

(4s+ 1)(4s+ 2)

( b

a

)2]

≥ 1−
(

4t

2

)

{ b

a

}2

= α > 0 ,

we have Re(z4t) > 0. This proves part (ii).
We prove part (iii). If we put

λ0 = 1, λs =

(

4t

4s

)

( b

a

)4s

,

A0 = b4t , As =
[

1− (4t− 4s)(4t− 4s− 1)

(4s+ 1)(4s+ 2)

( b

a

)2]

,

and

B0 = 0 , Bs =
(4t− 4s

4s+ 1

)[

1− (4t− 4s− 1)(4t− 4s− 2)

(4s+ 2)(4s+ 3)

( b

a

)2]

,
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then

Re(z4t) =
t−1
∑

s=0

λsAs , and Im(z4t) =
( b

a

)

t−1
∑

s=0

λsBs ,

and

max
s

{Bs

As

}

= max
s

{(4t− 4s

4s+ 1

)

[

1− (4t−4s−1)(4t−4s−2)
(4s+2)(4s+3)

(

b
a

)2]

[

1− (4t−4s)(4t−4s−1)
(4s+1)(4s+2)

(

b
a

)2]

}

.

The argument of the right-hand side is maximized when s = 0. So

max
s

{Bs

As

}

=
4t

α

[

1− 1

3

(

4t− 1

2

)

( b

a

)2]

≤ 4t

α
.

Therefore, applying Lemma A.1, we have
[Im(z4t)

Re(z4t)

]2

≤
[4t

α

]2[Im(z)

Re(z)

]2

.

This proves part (iii). Finally, substituting (68) into (67) gives part (iv).
�
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