Skip to main content
Log in

Cheating-immune secret sharing schemes from codes and cumulative arrays

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

A cheating-immune secret sharing scheme prevents a cheater, who submits a corrupted share, from gaining an advantage in knowing the secret over the honest participants. We revisit two methods, that uses linear codes, to construct Boolean functions satisfying multiple cryptographic criteria. We show that these methods can be used to build new cheating-immune (n, n)-secret sharing schemes. We also revisit two general constructions of secret sharing schemes using cumulative arrays and apply them to build cheating-immune (t, n)-threshold secret sharing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atici, M., Magliveras, S., Stinson, D., Wei, W.: Some recursive constructions for perfect hash families. J. Comb. Des. 4, 353–363 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blakley, G.: Safeguarding cryptographic keys. In: Proc. AFIPS 1979 Natl. Computer Conf. N.Y., vol. 48, pp. 313–317 (1979)

  3. Bellare, M., Rogaway, P.: Robust computational secret sharing and a unified account of classical secret-sharing goals. In: ACM Conference on Computer and Communications Security, pp. 172–184, ACM (2007)

  4. Braeken, A., Nikov, V., Nikova, S.: On cheating immune secret sharing. In: Proc. 25th Symposium on Information Theory in the Benelux, pp. 113–120 (2004)

  5. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cabello, S., Padró, C., Sáez, G.: Secret sharing schemes with detection of cheaters for general access structures. Designs Codes Cryptogr. 25, 175–188 (2002)

    Article  MATH  Google Scholar 

  7. Camion, P., Carlet, C., Charpin, P., Sendrier, N.: On correlation-immune functions. In: Advances in Cryptology - CRYPTO ’91, LNCS, vol. 576, pp. 86–100 (1992)

  8. C. Carlet, “On the Propagation Criterion of Degree l and Order k,” In: EUROCRYPT ’98, LNCS, vol. 1403, pp. 462–474 (1998)

  9. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults. In: FOCS ’85, pp. 383–395 (1985)

  10. P. D’Arco, W. Kishimoto and D. Stinson, “Properties and Constraints of Cheating-Immune Secret Sharing Schemes. Discrete Appl. Math. 154, 219–233 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghodosi, H., Pieprzyk, J., Safavi-Naini, R., Wang, H.: On construction of cumulative secret sharing. In: Proceedings of the Third Australasian Conference on Information Security and Privacy (ACISP’98), LNCS, vol. 1438, pp. 379–390 (1998)

  12. Guo-Zhen, X., Massey, J.: A Spectral Characterization of Correlation-Immune Combining Functions. IEEE Trans. Inf. Theory 34(3), 569–571 (1988)

    Article  MATH  Google Scholar 

  13. Huffman, W.C., Vera Pless: Fundamentals of Error-Correcting Codes, Cambridge University Press, August (2003)

  14. Itoh, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access structure. In: IEEE Globecom 1987, pp. 99–102, (1987)

  15. Jackson, W.-A., Martin, K.: Cumulative Arrays and Geometric Secret Sharing Schemes. In: Advances in Cryptology: Auscrypt ’92, LNCS, vol. 718, pp. 48–55 (1993)

  16. Karnin, E., Greene, J., Hellman, M.: On secret sharing systems. IEEE Trans. Inf. Theory 29, 35–41 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kurosawa, K., Obana, S., Ogata, W.: t-cheater identifiable (k, n) threshold secret sharing schemes. In: CRYPTO 1995, LNCS, vol. 963, pp. 410–423 (1995)

  18. Kurosawa, K., Satoh, T.: Design of SAC/PC(l) of Order k Boolean Functions and Three Other Cryptographic Criteria. In: EUROCRYPT ’97, LNCS, vol. 1233, pp. 434–449 (1997)

  19. Massey, J. L.: Minimal codewords and secret sharing. In: Proc. 6th Joint Swedish-Russian Workshop Inf. Theory, Molle, Sweden, pp. 276–279 (1993)

  20. McEliece, R., Sarwate, D.: On Sharing Secrets and Reed-Solomon Codes. Commun. ACM 24, 583–584 (1981)

    Article  MathSciNet  Google Scholar 

  21. Long, S., Pieprzyk, J., Wang, H., Wong, D.: Generalised cumulative arrays in secret sharing. Designs Codes Cryptogr. 40, 191–209 (2006)

    Article  MathSciNet  Google Scholar 

  22. Ma, W., Lee, M.: New methods to construct cheating immune functions. In: ICISC 2003, LNCS, vol. 2971, pp. 79–86 (2003)

  23. Ma, W., Zhang, F.: New methods to construct cheating-immune multisecret sharing scheme. In: CISC 2005, LNCS, vol. 3822, pp. 384–394 (2005)

  24. Martin, K.: Challenging the adversary model in secret sharing schemes. In: Coding and Cryptography II, Proc. of the Royal Flemish Academy of Belgium for Science and the Arts, pp. 45–63 (2008)

  25. Martin, K., Safav-Naini, R., Wang, H., Wild, P.: Distributing the encryption and decryption of a block cipher. Designs Codes Cryptogr. 36, 263–287 (2005)

    Article  MATH  Google Scholar 

  26. Ogata, W., Kurosawa, K., Stinson, D.: Optimum secret sharing scheme secure against cheating. SIAM J. Discrete Math. 20, 79–95 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pieprzyk, J., Zhang, X.M.: Cheating Prevention in Secret Sharing over GF(p t). In: INDOCRYPT 2001, LNCS, vol. 2247, pp. 79–90 (2001)

  28. Pieprzyk, J., Zhang, X.M.: Constructions of Cheating-Immune Secret Sharing. In: ICICS 2001, LNCS, vol. 2288, pp. 226–243 (2002)

  29. Pieprzyk, J., Zhang, X.M.: On Cheating Immune Secret Sharing. Discret. Math. Theor. Comput. Sci. 6, 253–264 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of 21st ACM Symposium on Theory of Computing, pp. 73–85 (1989)

  31. Renvall, A., Ding, C.: The access structure of some secret sharing schemes. In: Information Security and Privacy, LNCS, vol. 1172, pp. 67–78, Springer-Verlag (1996)

  32. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stinson, D.: Cryptography Theory and Practice, 3rd edn., CRC Press, November (2005)

  34. Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptol. 1, 133–138 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wei, Y., Hu, Y.: New Construction of Resilient Functions with Satisfying Multiple Cryptographic Criteria. In: Proc. of the 3rd International Conference on Information Security InfoSecu ’04, pp. 175–180, ACM, (2004)

Download references

Acknowledgements

This research is supported in part by the National Research Foundation Singapore under the Competitive Research Programme (NRF-CRP2-2007-03). The work of R. dela Cruz is supported in part by the NTU PhD Research Scholarship. He would like to thank Somphong Jitman for some helpful discussions. The authors would like to thank the reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romar dela Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dela Cruz, R., Wang, H. Cheating-immune secret sharing schemes from codes and cumulative arrays. Cryptogr. Commun. 5, 67–83 (2013). https://doi.org/10.1007/s12095-012-0076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-012-0076-4

Keywords

Mathematics Subject Classifications (2010)

Navigation