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Abstract. We describe a systematic framework for using a stream cipher supporting an initialisation
vector (IV) to perform various tasks of authentication and authenticated encryption. These include
message authentication code (MAC), authenticated encryption (AE), authenticated encryption with
associated data (AEAD) and deterministic authenticated encryption (DAE) with associated data. Sev-
eral schemes are presented and rigourously analysed. A major component of the constructions is a
keyed hash function having provably low collision and differential probabilities. Methods are described
to efficiently extend such hash functions to take multiple inputs. In particular, double-input hash func-
tions are required for the construction of AEAD schemes. An important practical aspect of our work
is that a designer can combine off-the-shelf stream ciphers with off-the-shelf hash functions to obtain
secure primitives for MAC, AE, AEAD and DAE(AD).
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1 Introduction

Stream ciphers are one of the basic primitives for performing cryptographic operations. In the
conventional view, a stream cipher is considered to be a pseudo-random generator. It takes as
input a short secret random seed (called the secret key) and produces as output a long random
looking keystream. Encryption is performed by bitwise XORing the keystream to the message.
Decryption is performed by regenerating the keystream (from the shared secret seed) and XORing
it to the ciphertext.

Stream ciphers defined in the above manner are not very convenient for applications. A single
secret key cannot be securely used to encrypt two different messages. So, for each message, it is
required to have a separate secret key. As a result, the key management issue becomes complicated.

In the modern view, a stream cipher SC takes as input a secret key K and an initialisation
vector (IV). One of the early works which advocated this approach was [32] and all proposals in the
estream [2] portfolio support an IV. The IV is not required to be secret. A message M is encrypted
as M ⊕ SCK(IV). The IV is communicated to the receiver publicly, or could be generated at both
ends as a counter value. Flexibility in usage arises from the fact that the same key can now be used
with different messages; the IV only needs to be changed. Since there is no secrecy requirement on
the IV, this is a easier task to manage.

This view of stream ciphers has, however, changed the theoretical model of a stream cipher as
a pseudo-random generator. The keystream that is used to encrypt a particular message, is still
required to appear random to a computationally bounded adversary. So, the requirement is that
for distinct values of IV, the outputs SCK(IV) should appear independent and uniform random to



a computationally bounded adversary. This is theoretically captured by the notion of a pseudo-
random function (PRF), and in the modern view, a stream cipher with IV is modelled as a PRF.
See [6] for further justification of this view.

The starting point of our work is the model of a stream cipher with IV as a PRF. This is a
PRF which takes as input a short fixed-length string and produces as output a long string. We
consider the problem of constructing higher-level primitives using such a PRF. The primitives that
we consider are message authentication code (MAC), authenticated encryption (AE), AE with
associated data (AEAD) and deterministic authenticated encryption (DAE) with associated data.
For each of these primitives, we describe efficient constructions and provide formal security analyses.

All of the primitives that we consider have important practical applications. Efficient methods
to construct them are required to actually deploy cryptographic mechanisms. Previous work has
mostly considered methods to construct these primitives based on block ciphers. Our work is the
first systematic work showing how to obtain these primitives from stream ciphers supporting an
IV.

A core requirement in all the constructions is a keyed hash function which is selected from a
family {Hashτ} by choosing a uniform random τ . For all distinct x and x′ and any y, we require the
probability that Hashτ (x) ⊕ Hashτ (x′) equals y to be low. (We are assuming that Hashτ produces
a fixed-length bit string as output). Such hash functions are called almost XOR universal hash
functions. Starting from [12, 43, 17], constructions and efficient implementations of such functions
have been studied extensively in the literature (see for example [41, 19, 11, 8]).

For the construction of AEAD schemes, we need an extended notion. The above kind of hash
functions take a single input. To handle associated data, the hash function needs to take two inputs.
A double-input hash function cannot be naively constructed from a single-input hash function by
merely concatenating the two inputs. This is because of the fact that even if (X,Y ) is not equal
to (X ′, Y ′), it may still be the case that X||Y = X ′||Y ′. Applying a single-input hash function to
the concatenated value will lead to the same output even though the pairs (X,Y ) and (X ′, Y ′) are
distinct.

Methods are required for extending a single-input hash function to a multi-input hash function.
Iwata and Yasuda [20] have provided a method to handle multiple inputs which work only with
polynomial based hashing. Our work, on the other hand, describes several generic methods which
cover all single-input hash functions.

As mentioned earlier, the constructions that we describe are important from an application
point of view. There are several well known stream ciphers and hash functions. SNOW [15] is a
well-known example. The eSTREAM project [2] has resulted in stream ciphers geared either towards
fast software implementations or for small hardware implementations. Combining a fast software
oriented stream cipher with a fast software oriented hash function using one of the methods proposed
in this work will result in a secure primitive with a fast software implementation. Similarly, one
can combine a hardware oriented stream cipher with a hardware oriented hash function using our
methods to get a secure primitive with small hardware footprint. So, in a sense, our constructions
are general templates for obtaining stream cipher based primitives for MAC, AE, AEAD and
DAE(AD).

Prior and related work. The literature contains several scattered works on using a stream cipher
for MAC and AE. For MAC, the basic idea goes back to [43].

The combined primitive of authenticated encryption was formalised in [22, 4]. Separate defini-
tions of privacy and authenticity of an encryption scheme were given in [5]. An explicit case for
formalisation of nonce-based symmetric encryption has been done in [30].
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Modes of operations of block ciphers to achieve AE have been studied in the literature and
several schemes are known [21, 18, 31, 29, 13, 38]. NIST of USA has standardised one such scheme,
called GCM [24, 14]. The issue of authenticating an associated data was first formally tackled
in [28]. Later works such as [29, 24, 39] incorporated methods to perform AE and at the same time
authenticate an associated data. Deterministic authenticated encryption (with associated data) was
formalised in [33] to model the so-called key-wrap problem. Existing works on provable security
treatment of AE, AEAD and DAE(AD) schemes have almost exclusively focussed on modes of
operations of block ciphers to achieve these functionalities.

A method for achieving AE using a stream cipher is given in [7]. This is one of the several
constructions that we define. As far as we are aware of, there has been no previous work on con-
structing AEAD schemes from a stream cipher with IV. Similarly, there has been no previous work
on constructing DAE(AD) schemes from a stream cipher with IV. Stream cipher based construc-
tions for AE have been proposed as a combined primitive (see for example HELIX [16] and its
later version PHELIX) but have not been very successful. HELIX has been cryptanalysed in [25].
A recent proposal [3], though, provides a combined AE primitive and it remains to be seen how
well it withstands future cryptanalysis.

We would like to point out the differences of our AE constructions with the generic constructions
for AE in [4]. The schemes in [4] provide generic methods to combine a symmetric encryption
scheme (typically a block cipher mode of operation) and a MAC scheme to obtain AE schemes. In
contrast, we provide methods for combining a stream cipher with IV with suitable hash functions
with provable differential properties to obtain AE (and other) schemes. Note that the use of MAC
schemes in [4] is a stronger requirement than the hash functions that we use. Further, the work [4]
pre-dates the notions of AEAD and DAE(AD) and these as well as MAC schemes are not considered
in [4]. There are other differences in the overall approach of our work and that of [4]. We carefully
consider important practical issues such as obtaining the possibly long keys of the hash function
and reducing the number of initialisations of the stream cipher. Such issues are absent in [4] which
is primarily a theoretical work.

Importance of the present work: We start by saying what is not a contribution of this work.
This paper makes no definitional contributions. As mentioned above, the formal notions of the
cryptographic functionalities of authentication, AEAD and DAEAD have already been defined
in several important works in the literature. Constructions of the respective functionalities have,
however, been pre-dominantly from block ciphers.

The current work sets out to achieve a unified and systematic framework for achieving the
above mentioned functionalities using a stream cipher with IV. Relevant practical issues such as
tackling the size of the hash key, avoiding repeated initialisations of the stream cipher are dealt
with carefully. At the same time, the usual provable security guarantees are obtained for the various
constructions.

Though stream ciphers are a fundamental primitive in cryptography, by themselves, however,
they are hardly useful. To be actually used, a practitioner needs secure and efficient methods to
build higher level primitives like MAC, AE(AD) and DAE(AD) schemes from stream ciphers. The
literature, on the other hand, hardly covers this important area of research. To fill this gap, this
work provides the first systematic treatment of this topic and achieves for stream ciphers what many
papers in the literature have together achieved for block ciphers. It will be useful to a practitioner
to find a compact description of the constructions of different important cryptographic primitives
from stream ciphers. Currently, no work exists in the literature with a similar scope and breadth.
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2 Preliminaries

In this section, we introduce a few basic notions. We will use the following notation. Given a binary
string S, let len(S) denote the length of S, i.e., len(S) is the number of bits in S. Given an integer
i with 0 ≤ i ≤ 2n − 1, let binn(i) denote the n-bit binary representation of i.

2.1 Pseudo-Random Function (PRF)

Let D and R be finite non-empty sets and f be a random (but, not necessarily, uniform random)
function from D toR. In other words, f is drawn from the set of all functions from D toR according
to some distribution.

For cryptographic applications, a random function f arises from a function family {FK}K∈K,
FK : D → R where a key K is drawn uniformly at random from the finite set K and f is set to be
equal to FK . The randomness in f arises from the uniform random choice of K.

A possible distinguisher (also called an adversary) A is a probabilistic algorithm which is given
oracle access to f . It adaptively queries the oracle with inputs x(1), . . . , x(q), receiving in return the
responses f(x(1)), . . . , f(x(q)). At the end of the interaction, A outputs a bit. Denote by Af ⇒ 1,
the event that this output is 1.

Let f∗ be a function chosen uniformly at random from the set of all functions mapping D to
R. Adversary A’s interaction with f∗ is defined in a manner similar to the above and denote by
Af∗ ⇒ 1, the event that the output of A after interaction with f∗ is 1. The PRF-advantage of A
in distinguishing f from f∗ is defined to be the following.

Advprf
f (A) = Pr[Af ⇒ 1]− Pr[Af∗ ⇒ 1]. (1)

Informally, the above definition captures the idea that the function f is indistinguishable from
a uniform random function f∗. In the context of function families, the above can be viewed in
the following manner. A uniform random K is chosen and kept secret from the adversary A. The
adversary adaptively queries the function FK on distinct inputs x(1), . . . , x(q) receiving in return
the values FK(x(1)), . . . , FK(x(q)). These values should “look random” to A.

A measure of the amount of interaction of the adversary with the oracle f is the number of
queries q. This measure, however, may not capture the entire picture. The length of the queries
could vary. A better measure is the so-called query complexity. The total query complexity σ of A
is defined to be the total number of bits it provides in all the queries. In other words, this is the
sum of the lengths of all the individual queries, i.e., σ =

∑q
i=1 |x(i)|. The maximum (more precisely,

the supremum) of such advantages over all adversaries which run in time t, make q queries and

have total query complexity σ is denoted by Advprf
f (t, q, σ).

The definition of advantage in (1) does not use the absolute value. Note that for any adversary
A there is another adversary A′ which is the same as A except that it flips the output of A to
provide its output. So, if the advantage of A is negative, then the advantage of A′ is positive. Since
the resource bounded advantage is defined to be the maximum over all adversaries, this value will
always be positive. On the other hand, avoiding absolute values makes it somewhat simpler to work
with the inequalities. This approach, in fact, has been used earlier by other authors.

2.2 Hash Functions

Let {Hashτ} be a family of keyed hash functions on a common domain and a common range. The
key τ is chosen from an appropriate finite set. In this work, we will be taking the range of a hash
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function to be the set of all strings of some fixed length. This set forms an additive group under
the operation ⊕. Two kinds of probabilities [9] are defined for the hash function family.

Collision probability. For all distinct x and x′, the collision probability of Hashτ corresponding
to the pair (x, x′) is Pr[Hashτ (x) = Hashτ (x′)], where the probability is taken over the uniform
random choice of τ .

Differential probability. For all distinct x and x′ and any y, the differential probability of Hashτ
corresponding to the triplet (x, x′, y) is Pr[Hashτ (x)⊕ Hashτ (x′) = y], where the probability is
taken over the uniform random choice of τ .

If all the collision probabilities are bounded above by ε, then Hashτ is said to be almost universal
(ε-AU); if all the differential probabilities are bounded above by ε, then Hashτ is said to be almost
XOR universal (ε-AXU).

We will assume that the input to a hash function is a binary string. Usually hash functions
are defined using some algebraic structure. An input binary string is formatted into a sequence of
elements belonging to the algebraic structure and the digest is computed. This digest is represented
as a fixed length binary string. In its basic or ‘raw’ form, there are two issues regarding hash
functions that we would like to highlight.

1. A hash function need not be defined for all possible input lengths. For example, a hash function
may be defined only for binary strings whose lengths are multiples of 128.

2. Collision and differential probabilities of a hash function can be guaranteed to be low only for
equal length inputs.

Both the above issues are usually tackled by employing suitable padding techniques. The result is a
single-input hash function without any restriction on the input length and which has provably low
collision and differential probabilities for any two inputs (without the restriction of their lengths
being equal). In this work, we will consider hash function which take a vector of strings as input.
Such multi-input hash functions will be constructed from single-input hash functions which have
low collision and differential probabilities only for equal length strings.

There are well known examples of both AU and AXU hash families. Univariate polynomials over
finite fields give rise to such families. For such hash function families, a key τ usually consists of a
fixed number of elements of the underlying finite field and can be represented by a fixed-length bit-
string. The basic idea of polynomial-based hashing yields function families which are AU/AXU only
for fixed-length inputs. These can be modified to handle variable-length inputs. (See for example [8,
40] for methods which work for polynomial hash functions and [11] for a generic method which works
for any hash function.) The output (called a digest) is a short fixed-length string.

Another class of hash families is known. These can also handle variable length inputs and
produce short fixed-length digests. But, the key τ for such hash functions can be quite long. A
prefix of the key having length equal to the length of the message is actually used. In certain cases,
the length of the key-prefix is actually slightly greater than the length of the message to be hashed.
Examples of such hash families are known [17, 11, 35]. In particular, UMAC [11] is a well-known
example which can be used to perform very fast hashing in software.

One issue about using such hash functions is the key. Since the key can be quite long, it is not
practical to store the key. Instead, a stream cipher is used to generate the key. In this work, we will
consider in details how such hash functions can be securely and efficiently combined with a stream
cipher supporting an IV.

For the sake of convenience, we will distinguish two types of hash functions.
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Type-I. For such hash functions, the key length is independent of the message length. Typically,
a key will be a short fixed-length bit string.

Type-II. For such hash functions, the number of bits of the hash key required to produce the
digest is as long as the message length. In some cases, it is actually slightly longer than the
message length. Suppose τ is the hash key required to hash a message M and τ ′ is any string
such that τ is a prefix of τ ′. Then, Hashτ (M) = Hashτ ′(M), i.e., using a key longer than that
necessary to hash a message M does not change the digest.

Distribution of Hashτ (x). Given any fixed x in the domain and any fixed y in the range, the
probability Pr[Hashτ (x) = y] is over the uniform random choice of τ . There is no randomness in
the choices of x and y. In fact, Hashτ (x) is a random variable which is distributed over the range
of the hash function.

As an example, consider Hashτ (x) to be the usual polynomial based hash function over the field
GF (2n). In this case, x is a tuple (x0, . . . , xt), where xi’s are n-bit strings which encode elements
of GF (2n). The definition of polynomial-based Hashτ is as follows.

Hashτ (x0, . . . , xt) = x0 ⊕ τx1 ⊕ · · · ⊕ xtτ t.

For any fixed y in GF (2n) and non-zero x, the probability that Hashτ (x) = y is at most t/2n (which
follows from the fact that a univariate polynomial of degree t over a field has at most t roots).

For other examples of Hashτ (such as the multilinear map from [17]), the random variable
Hashτ (x) is uniformly distributed over the range. One should note that this does not imply that
Hashτ (x) is a “random oracle” or even a PRF which is a much stronger notion: this would require
that for distinct x1, . . . , xk, the values Hashτ (x1), . . . ,Hashτ (xk) “look” independent and uniformly
distributed. The almost uniform distribution of Hashτ (x) does not imply the PRF condition.

For the analysis of most of the schemes, we will not require the almost uniform distribution of
Hashτ (x). This will be required at one or two places and will be mentioned explicitly.

2.3 Stream Cipher With IV

Let SCK : {0, 1}n → {0, 1}L be a stream cipher with IV, i.e., for every choice of K, SCK maps an
IV of length n bits to a string of length L bits. The IV is from an IV-space which is defined to be
{0, 1}n. In other words, initialisation vectors are n-bit strings. The key K is from a suitable (finite)
key space. For all practical designs, keys are at least as long as the IVs [2].

The length L is assumed to be long enough for practical sized messages to be encrypted. For
example, one can fix L to be equal to 232. Given an n-bit IV, in practice there is no requirement to
generate all L bits of SCK(IV). Actual encryption of a message M of ` bits using an initialisation
vector IV is done by XORing the first ` bits of SCK(IV) to the message. So, generating ` bits are
sufficient. By a slight abuse of notation, we will write the encryption of an `-bit message M as
M ⊕ SCK(IV).

In the above, we have taken the output to be a (long) fixed length string. A suitable length
prefix of the output is used to encrypt a message. This allows a clean mathematical description of
the functionality of a stream cipher with IV. An alternative would be to consider the outputs to
be of variable lengths. This causes difficulties in the formulation. Given a particular value of the
IV, the length of the output would not be known a priori. It would depend on the length of the
message to be encrypted. Our formulation avoids such difficulties.

Consider an algorithm to generate the output of a stream cipher from the inputs K and IV.
For most practical stream ciphers [2], such an algorithm goes through two phases. First, there is an
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initialisation phase, in which no output is produced. Then, the output bits begin to be produced
and this phase is called the keystream generation phase. The speed at which the output bits are
produced in the keystream generation phase can be very fast. In comparison, the latency of the
initialisation phase can be significant. As a consequence of the latency in the initialisation phase, for
most practical stream ciphers, it is advisable to avoid repeated initialisations. We take this aspect
into account in our constructions of higher level primitives.

Stream Cipher with IV and PRF: The security assumption on the stream cipher with IV is
that of a pseudo-random function. See [6] for a discussion on the justification of this assumption.

A stream cipher with IV can be considered to be a function family {SCK}K∈K where D = {0, 1}n
(and so, IVs are n-bit strings) and R = {0, 1}L. A random function arises from this family through
the uniform random choice of a key K. For the PRF-assumption, the requirement is that SCK is
computationally indistinguishable from a function which is chosen uniformly at random from the
set of all functions which map {0, 1}n to {0, 1}L. Suppose that the adversary makes a total of q
queries. Each query is an IV and is of length n and so the query complexity σ is q × n. So, it is

sufficient to count only the number of queries. By Advprf
SC(t, q) we will denote the resource-bounded

advantage of an adversary in breaking the PRF-property of SC.

IV usage: Modelling a stream cipher with IV as a PRF restricts the usage of the IV to a nonce,
i.e., the same value cannot be repeated. More explicitly, separate invocations of a stream cipher
have to be done on distinct values of the IV.

2.4 Nonce-Based Message Authentication Code

We will consider deterministic MAC algorithms which utilise a nonce. Such a MAC algorithm
MACK(N,M) is parameterised by a secret key K and takes as input a nonce N and a message M .
The key K is from a finite non-empty set called the key space; the nonce is from the nonce space
which is a set of binary strings of some fixed length; the message M is from a message space which
consists of all binary strings of some maximum length. In particular, len(M) can be equal to 0. The
upper bound on the length of messages ensures that the message space is finite. The output of the
MAC algorithm is a fixed length string tag = MACK(N,M). The set of all possible tags constitute
the tag space.

The key K is secret and is shared between a sender and a receiver. The sender generates tag
and sends (N,M, tag) to the receiver; the receiver regenerates the tag from the received nonce and
the message and compares to the received tag. If they are equal, the receiver accepts, otherwise,
the receiver rejects. Nonce-based MACs have been proposed and Poly1305 [8] is a good example.
MAC algorithms are generally defined without nonces and later we will briefly consider this.

Security of nonce-based deterministic MAC schemes is defined using a game in the following
manner. An adversary A is a probabilistic algorithm which has oracle access to the tag generation
algorithm MACK(·, ·), which is instantiated with a uniform random key K. A adaptively queries the
oracle with inputs (N (1),M (1)), . . . , (N (q),M (q)) and receives in response the corresponding tags
tag(1), . . . , tag(q). The restriction on A is that the nonces N (1), . . . , N (q) have to be distinct. After
the interaction, A produces a forgery (N,M, tag) such that (N,M) is not equal to (N (i),M (i)) for
any 1 ≤ i ≤ q. Note that N may be equal to one of the earlier N (i). Define succ(A) to be the event
that MACK(N,M) = tag, i.e., succ is the event that the forgery provided by the algorithm passes
the verification test.
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The advantage of A in breaking the MAC algorithm is defined to be the probability of the event
succ(A).

Advauth
MAC(A) = Pr[succ(A)].

By AdvMAC(t, q, σ), we denote the maximum advantage of any adversary running in time t, mak-
ing q queries (including the forgery attempt) and having query complexity σ. The query complexity
counts the number of bits in the nonces and also counts the number of bits in the forgery.

2.5 Authenticated Encryption (With Associated Data)

The goal of such a scheme is to perform both encryption and authentication of a message and also
possibly authenticate an additional data or header. There are two deterministic algorithms – the
encryption and the decryption algorithms.

The encryption algorithm AEAD.EncryptK(N,H,M) takes as input a nonce N , a (possibly
empty) header H and a message M . As before, K is from a suitable key space and N is from the
nonce space. The header H can be any binary string of some maximum length and the message can
be any non-empty binary string of some maximum length. The output of AEAD.EncryptK(N,H,M)
is a ciphertext Γ from a suitable ciphertext space. In many AEAD schemes (including the ones we
construct), Γ consists of a pair of strings (C, tag) where the length of C is equal to the length of M
and tag is considered to be the autheticator. The decryption algorithm AEAD.DecryptK(N,H, Γ )
takes as input a nonce N , a header H and Γ and either outputs a message M or outputs ⊥ signifying
that the input is rejected. The usual correctness requirement is to be satisfied, namely,

AEAD.DecryptK(N,H,AEAD.EncryptK(N,H,M)) = M.

We require the message to be a non-empty string. It may be argued that allowing the empty
string as a message permits the use of an AEAD scheme as a MAC algorithm. In such an application,
the message is fixed to be the empty string and the header can be any non-empty string. Formally
speaking, however, the authentication in such a scenario is really of a pair of strings (H,M) where
M is the empty string. This is different from authenticating a single string H. In the former case,
the input to the MAC algorithm is a 2-component vector, while in the latter case it is a single
string. This difference can become important for applications which require to authenticate vectors
of strings. As a result, we do not suggest using an AEAD scheme as a MAC algorithm by fixing
the message to be the empty string.

There are two security requirements on an AE scheme – confidentiality (or privacy) and au-
thenticity. Below we separately define confidentiality and authenticity.

Privacy of an AEAD scheme. As usual, let an adversary A be a probabilistic algorithm. A has
oracle access to AEAD.EncryptK(·, ·, ·) where K is chosen uniformly at random and can adaptively
query the oracle with inputs (N (1), H(1),M (1)), . . . , (N q), H(q),M (q)) receiving in response the cor-
responding outputs (Γ (1), . . . , Γ (q)). The restriction on the queries is that the nonces N (1), . . . , N (q)

must be distinct. Finally, A outputs a bit. Let Areal ⇒ 1 be the event that A outputs the bit 1
after the interaction.

Now consider the interaction of A with an oracle which behaves as follows. On input a triple
(N,H,M), it returns a uniform random string Γ . The length of Γ is equal to the length of
AEAD.EncryptK(N,H,M). This string is independent of all other inputs and responses. Denote
by Arnd ⇒ 1 the event that A outputs the bit 1 after such interaction. The advantage of an
adversary A in breaking the privacy of the AEAD scheme is defined as follows.

Advaead-priv
AEAD (A) = Pr[Areal ⇒ 1]− Pr[Arnd ⇒ 1].
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The maximum of this advantage over all adversaries running in time t, making q queries and having

query complexity σ will be denoted by Advpriv
AEAD(t, q, σ).

Authenticity of an AEAD scheme. As before, the adversary A is a probabilistic algorithm
having oracle access to AEAD.EncryptK(·, ·, ·) where K is chosen uniformly at random. The adver-
sary also has an implicit access to the decryption oracle as we point out later. The goal of the
adversary is to produce a forgery.
A adaptively queries the oracle with inputs (N (1), H(1),M (1)), . . . , (N q), H(q),M (q)) and receives

in response the corresponding outputs (Γ (1), . . . , Γ (q)). The restriction on the queries is that the
nonces N (1), . . . , N (q) are distinct. At the end of the interaction, A outputs a tuple (N,H, Γ ), where
(N,H, Γ ) is not equal to (N (i), H(i), Γ (i)) for any 1 ≤ i ≤ q. The nonceN in the forgery attempt may
be equal to one of the earlier N (i). Define succ(A) to be the event that AEAD.DecryptK(N,H, Γ )
does not return ⊥. Note that the definition of succ(A) requires an implicit access to the decryption
oracle of the AEAD scheme. The advantage of an adversary A in breaking the authenticity of the
AEAD scheme is defined as follows.

Advaead-auth
AEAD (A) = Pr[succ(A)].

The maximum of this advantage over all adversaries running in time t, making q queries and having
query complexity σ will be denoted by Advaead-auth

AEAD (t, q, σ). The number of queries q includes the
forgery attempt and the query complexity counts the bits in the nonces.

AE Schemes. These are defined in a manner similar to that of AEAD schemes. The only difference
is that there is no header or associated data in an AE scheme. Definitions of privacy and authenticity
of AE schemes are obtained from that of AEAD schemes by dropping the header. The superscripts
ae-priv and ae-auth will be used to denote privacy and authenticity for AE schemes.

2.6 Deterministic Authenticated Encryption (With Associated Data)

This is an authenticated encryption (with associated data) scheme which does not use a nonce.
Syntactically, such a scheme is almost the same as that of an AEAD scheme.

It consists of two algorithms DAEAD.EncryptK(H,M) and DAEAD.DecryptK(H,Γ ), where K is
from a suitable key space, H is the header, M is the message and Γ is the ciphertext. Depending
on the application, the header H can be a single binary string; or, a vector consisting of a fixed
number of binary strings; or, a vector of binary strings where the number of such strings can vary.

The encryption algorithm produces Γ as output and the decryption algorithm either rejects its
input (by producing the symbol ⊥) or produces a message. Soundness is ensured by the following
condition.

DAE.DecryptK(H,DAE.EncryptK(H,M)) = M.

Security of DAEAD schemes are defined in much the same way as that for AE schemes. There
are two parts – privacy and authenticity. (See [33] for an approach where the two parts can be
merged into an equivalent single security model.) Since the scheme is deterministic, the adversary
is not allowed to repeat a query to the encryption oracle. For authenticity, a forgery attempt
is a triplet (H,C, tag) where (C, tag) is not equal to the output of any possible previous query

(H,M) to the encryption oracle. As in the case of AEAD, we denote by Advdaead-priv
D (t, q, σ) (resp.

Advdaead-auth
D (t, q, σ)) the maximum advantage of any adversary in breaking the privacy (resp. the

authenticity) of a DAEAD scheme D, where the maximum is over all adversaries running in time
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t, making q queries and having query complexity σ (i.e., sending a total of σ bits in all its queries).
For authenticity, the number of queries includes the forgery attempt.

A DAE scheme is a special case of a DAEAD scheme where there is no header. Conceptually, a
DAE scheme is not much different from an AE scheme. (Similarly, for DAEAD and AEAD schemes.)
This can be seen by considering the nonce-message pair of an AE scheme to be a message of a DAE
scheme. In the security model of an AE scheme, the nonce cannot be repeated, while in a DAE
scheme, the message cannot be repeated. So, considering the nonce to be a part of the message
ensures that messages are not repeated.

This, however, causes a difference in how the two primitives are constructed. While it is true
that messages in a DAE scheme are distinct, it is not necessarily true that there is a specific location
of n bits which have distinct values for different messages. Rather the entire message needs to be
considered as a nonce. This makes the construction of DAE schemes significantly more inefficient
compared to an AE scheme.

In broad terms, a DAE scheme can always be used as an AE scheme: simply consider the pair
(N,M) as the message in the DAE scheme. But, the converse is not true, i.e., an AE scheme cannot
be used as a DAE scheme.

Note: For AE(AD) and DAE(AD), two security conditions are defined – privacy and authenticity.
These are defined against adversaries which can make oracle queries. As per the convention we have
defined and will be following, an adversary against privacy makes q queries whereas an adversary
against authenticity makes q − 1 oracle queries and provides a forgery attempt.

3 Vector-Input Hash Functions

Rogaway and Shrimpton [33] consider the problem of constructing a PRF which can handle a vector
of strings as input. They propose an iterative method which repeatedly applies a single-input PRF
successively to the different components of the vector. It is mentioned in [33] that this procedure
is more efficient than using a padding rule to first convert the vector of strings to a single string
and then applying a single-input PRF to this single string. In the context that [33] considers, this
is perhaps correct. The context is to instantiate the single-input PRF by a block cipher so that the
construction essentially becomes a mode of operation of a block cipher. As such, the parameter of
interest is the number of block cipher invocations to process the vector.

In the context of a stream cipher with IV, however, the parameter of interest changes. Considered
as a PRF, the input is the IV and the output is the (suitably truncated) keystream. Thus, each
application of the PRF involves an initialisation of the stream cipher. As discussed earlier, for most
practical stream ciphers [2] the latency of the initialisation phase is usually significant compared to
the time per byte of the key generation phase. So, for using a stream cipher with IV, it is of interest
to reduce the number of times the stream cipher is applied to different IVs. Using the approach
of [33] to handle a vector of strings will mean that the stream cipher is invoked with different IVs
and hence will be repeatedly initialised. Instead, it is better to encode the vector of strings into a
single string and apply a hash function to the single string. The output of the hash function is then
used as the IV to the stream cipher. In this approach, the stream cipher is initialised only once.

Iwata and Yasuda [20] in a work subsequent to [33] describe a vector-input hash function with
low differential probabilities. The construction is based on polynomial hashing and briefly is the
following. Suppose the field GF (2n) is represented by the polynomial ρ(x) which is irreducible and
of degree n over GF (2). Elements of GF (2n) are considered to be binary polynomials of degree less
than n with addition and multiplication carried out modulo ρ(x).

10



Let τ be the n-bit hash key which is considered to be an element of GF (2n). Let the vector
of inputs to the hash function be (X1, . . . , X`). For each i, if the length of Xi is not a multiple
of n, then it is padded with 10∗ to the next multiple of n; set a constant (over GF (2n)) ci to
be x if Xi required padding; otherwise set ci to be 1. Suppose the blocks of the padded Xi are
Xi,0, . . . , Xi,mi−1 and define Zi = τmi ⊕ τmi−1Xi,0 ⊕ · · · ⊕Xi,mi−1 which is the usual Horner’s rule
based polynomial hash. Each Zi is an element of GF (2n) and so can be represented by a polynomial
of degree at most n− 1 over GF (2). We write Zi(x) to emphasize this representation. Similarly, let
τ(x) be the polynomial representing the secret key τ . The final digest of the hash function for the
input (X1, . . . , X`) is the following:

τ(x)Z1(x)c1 ⊕ τ2(x)Z2(x)c2 ⊕ · · · ⊕ τ `(x)Z`(x)c` (mod ρ(x)).

Multiplication by x can be carried out efficiently and require very little time. Hence, the time
required for multiplications by the constants cis can be ignored. The main cost is the number of
multiplications over GF (2n). This number is `+

∑
i=1 `mi. Essentially, the construction first pads

the strings; hashes them using polynomial hashing; and then hashes the digests (after tweaking
them with the constants) again using polynomial hashing.

Using the Iwata-Yasuda hash function with a stream cipher will avoid the problem of repeated
initialisations. However, it is a specific construction based on polynomial hashing. Our goal, on the
other hand, is more general. We wish to obtain efficient methods for converting a single-input hash
function to a vector-input hash function which will work for all possible single-input hash functions.
This involves several methods for encoding a vector of binary strings into a single binary string and
also suitably composing such encodings with a single-input hash function.

3.1 Encoding Methods

We describe several methods to map a vector of strings to a single string. The parameters of the
encoding method are β ≥ 1 and w = (w1, . . . , wκ) where each wi ≥ 1. Formally, the encoding
method E with parameters w and β is denoted as E [w, β]. Given a vector of strings (A1, . . . , Aκ)
with the length of Ai being at most 2wi − 1, the output of the encoding is the following:

E1[w, β](A1, . . . , Aκ) = A1|| · · · ||Aκ||binw1(A1)|| · · · ||binwκ−1(Aκ−1)||10k (2)

where k is the minimum non-negative integer such that the total length of the right hand side is
a multiple of β. We allow the maximum lengths of the Ais to be different. In AEAD applications,
κ = 2 and A1 is the header while A2 is the message. The maximum length of the header may be
significantly smaller than the maximum length of the message. By allowing w1 < w2, the output of
the above encoding leads to a shorter string.

Instead of appending the lengths at the end of the message, it is possible to append the length
of an input component immediately after the component appears as follows.

E2[w, β](A1, . . . , Aκ) = A1||binw1(len(A1))|| · · · ||Aκ||binwκ(len(Aκ))||10k (3)

where as before k is the least non-negative integer such that the length of the right hand side is a
multiple of β.

An advantage of doing this is that one does not need to carry forward the encodings of the
different lengths to be appended after all the inputs have been read. On the other hand, this
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requires the length of Aκ also to be appended and makes the resulting string longer. Note that the
simpler encoding scheme

A1||binw1(len(A1))|| · · · ||Aκ−1||binwκ−1(len(Aκ−1))||Aκ||10k

will not work. To see this suppose κ = 2, β = 4 and w1 = w2 = 2, i.e., the block length is 4 and
strings are of maximum length 3. Let (A1, A2) = (1, 01) and (A′1, A

′
2) = (10, 1). Then the encoding

of (A1, A2) is 1||01||01||100 and the encoding of (A′1, A
′
2) is 10||10||1||100 and so the two encodings

are equal.
We introduce notation to denote the restricted encodings where w1 = w2 = · · · = wκ = w.

For κ ≥ 1 and binary strings A1, . . . , Aκ each of maximum length 2w − 1, the output of E3[w, β] is
defined to be the following.

E3[w, β](A1, . . . , Aκ) = A1||binw(len(A1))|| · · · ||Aκ||binw(len(Aκ))||10k (4)

where as before k is the least non-negative integer such that the length of the right hand side is a
multiple of β.

These encodings will be used to construct vector-input hash functions. In the following, we
state and prove certain properties of the encodings which will later be used to argue about the
differential probabilities of the constructed hash functions.

Proposition 1. Let κ ≥ 1, (A1, . . . , Aκ) 6= (A′1, . . . , A
′
κ) and set

C = E1[w, β](A1, . . . , Aκ), C ′ = E1[w, β](A′1, . . . , A
′
κ).

Assume that len(C) = ` ≥ `′ = len(C ′). Then

C 6= C ′||0`−`′ . (5)

Further, (5) holds when E1 is replaced by E2.

Note that by definition of E1 (and also E2) both ` and `′ are multiples of β and hence, so is the
difference `− `′.
Proof. By definition C = A1|| · · · ||Aκ||binw1(A1)|| · · · ||binwκ−1(Aκ−1)||10k and let

D = A1|| · · · ||Aκ||binw1(A1)|| · · · ||binwκ−1(Aκ−1).

Similarly, C ′ = A′1|| · · · ||A′κ||binw1(A′1)|| · · · ||binwκ−1(A′κ−1)||10k
′

and let

D′ = A′1|| · · · ||A′κ||binw1(A′1)|| · · · ||binwκ−1(A′κ−1).

Let m = len(D) and m′ = len(D′).
If m > m′ the (m+ 1)st bit of C is 1 while the (m+ 1)st bit of C ′||0`−`′ is 0. So, in this case,

C 6= C ′||0`−`′ .
Suppose now that m = m′ and then k = k′ necessarily follows and as a result ` = `′. The

condition m = m′ means that D and D′ are equal length strings and the condition ` = `′ means
that C and C ′ are equal length strings. These two conditions force k = k′. Consider the last
w1 + · · ·+wκ−1 bits of D and D′. If these are unequal, then D 6= D′ and so C 6= C ′. On the other
hand, if these last bits are equal, then the lengths of Ai and A′i are equal for i = 1, . . . , κ− 1. Since
the lengths of D and D′ are equal, this forces the lengths of Aκ and A′κ to be equal. So, the lengths of
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Ai and A′i are equal for i = 1, . . . , κ. From this and the hypothesis that (A1, . . . , Aκ) 6= (A′1, . . . , A
′
κ),

it follows that D 6= D′ leading to C 6= C ′. Thus, in all cases, C 6= C ′||0`−`′ .
The proof of the statement regarding E2 is a little different. The case when m > m′ is the same.

For the case m = m′, as before, the lengths of D and D′ are equal and so are the lengths of C
and C ′. Again, as before, k = k′. Strip off the last k bits from both C and C ′ leaving D and D′

respectively.

Consider the last wκ bits of both D and D′. If these are unequal, then clearly D and D′ are
unequal. On the other hand, if these are equal, then the lengths of Aκ and A′κ are equal. If these
two strings are unequal, then again D and D′ are unequal. Otherwise, strip off len(Aκ) + wκ bits
from D and D′ and apply the same reasoning to the shorter strings. Continuing this by backward
induction, we will either get D and D′ to be unequal, or we will get Ai = A′i for i = 1, . . . , κ. Since
the last condition is ruled out by hypothesis, it follows that D 6= D′ and so C 6= C ′. ut

Proposition 2. Let κ ≥ 1, (A1, . . . , Aκ) 6= (A′1, . . . , A
′
κ) and set

C = E2[w, β](A1, . . . , Aκ), C ′ = E2[w, β](A′1, . . . , A
′
κ).

Assume that len(C) = ` ≥ `′ = len(C ′) and let E be the suffix of C of length `′. Then E 6= C ′.

Proof. The argument is similar to the argument given for E2 in the proof of Proposition 1. The
argument proceeds backwards from the ends of the strings E and C ′. If k 6= k′, then clearly the last
ones in E and C ′ are at different positions and so the strings are unequal. So, assume that k = k′

and then strip off k + 1 bits from the ends of both E and C ′. Consider now the last wκ bits of the
two shorter strings. If these are not equal, then E and C ′ are unequal. If they are equal, then the
lengths of Aκ and A′κ are equal. If these two strings are unequal, then again E and C ′ are unequal.
Otherwise strip off further len(Aκ) + wκ bits and apply the same argument. Continuing, we will
either get E and C ′ to be unequal, or, Ai = A′i for i = 1, . . . , κ. Since the last condition is ruled
out by hypothesis, we must have E and C ′ to be unequal. ut

Proposition 3. Let κ, κ′ ≥ 1, (A1, . . . , Aκ) 6= (A′1, . . . , A
′
κ′) and set

C = E3[w, β](A1, . . . , Aκ), C ′ = E3[w, β](A′1, . . . , A
′
κ′).

Assume that len(C) = ` ≥ `′ = len(C ′). Then the following holds.

1. C 6= C ′||0`−`′.
2. Let E be the suffix of C of length `′. Then E 6= C ′.

Proof. Unlike the previous proofs, in this case, the number of components in the two input vectors
need not be equal. The argument, though, is similar to the previous proofs.

Consider the first point. If ` > `′, then C ′||0`−`′ has a 0 at the position where C has the last 1
and so the result follows. On the other hand, if ` = `′, then we proceed from the ends of the strings
C and C ′ and argue backwards as in the proof of Proposition 1. This will either result in C 6= C ′

or, we will end up with κ = κ′ and Ai = A′i for i = 1, . . . , κ. Since the last condition is ruled out
by the hypothesis, we must certainly have C 6= C ′.

For the second point, we proceed as in the proof of Proposition 2. Suppose k (resp. k′) zeros
have been padded to obtain C (resp. C ′). If k 6= k′, then the last ones in E and C ′ are in different
positions and so E 6= C ′. Assuming k = k′, strip off the last k + 1 bits from the ends of both E
and C ′. The next w bits of both E and C ′ encode the lengths of Aκ and A′κ′ . (Note that here we
make use of the fact that the lengths of both Aκ and A′κ′ are encoded as w-bit strings.) If these
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encodings are not equal, then E 6= C ′. If they are equal, then we compare Aκ and A′κ′ ; if these are
not equal, then again E 6= C ′; if they are equal, then we strip off Aκ||binw(len(Aκ)) from the ends
of both E and C ′ and proceed by backward induction. This will either show that E 6= C ′ or, show
that κ = κ′ and Ai = A′i for i = 1, . . . , κ. Again, since the last condition is ruled out by hypothesis,
we get the desired result. ut

3.2 Vector Input Hash Functions: AXU for Equal Length Vectors

We describe constructions of hash functions which take as input a vector of strings such that the
differential probabilities are provably low for two vectors of the same length, i.e., for two vectors
having the same number of components.

Let hτ be a single-input hash function which produces an n-bit digest and takes as inputs strings
whose lengths are positive multiples of some block length β. The block length need not be equal to
the digest length n.

Given a single-input hash function hτ and an encoding method E , we define a hash function
parameterised by hτ and E as follows.

Hash1τ [h, E ](A1, . . . , Aκ) = hτ (E [w, β](A1, . . . , Aκ)). (6)

In other words, the vector (A1, . . . , Aκ) is first mapped to the string C = E [κ,w, β](A1, . . . , Aκ)
and then hτ is applied to C.

Theorem 1. Suppose the differential probabilities of {hτ}τ for equal length strings are at most ε.
Further, suppose that for every τ , any string C and all i ≥ 0,

hτ (C) = hτ (C||0βi). (7)

Let (A1, . . . , Aκ) 6= (A′1, . . . , A
′
κ). Then for every α ∈ GF (2n)

Pr[Hash1τ [h, E1](A1, . . . , Aκ)⊕ Hash1τ [h, E1](A′1, . . . , A′κ) = α] ≤ ε.

Here the probability is taken over the uniform random choice of τ . Further, the result holds if E1 is
replaced by E2.

The property given by (7) will be referred to as the null extension property of hτ .
Proof. Let C = E1[w, β](A1, . . . , Aκ) and C ′ = E1[w, β](A′1, . . . , A

′
κ). Assume without loss of

generality that len(C) = ` ≥ `′ = len(C ′). From Proposition 1 we have C 6= C ′||0`−`′ .
By the null extension property, hτ (C ′) = hτ (C ′||0`−`′). So,

Pr[h(κ)τ (A1, . . . , Aκ)⊕ h(κ)τ (A′1, . . . , A
′
κ) = α]

= Pr[hτ (E [w, β](A1, . . . , Aκ))⊕ hτ (E [w, β](A′1, . . . , A
′
κ)) = α]

= Pr[hτ (C)⊕ hτ (C ′) = α]

= Pr[hτ (C)⊕ hτ (C ′||0`−`′) = α]

≤ ε.

The last inequality follows from the differential property of {hτ}τ on equal length strings.
The crucial property of E1 used in the above argument is that C 6= C ′||0`−`′ . From Proposition 1,

this property also holds for the encoding method E2 and so the statement about E2 also holds. ut
Several well known hash functions satisfy the conditions of Theorem 1. We discuss these below.
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Multi-Linear Hash Function [17, 43]: Let IF be a finite field such that the elements of IF can be
encoded as β-bit strings. An input to hτ is a sequence M0,M1, . . . ,Mt−1 of β-bit strings considered
to be elements of IF. The key τ is also a sequence of K0,K1, . . . of elements from IF. The output of
hτ is defined to be

Y = K0M0 +K1M1 + · · ·+Kt−1Mt−1.

It is easy to show that for equal length sequences, the differential probabilities of {hτ}τ are bounded
above by 1/#IF. The portion of the key that is used to hash an input is as long as the input itself.
It is easy to see appending all-zero β-bit blocks does not change the value of the digest and so the
null extension property holds for hτ defined as above. In this construction, the digest is an element
of IF and so the digest can be represented using β bits.

A variant of the multi-linear hash function is the so-called Toeplitz construction. As above,
let the input be a sequence M0,M1, . . . ,Mt−1 of elements of IF. The key as before is a sequence
K0,K1, . . . of elements from IF where b is a parameter to the construction. The output is defined
to be Y0||Y1|| · · · ||Yb−1 where Yi are β-bit strings representing elements of IF and are computed as
follows.

Y0 = K0M0 +K1M1 + · · ·+Kt−1Mt−1

Y1 = K1M0 +K2M1 + · · ·+KtMt−1

· · · · ·
Yb−1 = Kb−1M0 +KbM1 + · · ·+Kt+b−1Mt−1.

Here the size n of the digest is n = bβ whereas the input blocks are each β-bit strings. To hash a
t-block input, t+ b key blocks are required. It is known that the differential probabilities of such a
hash function for equal length sequences is 1/(b×#IF). Clearly, this construction also satisfies the
null extension property.

Pseudo-Dot Product [44]: A method of evaluating inner products was described by Winograd [44]
and in [10] it was pointed out that this leads to a fast hash function. Let IF be a finite field such
that its elements can be encoded as γ-bit strings and set β = 2γ. The input to the hash function is a
sequence of M0, . . . ,M2t−1 of γ-bit strings considered to be elements of IF. (Note that this sequence
can be also be seen as a sequence of length t consisting of β-bit strings.) The key K0,K1, . . . is also
a sequence of elements from IF. The output is a γ-bit string and is defined to be the following.

(M0 +K0)(M1 +K1) + (M2 +K2)(M3 +K3) + · · ·+ (M2t−2 +K2t−2)(M2t−1 +K2t−1).

Appending all-zero β-bit blocks to the input does not change the digest. So, this hash function
satisfies the null extension property. The differential probabilities are bounded above by 1/#IF.

As in the case of multi-linear hash function, a Toeplitz version of the pseudo-dot product can
be defined hashing the input b times using shifted versions of the key. The idea is similar except
that the successive shifts of the key is by two blocks, i.e., β bits. The digest is of size bγ and the
differential probabilities are bounded above by 1/(b × IF). Again, it is easy to check that the null
extension property holds for the Toeplitz version.

NH and NHT [11]: A variant of the pseudo-dot product construction has been proposed in [11]
and has been called the NH hash function. Instead of a finite field, the construction works with
integer arithmetic. The input M0,M1, . . . ,M2t−1 consists of γ-bit strings and set β = 2γ. The
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key K0,K1, . . . also consists of γ-bit strings. The output of the hash function is defined to be the
following quantity:

(K0 +γ M0)(K1 +γ M1) + · · ·+ (K2t−2 +γ M2t−2)(K2t−1 +γ M2t−1) (mod 2β).

Here +γ denotes addition modulo 2γ and the final sum is evaluated modulo 2β. The digest is a
β-bit string and the collision probabilities are bounded above by 1/2γ . (Differential probabilities
have been analysed in [23].) Appending all-zero β-bit blocks to the input clearly does not change
the digest and so the hash function satisfies the null extension property. The Toeplitz variant of NH
has also been defined in [11]. This has been denoted NHT and a bound on the collision probability
of NHT has been obtained. Again, NHT satisfies the null extension property.

Polynomial Hashing: As before, let IF be a finite field and let β be such that elements of IF can be
encoded as β-bit strings. The input M0, . . . ,Mt−1 to the hash function consist of elements of IF.
The key τ is a single element of IF. The output is defined to be the following:

M0τ +M1τ
2 + · · ·+Mt−1τ

t.

The output is an element of IF (and so a β-bit string). The differential probabilities are bounded
above by t/#IF. Appending all-zero β-bit blocks to the input does not change the digest and so
the function satisfies the null extension property.

There is one problem, however, with this construction. The usual efficient way of evaluating a
polynomial is Horner’s rule. If the input blocks M0,M1, . . . are provided as input in order, then
applying Horner’s rule results in the output to be defined as

Hornerτ (M0, . . . ,Mt−1) = M0τ
t +M1τ

t−1 + · · ·+Mt−1τ. (8)

While the differential probability remains unchanged, this function no longer satisfies the null
extension property. So, Theorem 1 cannot be applied to polynomial hashing defined in this form.
We prove a separate result to tackle this case.

Theorem 2. Let
(A1, . . . , Aκ) 6= (A′1, . . . , A

′
κ);

C = E2[w, β](A1, . . . , Aκ) and C ′ = E2[w, β](A′1, . . . , A
′
κ);

len(C) = ` ≥ `′ = len(C ′).
Then for every α ∈ GF (2n)

Pr[Hash1τ [Horner, E2](A1, . . . , Aκ)⊕ Hash1τ [Horner, E2](A′1, . . . , A′κ) = α] ≤ t/#IF.

Here the probability is taken over the uniform random choice of τ and t is the number of β-bit
blocks in C.

Note that the encoding method E2 is used in this case.

Proof. Let C = E2[w, β](A1, . . . , Aκ) and C ′ = E2[w, β](A′1, . . . , A
′
κ). Without loss of generality

assume that len(C) = ` ≥ `′ = len(C ′). Let E be the suffix of C of length `′. From Proposition 2,
we have E 6= C ′.

Both ` and `′ are multiples of β and we can parse C and C ′ into β-bit blocks. Let the blocks of C
be M0, . . . ,Mt−1 and those of C ′ be M ′0, . . . ,M

′
t′−1. Then E consists of the blocks Mt−t′ , . . . ,Mt−1.
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The condition E 6= C ′ ensures that there is an i in {0, . . . , t′ − 1} such that Mt−t′+i 6= M ′i . As a
result,

Hash1τ [Horner, E2](A1, . . . , Aκ)⊕ Hash1τ [Horner, E2](A′1, . . . , A′κ)

is a non-zero polynomial over IF of degree at most t and from this the result follows. ut
GCM [24] uses a hash function called GHASH which uses polynomial based hashing using

Horner’s rule. The construction is essentially a double-input hash function, though, this is not
explicitly mentioned. A fast polynomial based hash function is Poly-1305 [8]. The description of
Poly-1305 is at the byte level. A message M consists of a sequence of bytes. These are formatted
into segments where each segment consists of 16 bytes and the last segment has possibly less
than 16 bytes. A one is appended to each segment; for the last segment, after appending the
one, further zeros are appended (if required) so that the segment length comes to 129 bits. As
a result of this padding, each segment length becomes 129 bits. Denote by E-Poly1305(M) the
output of this padding scheme. It has been shown in [8], that for any integer u, if E-Poly1305(M)−
E-Poly1305(M ′)− u ≡ 0 mod 2130 − 5, then M = M ′.

The digest is obtained by using Horner’s rule to evaluate a polynomial at a point which is
equal to the key of the hash function. This polynomial is defined by the segments which form the
coefficients of the polynomial. Denote the digest as Hornerτ (E-Poly1305(M)), where τ is the key.

Poly1305 can be extended to handle vector inputs in the following manner. Fix κ ≥ 1 and let
w1 = · · · = wκ = 32, i.e., each component of the input vector has maximum length 232 − 1. Since
Poly1305 operates at byte level, we set β = 8. Then the vector extension of Poly1305 is defined as
follows.

(A1, . . . , Aκ)
τ7→ Hornerτ (E-Poly1305(E2[κ, (32, . . . , 32), 8](A1, . . . , Aκ))).

Following Theorem 2, it is possible to show that the differential probabilites of this map are the
same as those of Poly1305. The basic idea is modular, i.e., the vector of strings (A1, . . . , A2) is
encoded using A2 and then simply Poly1305 is applied to the resulting string. In other words, one
only needs to apply a simple wrapper layer on top of Poly1305.

A family of fast (single-input) hash functions have been proposed by Bernstein [10] based on an
earlier work by Rabin and Winograd [27] and the family has been called the BRW functions in [37].
This family does not satisfy the null-extension property and neither can the method of Theorem 2
be applied to it. So, the BRW hash function cannot be extended to handle vector inputs using the
methods described so far. More generally, we would like to obtain an extension technique which
does not depend on special properties of the underlying hash function.

Let {ψρ}ρ be a family of functions where for each ρ, ψρ maps n bits to n bits and satisfies the
following differential property: For γ 6= γ′ and for any n-bit string α, Pr[ψρ(γ)⊕ψρ(γ′) = α] = 1/2n.
Such functions ψ can be constructed using the so-called powering-up method [29] and from (word-
oriented) linear feedback shift registers [36].

The construction of the general vector-input hash function is based on ψρ, the encoding method
E1 and a single-input hash function hτ . The key to the extended hash function consists of the pair
(ρ, τ).

Hash2τ,ρ[h, ψ, E1](A1, . . . , Aκ) = hτ (E1[κ,w, β](A1, . . . , Aκ))⊕ ψρ(binn(r)) (9)

where r is the number of β-bit blocks in E1[κ,w, β](A1, . . . , Aκ).

Theorem 3. Suppose the differential probabilities of {hτ}τ for equal length strings are at most ε.
Let (A1, . . . , Aκ) 6= (A′1, . . . , A

′
κ). Then for every α ∈ GF (2n)

Pr[Hash2τ,ρ[h, ψ, E1](A1, . . . , Aκ)⊕ Hash2τ,ρ[h, ψ, E1](A′1, . . . , A′κ) = α] ≤ ε.
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Here the probability is taken over the uniform random choice of (τ, ρ).

Proof. Let C = Hash2τ,ρ[h, ψ, E1](A1, . . . , Aκ), C ′ = Hash2τ,ρ[h, ψ, E1](A′1, . . . , A′κ) and the number
of β-bit blocks in C and C ′ be r and r′ respectively. First suppose that r 6= r′. Then

Pr[Hash2τ,ρ[h, ψ, E1](A1, . . . , Aκ)⊕ Hash2τ,ρ[h, ψ, E1](A′1, . . . , A′κ) = α]

= Pr[hτ (C)⊕ ψρ(binn(r))⊕ hτ (C ′)⊕ ψρ(binn(r′)) = α]

= Pr[ψρ(binn(r))⊕ ψρ(binn(r′)) = α⊕ hτ (C)⊕ hτ (C ′)]

≤ 1

2n
.

The last inequality follows from the differential property of ψ.
Now suppose that r = r′ and so the lengths of C and C ′ are equal. Using Proposition 1, we

have C 6= C ′. Then

Pr[Hash2τ,ρ[h, ψ, E1](A1, . . . , Aκ)⊕ Hash2τ,ρ[h, ψ, E1](A′1, . . . , A′κ) = α]

= Pr[hτ (C)⊕ ψρ(binn(r))⊕ hτ (C ′)⊕ ψρ(binn(r′)) = α]

= Pr[hτ (C)⊕ hτ (C ′) = α]

≤ ε.

The last inequality follows from the differential property of hτ . Since 1/2n ≤ ε, the result follows.
ut

Notes:

1. For both Hash1 and Hash2, the value of κ should be at least 1. Apart from this there are
no other restrictions on κ. So, these constructions can be applied on vectors having different
number of components. The guarantee on differential probabilities, however, hold only for two
vectors having the same number of components.

2. For AEAD applications, we will require to hash a pair of strings. For both Hash1 and Hash2,
the encoding is of the type where the first string is followed by the second string. Typically,
the first string will be the header and the second string will be the message. The header may
remain constant throughout a session while the message will change. So, it will be advantageous
to process the header once and store the result.

3.3 Vector Input Hash Functions: AXU for Variable Length Vectors

The hash constructions described so far guarantee low differential probabilities only for two vectors
having the same number of components. It is of interest to consider hash functions which take as
input a vector of strings such that low differential probabilities are guaranteed even for two vectors
having different number of components.

The generic constructions themselves are actually Hash1 and Hash2, but, the underlying encod-
ing of a vector of strings to a single string is different. The third encoding defined in Section 3.1
is used. For single-input hash functions satisfying the null extension property or the hash function
defined by the Horner’s rule, Hash1 is used. For general single-input hash functions, Hash2 is used.
The constructions are as follows:
•If h satisfies null extension, or, h = Horner:

Hash1τ [h, E3](A1, . . . , Aκ) = hτ (E3[w, β](A1, . . . , Aκ)).
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•If h is a general hash function:

Hash2τ,ρ[h, ψ, E3](A1, . . . , Aκ) = hτ (E3[w, β](A1, . . . , Aκ))⊕ ψρ(binn(r))

where r is the number of β-bit blocks in E3[w, β](A1, . . . , Aκ).

The results on differential probabilities of these constructions follow from the property of E3
given in Proposition 3. We state these results below. Using Proposition 3, the proofs of these results
are similar to the proofs of Theorems 1, 2 and 3 and so are omitted.

Theorem 4. Suppose the differential probabilities of {hτ}τ for equal length strings are at most ε.
Further, suppose that {hτ}τ satisfies the null extension property. Let (A1, . . . , Aκ) 6= (A′1, . . . , A

′
κ′).

Then for every α ∈ GF (2n)

Pr[Hash1τ [h, E3](A1, . . . , Aκ)⊕ Hash1τ [h, E3](A′1, . . . , A′κ′) = α] ≤ ε.

Here the probability is taken over the uniform random choice of τ .

Theorem 5. Let
(A1, . . . , Aκ) 6= (A′1, . . . , A

′
κ′);

C = E3[w, β](A1, . . . , Aκ) and C ′ = E3[w, β](A′1, . . . , A
′
κ′);

len(C) = ` ≥ `′ = len(C ′).
Then for every α ∈ GF (2n)

Pr[Hash1τ [Horner, E3](A1, . . . , Aκ)⊕ Hash1τ [Horner, E3](A′1, . . . , A′κ′) = α] ≤ t/#IF.

Here the probability is taken over the uniform random choice of τ and t is the number of β-bit
blocks in C.

Theorem 6. Suppose the differential probabilities of {hτ}τ for equal length strings are at most ε.
Let (A1, . . . , Aκ) 6= (A′1, . . . , A

′
κ′). Then for every α ∈ GF (2n)

Pr[Hash2τ,ρ[h, ψ, E3](A1, . . . , Aκ)⊕ Hash2τ,ρ[h, ψ, E3](A′1, . . . , A′κ′) = α] ≤ ε.

Here the probability is taken over the uniform random choice of (τ, ρ).

3.4 Vector Input Hash Function: Parallel Processing of the Components

There is a limitation of the methods described so far. In all these methods, the strings in the input
vector have to be processed by the underlying hash function in a sequential manner one after the
other. There is no scope for processing the strings in parallel. We next discuss how this can be done.
The basic idea is to use a two-level hashing scheme [42, 40] where in the first level, the individual
strings are hashed and in the second level, the outputs of the first level are hashed. Independent
keys are used for the two levels.

There is a simplifying issue. The outputs of the first level are fixed length strings and so, the
issue of tackling variable length strings at the second level is not required. So, the outputs of the
first level are concatenated, suitably padded and hashed. The padding is also effected by one of the
encoding methods specialised to a single-input string. One advantage of this approach is that the
issue of variable number of components is automatically taken care of.
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Encoding method E1[w, β] will be used with κ = 1 and so w = (w1). When κ = 1, for E1 the
value of w1 is not used. To simplify notation, we will denote the simplified encoding method as
simply E1[β] and is defined as follows.

E1[β](A) = A||10k. (10)

As before, k is the minimum non-negative integer such that the length of the right hand side is a
multiple of β. The expression in (10) is to be contrasted with E3[w, β](A) = A||binw(len(A))||10k,
where k is the minimum non-negative integer which makes the length of the right hand side to be
a multiple of β.

We describe two-level extensions of Hash1 and Hash2. Depending on the nature of the underlying
single-input hash function h, three concrete instantiations are obtained.

• h satsifies the null extension property:

Hash1
(2)
τ,τ ′ [h, E1[β]](A1, . . . , Aκ) = Hash1τ ′ [h, E1[β]](str1|| · · · ||strκ)

= hτ ′(E1[β](str1|| · · · ||strκ))

where for i = 1, . . . , κ, stri = Hash1τ [h, E1[β]](Ai) = hτ (E1[β](Ai)).

• h = Horner:

Hash1
(2)
τ,τ ′ [Horner, E3[w, β]](A1, . . . , Aκ) = Hash1τ ′ [Horner, E3[w, β]](str1|| · · · ||strκ)

= Hornerτ ′(E3[w, β](str1|| · · · ||strκ))

where for i = 1, . . . , κ, stri = Hash1τ [Horner, E3[w, β]](Ai) = Hornerτ (E3[w, β](Ai)).

• General h:

Hash2
(2)
τ,ρ,τ ′,ρ′ [h, ψ, E3[w, β]](A1, . . . , Aκ) = Hash2τ ′,ρ′ [h, ψ, E3[w, β]](str1|| · · · ||strκ)

= hτ ′(E3[w, β](str1|| · · · ||strκ))⊕ ψρ′(r′)

where for i = 1, . . . , κ, stri = Hash2τ,ρ[h, E3[w, β]](Ai) = hτ (E3[w, β](Ai))⊕ ψρ(ri); r′ is the number
of β-bit blocks in E3[w, β](str1|| · · · ||strκ) and ri is the number of β-bit blocks in E3[w, β](Ai).

It is to be noted that for all the three constructions, the individual stris can be computed in
parallel and then concatenated at the end and hashed. In situations where such parallelism can be
utilised, better performance results will be obtained.

The constructions achieve low differential probabilities for vectors with variable number of
components. These follow from Theorems 1, 2 and 3. We provide the proof of Theorem 7 with the
proofs of the results which follow being similar.

Theorem 7. Suppose the differential probabilities of {hτ}τ for equal length strings are at most ε.
Further, suppose that {hτ}τ satisfies the null extension property. Let (A1, . . . , Aκ) 6= (A′1, . . . , A

′
κ′).

Then for every α ∈ GF (2n)

Pr[Hash1
(2)
τ,τ ′ [h, E1](A1, . . . , Aκ)⊕ Hash1

(2)
τ,τ ′ [h, E1](A

′
1, . . . , A

′
κ′) = α] ≤ 2ε.

Here the probability is taken over the independent and uniform random choices of τ and τ ′.
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Proof. Let stri = Hash1τ [h, E1[β]](Ai) and str′j = Hash1τ [h, E1[β]](A′j). Set str = str1|| · · · ||strκ and
str′ = str′1|| · · · ||str′κ′ . We compute as follows.

Pr[Hash1
(2)
τ,τ ′ [h, E1](A1, . . . , Aκ)⊕ Hash1

(2)
τ,τ ′ [h, E1](A

′
1, . . . , A

′
κ′) = α]

= Pr[Hash1τ ′ [h, E1[β]](str)⊕ Hash1τ ′ [h, E1[β]](str′) = α]

= Pr[str = str′] + Pr[Hash1τ ′ [h, E1[β]](str)⊕ Hash1τ ′ [h, E1[β]](str′) = α|str 6= str′]

= Pr[str = str′] + ε.

The last inequality is over the randomness of τ ′ and follows from Theorem 1. We next consider the
event str = str′. This event necessarily implies that κ = κ′.

Pr[str = str′] = Pr

[
κ∧
i=1

stri = str′i

]
≤ Pr[str1 = str′1]

= Pr[Hash1τ [h, E1[β]](A1) = Hash1τ [h, E1[β]](A′1)]

≤ ε.

The last inequality is over the randomness of τ and again follows from Theorem 1. ut

Theorem 8. Let
(A1, . . . , Aκ) 6= (A′1, . . . , A

′
κ′);

C = E3[w, β](A1, . . . , Aκ) and C ′ = E3[w, β](A′1, . . . , A
′
κ′);

len(C) = ` ≥ `′ = len(C ′).
Then for every α ∈ GF (2n)

Pr[Hash1
(2)
τ,τ ′ [Horner, E2](A1, . . . , Aκ)⊕ Hash1

(2)
τ,τ ′ [Horner, E2](A

′
1, . . . , A

′
κ′) = α] ≤ 2t/#IF.

Here the probability is taken over the independent and uniform random choices of τ and τ ′ and t
is the number of β-bit blocks in C.

Theorem 9. Suppose the differential probabilities of {hτ}τ for equal length strings are at most ε.
Let (A1, . . . , Aκ) 6= (A′1, . . . , A

′
κ′). Then for every α ∈ GF (2n)

Pr[Hash2Υ,Υ ′ [h, ψ, E3](A1, . . . , Aκ)⊕ Hash2Υ,Υ ′ [h, ψ, E3](A′1, . . . , A′κ′) = α] ≤ 2ε.

Here Υ = (τ, ρ), Υ = (τ ′, ρ′) and the probability is taken over the independent and uniform random
choices of τ, ρ, τ ′ and ρ′.

3.5 A Summary of the Hash Function Constructions

The previous sections have described several types of vector-input hash functions. At a broad level,
the constructions can be divided into two different groups – one group where the AXU property is
guaranteed only for vectors having the same number of components while the second group ensures
AXU property even for vectors having different number of components.

Encoding methods E1 and E2 are used for the first kind of construction while E3 is used for the
second kind. Both E1 and E2 allow the maximum lengths of the individual strings to be different
while for E3 all these maximum lengths must be equal. Further, E1 does not append the length
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of the last string, but both E2 and E3 do so. As a result, the length of encodings using E2 will be
the shortest while the length of encoding using E3 will be the longest which will in turn affect the
efficiency of the hashing.

The construction of vector-input hash function is also determined to a certain extent by prop-
erties of the underlying single-input hash function. If this hash function satisfies the null extension
property, then the construction is the simplest; the special and important case of hashing using
Horner’s rule is tackled separately and a general construction is provided when there is no condition
on the single-input hash function.

Two-level hashing is used to obtain constructions where the individual components of the vectors
can be processed in parallel. This eliminates some of the complexities of the encoding method. While
two-level hashing provides opportunities for parallelism, the total amount of computation will be
somewhat more so that a strictly sequential method for evaluating such hashes will be a little slower
than the other hash functions that have been described. An advantage of using two-level hashing
is that AXU property for variable length vectors is automatically achieved.

4 MAC Schemes from Stream Ciphers

As mentioned earlier, a PRF whose output consists of binary strings of some fixed length can be
used as a MAC scheme. Alternatively, one can consider nonce-based MAC schemes in situations
where a nonce is available. In this section, we describe constructions of nonce-based MAC schemes
and fixed output length PRF from stream ciphers with IV.

4.1 Nonce-Based MAC

A well-known method [43] for constructing a MAC is to combine a PRF with a hash function in
the following manner: given a nonce N and a message M , the digest is defined to be

tag = Hashτ (M)⊕ PRFK(N). (11)

The secret key of the MAC algorithm is (K, τ), i.e., it consists of the secret key K of the PRF and
the secret key τ of the hash function.

If EK : {0, 1}n → {0, 1}n is the encryption function of a block cipher, then one can define a
MAC scheme with key (K, τ) which takes (N,M) to Hashτ (M)⊕EK(N). This construction replaces
the PRF in (11) by the block cipher EK . Analysis of the block cipher based MAC has been done
in [41, 9]. This analysis takes into account the fact that the block cipher is a permutation which is
not true if a general PRF is used.

When using a stream cipher with IV, the PRF in (11) is replaced by SC, i.e., tag = Hashτ (M)⊕
SCK(N). Here N plays the role of the IV and are n-bit strings. As long as τ is short, i.e., Hash
is a Type-I hash function, the above construction is efficient and practical. For a Type-II hash
function, the hash key τ is very long. Generating such a long uniform random bit string and storing
it securely is very difficult. This reduces the practicability of the scheme.

A MAC scheme is shown in Table 1. This can be instantiated using either Type-I or Type-II
hash function. For κ = 1, the integrity algorithm [1] of 3GPP is a variant of the scheme given in
Table 1. The difference is that the values of R and τ are produced as (τ,R) = SCK(N). Compared
to the scheme in Table 1, this change does not improve the efficiency or the practicability. So, we
have chosen to ignore this variant.
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Table 1. SC-NMAC scheme: a nonce based MAC built from a stream cipher with IV. The length of R is equal to the
length of the digest of the hash function Hash. The key to the hash function is τ which could be made up of several
sub-keys as discussed in Section 3. N is the nonce and (M1, . . . ,Mκ), κ ≥ 1, is the vector of strings that is to be
authenticated.

SC-NMACK(N,M1, . . . ,Mκ)
(R, τ) = SCK(N);
tag = Hashτ (M1, . . . ,Mκ) ⊕R;

return tag.

The analysis of the security of the MAC construction (as well as the later constructions) will
involve several stages of analysis of conditional probabilities. A useful fact to keep in mind while
following this analysis is the following simple result.

Proposition 4. Let E and F be events and suppose that F is the disjoint union of c other events
F1, F2, . . . , Fc such that Pr[E|Fi] ≤ ε for i = 1, . . . , c. Then Pr[E|F ] is also at most ε. Further, if
Pr[F ] = 1, then Pr[E] ≤ ε.

The basic idea of the construction is the following. Assume that on distinct inputs SC produces
independent and uniform random strings. Then the mask R and the hash key τ can be assumed to
be independent and uniform random. The hash function is used on the message vector to produce
the digest. Assuming that the hash function is properly chosen, these digests will be distinct and
these are masked by the independent values of the mask R. So, for distinct values of the nonces,
the final tags will appear independent and uniform random to an adversary.

There are two assumptions involved in the security analysis. The first is that SC is a secure PRF
and the second is that the hash function has low differential probabilities. The first assumption is
computational whereas the assumption on the hash function is information theoretic. Given any
concrete SC, the PRF assumption about it cannot be verified. In contrast, the low differential
probability assumption on the hash function can be provably established. So, the only unproved
assumption is the PRF assumption on SC.

We first consider the case where κ = 1, i.e., the hash function is a single-input function. This
result then readily generalises to the case of vector input hash function where the number of
components in the vector can either be fixed or be variable.

Theorem 10. Suppose κ = 1 and {Hashτ} is ε-AXU with ε ≥ 1/2n. Then

Advauth
SC-NMAC(t, q, σ) ≤ Advprf

SC(t+ t′, q) + ε.

Here t′ is the time required to hash q messages of total bit length σ plus some bookkeeping time.

Proof. In the first standard reduction, SCK is replaced by a random oracle. On distinct inputs,
this oracle returns independent and uniform random strings of appropriate lengths. The standard
argument is the following. Let A be an adversary attacking the MAC scheme. Using A, an adversary
B attacking the PRF-property of SC is constructed as follows. B has access to an oracle which is
either SCK() (the real oracle) or a random oracle.
B runs A; if A makes a tag-generation query on (N (i),M (i)), B queries its oracle with N (i) to

obtain a binary sequence S(i) of length L of which a prefix of appropriate length is formatted to
obtain (R(i), τ (i)). This is used to generate tag(i) which it provides to A. At the end A outputs
(N,M, tag); if N is different from all the previous N (i)’s, B makes one more query to its oracle on
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N and uses an appropriate prefix of the output to obtain (R, τ); if N = N (i) for some i, then B
uses an appropriate prefix of the previously generated S(i) to obtain (R, τ). The pair (R, τ) is used
to regenerate the tag and compare to the tag provided by A; if these two are equal, then B outputs
1, else it outputs 0. Then B outputs 1 if and only if A produces a successful forgery.

The time required by B is the time required by A plus the time to compute q tags corresponding
to the q−1 queries and the forgery attempt where the query complexity of A is σ bits. Additionally,
B has to maintain some bookkeeping information about the queries. The component t′ takes all
these times into account.

The difference in the probabilities of B outputting 1 corresponding to the real and random
oracles is upper bounded the PRF-advantage of SC. Let succ(real) (resp. succ(rnd)) be the event
that A is successful when B’s oracle is SCK (resp. the random oracle). Note that if B’s oracle is
real, then A is attacking the MAC-property. Then, it is standard to show the following.

Advauth
SC-NMAC(t, q, σ) = Pr[succ(real)] ≤ Advprf

SC(t+ t′, q) + Pr[succ(rnd)].

The rest of the analysis is to show that Pr[succ(rnd)] is bounded above by ε. As above, let
(R(i), τ (i)) be the response of the random oracle on input N (i) and let (R, τ) be the response of the
random oracle on input N , where (N,M, tag) is the forgery attempt. Recall that the constraint on
nonces is that they should be distinct. Combined with the fact that the oracle is now a random one,
it follows that the (R(i), τ (i)) are independent and uniformly distributed. The forgery attempt is
(N,M, tag); if N is distinct from the previous nonces, then the (R, τ) is independent of the previous
(R(i), τ (i)); on the other hand, if N is equal to one of the previous nonces, then this independence
condition does not hold.

The probability Pr[succ(rnd)] is the probability that Hashτ (M)⊕R = tag. Let this event be E.
Consider the transcript of the interaction between the adversary and the oracle. This transcript
consists of concrete values for the random variables (M (i), tag(i))i=1,...,q−1. Since each M (i) and
tag(i) take values from finite sets, the set of all possible transcripts is also finite. Suppose that
this number is ζ. For j = 1, . . . , ζ, let Fj be the event that the j-th transcript occurs and let
F = F1∨ · · · ∨Fζ . Clearly, the Fj ’s are disjoint events and since one of the transcripts has to occur,
we have Pr[F ] = 1. So, using Proposition 4, if we can show that Pr[E|Fj ] ≤ ε, then it will follow
that Pr[E] ≤ ε. In view of this, we will now assume that M (1), . . . ,M (q−1) and tag(1), . . . , tag(q−1)

are arbitrary fixed (non-random) values and show that the following conditional probability, whose
randomness is over (R(i), τ (i)), (i = 1, . . . , q − 1) and (R, τ) is upper bounded by ε.

Pr

Hashτ (M)⊕R = tag

∣∣∣∣∣∣
q−1∧
i=1

(
Hashτ (i)(M

(i))⊕R(i) = tag(i)
) . (12)

There are two cases to consider. If N is different from each N (i), then by the random oracle
assumption, (R, τ) is distributed uniformly and is independent of all previous (R(i), τ (i)). Due to
the independence, the conditional probability in (12) is equal to the unconditional probability
Pr[Hashτ (M)⊕R = tag] which in turn, is equal to 1/2n ≤ ε.

So, suppose that N = N (i) for some i. Since (N,M) is not equal to (N (i),M (i)), it necessarily
follows that M 6= M (i). Further, (R, τ) is independent of (R(j), τ (j)) for j 6= i and the probability
in (12) is equal to

Pr
[
Hashτ (M)⊕R = tag|Hashτ (i)(M

(i))⊕R(i) = tag(i)
]
. (13)
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Note that (R, τ) = $(N) and (R(i), τ (i)) = $(N (i)), where $ denotes the random oracle. By assump-
tion N = N (i) and so R = R(i). (If R and τ were generated as (τ,R) = SCK(N), then this would
not have held.) Since R is uniformly distributed and is independent of τ (i), it follows that

Pr[R⊕ Hashτ (i)(M
(i)) = tag(i)] = 1/2n. (14)

Also, one would expect τ = τ (i). If a Type-I hash function is used, then the hash key is a
fixed length string and so τ = τ (i) holds. But, for Type-II hash functions, we are working with an
overloaded notation where τ (resp. τ (i)) is the appropriate length prefix of the hash key required
for hashing the message M (resp. M (i)). Since the lengths of M and M (i) can be different, we do
not necessarily have τ = τ (i).

We now consider the following joint probability.

Pr
[
Hashτ (M) = tag ⊕R,Hashτ (i)(M

(i)) = tag(i) ⊕R
]
.

Assume that M (i) is not shorter than M . (The other case is similar.) Then the length of τ is at
most the length of τ (i). By the condition on Type-II hash function, Hashτ (M) = Hashτ (i)(M), i.e.,
hashing using a longer key does not change the digest. Given a Boolean condition φ, let [[φ]] be 1 if
φ is true and is 0 if φ is false.

Pr
[
Hashτ (i)(M) = tag ⊕R,Hashτ (i)(M

(i)) = tag(i) ⊕R
]

=
∑
a,b

[[(Hasha(M) = tag ⊕ b) ∧ (Hasha(M
(i)) = tag(i) ⊕ b)]]× Pr[τ (i) = a]× Pr[R = b]

=
1

2n
×
∑
a,b

[[(Hasha(M) = tag ⊕ b) ∧ (Hasha(M
(i)) = tag(i) ⊕ b)]]× Pr[τ (i) = a].

There is no randomness in the condition (Hasha(M) = tag⊕ b)∧ (Hasha(M
(i)) = tag(i) ⊕ b), i.e., it

either holds with probability 0 or with probability 1. For a fixed value of a, the condition holds with
probability 1, if b = Hasha(M)⊕ tag = Hasha(M

(i))⊕ tag(i), otherwise it holds with probability 0.
So, for every a, there is at most one b for which the probability is non-zero. As a result,

Pr
[
Hashτ (i)(M) = tag ⊕R,Hashτ (i)(M

(i)) = tag(i) ⊕R
]

=
1

2n
×
∑
a,b

[[(Hasha(M) = tag ⊕ b) ∧ (Hasha(M
(i)) = tag(i) ⊕ b)]]× Pr[τ (i) = a]

≤ 1

2n
×
∑
a

[[Hasha(M)⊕ Hasha(M
(i)) = tag ⊕ tag(i)]]× Pr[τ (i) = a]

≤ 1

2n
× Pr

[
Hashτ (i)(M)⊕ Hashτ (i)(M

(i)) = tag ⊕ tag(i)
]

≤ ε

2n
.

Combined with (14), this shows that the probability in (13) and hence, the probability in (12) is
bounded above by ε. Combined with the other inequalities, we get the desired result. ut

The extension of Theorem 10 to vector input hash functions is given below.

25



Theorem 11. Suppose κ ≥ 1 and {Hashτ} is ε-AXU on κ-component vectors with ε ≥ 1/2n. Then

Advauth
SC-MAC(t, q, σ) ≤ Advprf

SC(t+ t′, q) + ε.

Here t′ is the time required to hash q messages of total bit length σ plus some bookkeeping time.

Theorem 12. Suppose {Hashτ} is ε-AXU on vectors with variable number of components and
ε ≥ 1/2n. Then

Advauth
SC-MAC(t, q, σ) ≤ Advprf

SC(t+ t′, q) + ε.

Here t′ is the time required to hash q messages of total bit length σ plus some bookkeeping time.

4.2 Fixed Output Length PRF

SC maps fixed-length bit strings to long (fixed-length) strings and the security assumption on SC
is that of a PRF. We briefly consider how SC can be used to construct a PRF which maps long
and variable-length strings to short fixed-length bit strings. Such a PRF immediately gives a MAC
algorithm which does not use a nonce.

Table 2. MAC schemes based on a stream cipher with IV. The key to the hash function is τ which could have be
made up of several sub-keys as discussed in Section 3.

SC-MACK,τ (M1, . . . ,Mκ)
N = Hashτ (M1, . . . ,Mκ);
tag = SCK(N);

return tag.

SC-MACaK(M1, . . . ,Mκ)
τ = SCK(fStr);
N = Hashτ (M1, . . . ,Mκ);
tag = SCK(N);

return tag.

The idea behind the security of SC-MAC is the following. If Hash has low collision probabilities,
then on distinct inputs, with high probability N (i)’s are also distinct, where N (i) = Hashτ (M (i)).
Conditioned under this event and assuming SCK to be a PRF, the outputs tag(i)’s of SC appear to
be independent and uniformly distributed to a computationally bounded adversary.

If the hash function is ε-AU, then the probability that the N (i)’s are distinct is at most
(q
2

)
ε ≤

q2ε. Using this, we obtain the following result for the single-input hash function.

Theorem 13. Suppose κ = 1 and {Hashτ} is ε-AU with ε ≥ 1/2n. Then

Advauth
SC-MAC(t, q, σ) ≤ Advprf

SC(t+ t′, q) + q2ε.

Here t′ is the time required to hash q messages of total bit length σ plus some bookkeeping time.

Note that the requirement on the hash function is AU instead of AXU as is required in Theorem 10
for SC-NMAC. The bound in Theorem 13, on the other hand, is larger: q2ε instead of ε appearing
in Theorem 10. Extensions of Theorem 13 for vector-input hash functions are straightforward and
theorem statements analogous to those of Theorems 11 and 12 can be easily obtained.

The secret key for SC-MAC is the pair (K, τ). For Type-II hash functions, τ will be long and in
that case it will be advantageous to generate τ using the stream cipher itself. This variant is given
as SC-MACa which uses only a single key K which is the key of the underlying stream cipher. As
a single key MAC scheme, SC-MACa can be used with both Type-I and Type-II hash functions.
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The idea behind the security of SC-MACa is almost the same as that of SC-MAC. The only
difference is that we need to argue that the probability that fStr is equal to any N (i) is small. This
requires an additional property of hash function. For any fixed x and uniformly distributed τ , the
random variable Hashτ (x) is almost uniformly distributed.

Theorem 14. Suppose κ = 1 and {Hashτ} is ε-AU with ε ≥ 1/2n. Further, suppose that for any
fixed x, uniformly distributed τ and any n-bit string α, the probability that Hashτ (x) equals α is at
most µ. Then

Advauth
SC-MAC(t, q, σ) ≤ Advprf

SC(t+ t′, q) + q2ε+ qµ.

Here t′ is the time required to hash q messages of total bit length σ plus some bookkeeping time.

Again extensions of Theorem 14 to obtain statements for vector-input hash functions can be done
in a straightforward manner.

5 Constructions of AE Schemes

The proposed schemes for performing AE are given in Table 3. Only the encryption algorithms are
described. Corresponding decryption algorithms can be easily constructed.

Table 3. AE schemes.

AE-1.EncryptK,τ (N,M)
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (C) ⊕R;

return (C, tag).

AE-2.EncryptK,K′(N,M)
τ = SCK(K′);
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (C) ⊕R;

return (C, tag).

AE-2a.EncryptK(N,M)
K′ = SCK(fStr);
τ = SCK(K′);
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (C) ⊕R;

return (C, tag).

AE-2b.EncryptK(N,M)
(R,Z, τ) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (C) ⊕R;

return (C, tag).

AE-3.EncryptK,τ (N,M)
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (M) ⊕R;

return (C, tag).

AE-4.EncryptK,K′(N,M)
τ = SCK(K′);
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (M) ⊕R;

return (C, tag).

AE-4a.EncryptK(N,M)
K′ = SCK(fStr);
τ = SCK(K′);
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (M) ⊕R;

return (C, tag).

AE-4b.EncryptK(N,M)
(R,Z, τ) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (M) ⊕R;

return (C, tag).

AE-1 has been suggested as a standard method of performing authenticated encryption from a
stream cipher [7]. For AE-1, a Type-I hash function is suitable. This is because, for this scheme, the
hash key is provided as part of the secret key of the scheme. If a Type-II hash function is desired
to be used, then the hash key will be long and it will not be practical to specify this as part of the
secret key. In this case, AE-2 should be used. In this scheme, the hash key is generated from K ′

which itself is a fixed length string. We note that AE-2 can be used with both Type-I and Type-II
hash functions.

On the face of it, AE-2 may appear to be slower compared to AE-1, since it requires two
invocations of SC. There are two points to note. First, the two invocations of SC can be done
in parallel. So, in hardware, if a Type-II hash function requires smaller space than a Type-I hash
function, then it may be advantageous to use AE-2 in comparison to AE-1. Second, the hash key τ in
AE-2 does not depend on the message. So, subject to the availability of secure storage a sufficiently
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long hash key may be generated and stored once per session. Then the time for generating the
hash key is amortised over all the messages hashed in one session. This approach can be used when
messages are comparatively short which is true, for example, in internet communications. There
are, of course, many related implementation issues such as cache misses which would also determine
the actual speed.

Schemes AE-3 and AE-4 hash the message M instead of the ciphertext C. One possible advantage
of hashing the message M instead of the ciphertext C is that the task of hashing and ciphertext
generation can proceed in parallel. For hardware implementations, this can be an advantage.

In AE-2 and AE-4, there are two keys K and K ′. These schemes can be modified to AE-2a,
AE-2b and AE-4a, AE-4b respectively to obtain single key schemes. Explanations for the modified
schemes are as follows.

1. AE-2a and AE-4a: In these two schemes, K ′ is generated by applying SCK on a fixed n-bit string
fStr as K ′ = SCK(fStr). This will have a minimal effect on the security bound. But, on the other
hand, it will require a separate application of SC. It should be noted, though, that K ′ can be
generated once per session.

2. AE-2b and AE-4b: These schemes eliminate K ′ altogether and instead derive the hash key from
the invocation of SC on N . This reduces the number of SC invocations by one, but, there is a
disadvantage. The hash key is generated after Z and so the hashing step cannot be carried out
in parallel with the encryption. While this may not be an issue in software implementation, it
will definitely prove to be inefficient for hardware implementations.

Privacy of the schemes. Showing privacy is easy. Consider AE-1. Under the assumption that
SC is a PRF, the privacy of the scheme is easy to argue. Suppose the q queries are (N (i),M (i))
and the corresponding responses are (C(i), tag(i)). The nonce restriction implies that N (1), . . . , N (q)

are distinct. Since N (1), . . . , N (q) are distinct, by the PRF assumption on SC, a computationally
bounded adversary will not be able to distinguish between SC(N (1)), . . . ,SC(N (q)) and independent
and uniform random strings of corresponding lengths.

The strings (R(1), Z(1)), . . . , (R(q), Z(q)) are prefixes of appropriate lengths of these strings. Since
C(i) = Z(i) ⊕M (i) and tag(i) = Hashτ (C(i))⊕R(i), the random variables

(C(1), tag(1)), . . . , (C(q), tag(q))

also appear independent and uniformly distributed to a computationally bounded adversary. The
argument for the privacy of AE-3 is the same. For schemes AE-2 and AE-4, it is required to take
into account the event that one of the nonces is equal to K ′. Since K ′ is chosen to be a uniform
random n-bit string and there are q nonces, the probability of this event is at most q/2n. For the
modifications of AE-2 and AE-4, this reasoning needs slight modifications.

Formalising the above argument shows the following bounds.

Theorem 15.

Advae-priv
AE-1 (t, q, σ) ≤ Advprf

SC(t+ t′, q).

Advae-priv
AE-3 (t, q, σ) ≤ Advprf

SC(t+ t′, q).

Advae-priv
AE-2 (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) +
q

2n
.

Advae-priv
AE-4 (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) +
q

2n
.
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Advae-priv
AE-2a (t, q, σ) ≤ Advprf

SC(t+ t′, q + 2) +
q

2n
.

Advae-priv
AE-4a (t, q, σ) ≤ Advprf

SC(t+ t′, q + 2) +
q

2n
.

Advae-priv
AE-2b (t, q, σ) ≤ Advprf

SC(t+ t′, q).

Advae-priv
AE-4b (t, q, σ) ≤ Advprf

SC(t+ t′, q).

Here t′ is the time required for the following operations:

– Hashing q strings of total length σ.

– Performing a total of σ XOR operations on bits.

– Time required for bookkeeping tasks.

Authenticity of the schemes. In this case, the arguments for the first two schemes are slightly
different with the argument for AE-2 being a little more complicated. We first present this argument
below. Later, we give the argument for AE-3 from which the argument for AE-4 follows after some
modifications based on the argument for AE-2.

Theorem 16. Suppose {Hash}τ is ε-AXU. Then

Advae-auth
AE-2 (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) +
q

2n
+ ε.

Advae-auth
AE-2a (t, q, σ) ≤ Advprf

SC(t+ t′, q + 2) +
q

2n
+ ε.

Advae-auth
AE-2b (t, q, σ) ≤ Advprf

SC(t+ t′, q) + ε.

Here σ includes the number of bits in the forgery attempt and t′ is the time required for the following
operations:

– Hashing q strings of total length σ.

– Performing a total of σ XOR operations on bits.

– Time required for bookkeeping tasks.

Proof. We first prove the result for AE-2. For the variants of AE-2, we indicate how the argument
needs to be modified.

Given an adversary A attacking the authenticity of AE-2, the idea is to construct an adversary
B which attacks the PRF-property of SC. B will have access to an oracle O which is either SCK
instantiated by a uniform random K, or it is an oracle which returns independent and uniform
random strings. At the outset, B will choose a uniform random K ′ and compute τ = O(K ′). Any
encryption query made by A can be answered by B by invoking its own oracle. Finally, A makes a
forgery attempt (N,C, tag). B recomputes the tag from N and C using O and compares to tag; if
the two are equal, then B returns 1; else B returns 0.

Assume that O is the real oracle SCK and suppose the queries are
(N (1),M (1)), . . . , (N (q−1),M (q−1))

and the corresponding responses are (C(1), tag(1)), . . . , (C(q−1), tag(q−1)). Further, suppose that the
forgery attempt is (N,C, tag) with the restriction that this is not equal to (N (i), C(i), tag(i)) for any
1 ≤ i ≤ q − 1. The forgery attempt implicitly defines (R,Z) = SCK(N).
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Let succ(real) be the event that the forgery is accepted. Let Repeat be the event that K ′ is equal
to one of N (1), . . . , N (q−1) or N . Since K ′ is chosen uniformly at random, Pr[Repeat] ≤ q/2n. Then

Advae-auth
AE-2 (t, q, σ) = Pr[succ(real)]

= Pr[succ(real)|Repeat]× Pr[Repeat] + Pr[succ(real)|Repeat]× Pr[Repeat]

≤ Pr[Repeat] + Pr[succ(real)|Repeat].

Now assume that O is a random oracle. On distinct inputs, this oracle returns independent and
uniform random strings of appropriate lengths. Let succ(rnd) be the event that the adversary is
successful against the random oracle. Then, it is standard to show the following.

Pr[succ(real)|Repeat] ≤ Advprf
SC(t, q) + Pr[succ(rnd)|Repeat].

(The event Repeat is the essential difference between the analysis of AE-1 and AE-2. In AE-1, this
event is not defined and τ is a uniform random string which is independent of all other random
variables. In AE-2, under the condition Repeat, and assuming SC to be a PRF, we can assume that
τ is a uniform random string which is independent of all other random variables. The rest of the
proof is the same for both schemes.)

The analysis of Pr[succ(rnd)|Repeat] is to show the following (with SC() replaced with a random
oracle $()).

Pr[succ(rnd)|Repeat]

= Pr

Hashτ (C)⊕R = tag

∣∣∣∣∣∣Repeat ∧
q−1∧
i=1

(Hashτ (C(i))⊕R(i) = tag(i))

 (15)

≤ ε.

Strictly speaking, we should also be conditioning on the event
∧q−1
i=1

(
Z(i) = M (i) ⊕ C(i)

)
. But,

conditioned on Repeat and replacing SC() by $() results in both R and τ being independent of Z(i)

for all i. So conditioning on this event will not change the probability.

There are two cases to consider. If N is different from each N (i), then (R,Z) is distributed
uniformly and is independent of all previous (R(i), Z(i)). Due to the independence, the conditional
probability in (15) is equal to the unconditional probability Pr[Hashτ (C)⊕R = tag] which due to
the uniform distribution of R and its independence from τ , is equal to 1/2n ≤ ε.

So, suppose that N = N (i) for some i. Then (R,Z) is independent of (R(j), Z(j)) for j 6= i and
R = R(i). The probability in (15) is equal to

Pr
[
Hashτ (C)⊕R = tag|Hashτ (C(i))⊕R = tag(i)

]
. (16)

By the restriction on the adversary, we have (N,C, tag) 6= (N (i), C(i), tag(i)). Since we are assuming
N = N (i), it necessarily follows that (C, tag) 6= (C(i), tag(i)). If C = C(i), then certainly tag 6= tag(i)

and so the above probability is zero. So, let C 6= C(i). In this case, as in the proof of Theorem 10,
the probability in (16) can be shown to be bounded above by ε. From this the result follows.

The argument for AE-2a is almost the same as that for AE-2. The only difference between the
two schemes is that an extra stream cipher call is made to generate K ′. This difference is reflected
in the parameters of the PRF-advantage of SC – the number of queries to SC is q + 1 in the case
of AE-2 while it is q + 2 in the case of AE-2a.
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The argument for AE-2b is a straightforward modification of the argument for AE-2. The only
difference in the two schemes is in the method that the hash key τ is derived. In AE-2b this is
derived from the invocation of SCK on N and there is no K ′. So, the extra invocation of SCK on
K ′ is eliminated as is the event Repeat. The rest of the argument remains the same and gives the
stated bound. ut

Theorem 17. Suppose {Hash}τ is ε-AXU. Then

Advae-auth
AE-1 (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) + ε.

Advae-auth
AE-3 (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) + ε.

Here σ and t′ are as defined in Theorem 16.

Proof. We give the proof for AE-3.
Suppose as before that the queries are (N (1),M (1)), . . . , (N (q),M (q)) and the corresponding re-

sponses are (C(1), tag(1)), . . . , (C(q), tag(q)). Further, suppose that the forgery attempt is (N,C, tag)
with the restriction that this is not equal to (N (i), C(i), tag(i)) for any 1 ≤ i ≤ q.

Let succ(real) be the event that the forgery is accepted. Let SCK be replaced by a random oracle.
On distinct inputs, this oracle returns independent and uniform random strings of appropriate
lengths. Let succ(rnd) be the event that the adversary is successful against the random oracle.
Then, as before, it is standard to show the following.

Pr[succ(real)] ≤ Advprf
SC(t, q, σ) + Pr[succ(rnd)].

We show

Pr[succ(rnd)]

= Pr

[
Hashτ (M)⊕R = tag

∣∣∣∣∣
q∧
i=1

(
Z(i) = M (i) ⊕ C(i),Hashτ (M (i))⊕R(i) = tag(i)

)]
(17)

≤ ε.

In this case, we cannot ignore the event
∧q
i=1

(
Z(i) = M (i) ⊕ C(i)

)
. This is because the message,

rather than the ciphertext is hashed. If the N in the forgery attempt is equal to some N (i), then Z
and Z(i) will have an overlap. Since the adversary provides C in the forgery attempt and M equals
C ⊕ Z, this M is not independent of Z(i).

There are two cases to consider. If N is different from each N (i), then (R,Z) is distributed
uniformly and is independent of all previous (R(i), Z(i)). Due to the independence, the conditional
probability in (17) is equal to the unconditional probability Pr[Hashτ (M)⊕R = tag] which in turn,
is equal to 1/2n ≤ ε.

So, suppose that N = N (i) for some i. Then (R,Z) is independent of (R(j), Z(j)) for j 6= i and
R = R(i). As a result, (17) reduces to the following.

Pr
[
Hashτ (M)⊕R = tag

∣∣∣(Z(i) = M (i) ⊕ C(i),Hashτ (M (i))⊕R = tag(i)
)]
. (18)

Suppose that the length of M is at most the length of M (i), so that, Z is a prefix of Z(i). The
other condition where Z(i) is a proper prefix of Z can be dealt with in a similar manner. Conditioning
on the event Z(i) = M (i) ⊕ C(i), fixes the value of Z. Let this value be z. Then M = C ⊕ z. If
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Z is a proper prefix of Z(i), then certainly M 6= M (i); if Z = Z(i), then z = M (i) ⊕ C(i) and
M = C ⊕ z = C ⊕ C(i) ⊕M (i).

Since N = N (i) and for an allowed forgery, (N,C, tag) 6= (N (i), C(i), tag(i)), it necessarily follows
that (C, tag) 6= (C(i), tag(i)). If C = C(i), then tag 6= tag(i). From M = C⊕C(i)⊕M (i) and C = C(i),
it follows that M = M (i). Then, the probability in (18) is 0.

So, suppose that C 6= C(i) and then C⊕z = M 6= M (i) (under the condition Z(i) = M (i)⊕C(i)).
The probability in (18) is equal to

Pr
[
Hashτ (C ⊕ z)⊕R = tag

∣∣∣Hashτ (M (i))⊕R = tag(i)
]
.

As in the proof of Theorem 10, this probability can be shown to be bounded above by ε. ut

Theorem 18. Suppose {Hash}τ is ε-AXU. Then

Advae-auth
AE-4 (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) +
q

2n
+ ε.

Advae-auth
AE-4a (t, q, σ) ≤ Advprf

SC(t+ t′, q + 2) +
q

2n
+ ε.

Advae-auth
AE-4b (t, q, σ) ≤ Advprf

SC(t+ t′, q) + ε.

Here σ and t′ are as defined in Theorem 16.

Proof. Scheme AE-4 has similarities to both AE-2 and AE-3. Like AE-3, it hashes the message
instead of the ciphertext while like AE-2, it derives the hash key from K ′. Theorem 16 provides
the argument for AE-2 (and its two variants) while Theorem 17 gives the argument for AE-3. A
combination of these two arguments provides the proof for AE-4 (and its variants). ut

6 Handling Associated Data

None of the schemes given in the previous section can directly handle associated data. It is tempting
to concatenate the header and then apply the hash function. But, this does not work. To see
this, first consider AE-1 and AE-2 and suppose that Hashτ (C) is replaced by Hashτ (H||C). The
authentication property of this scheme is easily attacked. The attacker A queries the oracle on
the input (N,H = h1,M = m1m2) and receives (C = c1c2, tag); here h1,m1,m2, c1 and c2 are
bits and tag is computed as tag = Hashτ (h1c1c2) ⊕ R, where (R,Z) = SCK(N). The forgery is
(N,H ′ = h1c1, C

′
2 = c2, tag). First note that this forgery is allowed, since H ′ 6= H (and C ′ 6= C).

We have H ′||C ′ = H||C, but, this is allowed. Validity of the forgery is seen as follows. Since N is
not changed, R remains unchanged and so Hashτ (H ′||C ′)⊕R = Hash(H||C)⊕R = tag.

AE-3 and AE-4 also do not support associated data. Again, the simple possibility of hashing the
concatenation of the header and the message (i.e., Hashτ (H||M)) instead of only the message (i.e.,
Hashτ (M)) gives rise to an insecure scheme. The adversary A makes a query (N,H ′ = 0,M ′ = 00)
and obtains in response (C ′ = c′1c

′
2, tag

′). Here tag′ = Hashτ (H ′||M ′) ⊕ R = Hashτ (000) ⊕ R.
Let (R,Z = z1z2) be the output of SCK(N) and then c1 = z1; c2 = z2. The adversary outputs
(N,H = 00, c1, tag

′) as the forgery. Since the nonce is not changed, the pair (R,Z) remains the same,
and so, the single bit message M = m1 corresponding to the forgery is m1 = c1 ⊕ z1 = c1 ⊕ c1 = 0.
The digest computation for the forgery is then Hashτ (H||M)⊕R = Hashτ (000)⊕R = tag′. So, the
concatenate-and-hash strategy does not work.
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The requirement is a hash function which accepts two inputs and has low collision and differential
probabilities. Existing hash functions can be modified to obtain such double-input hash functions
as has been described in Section 3.

In Table 4, we present several ways to incorporate additional data into an AE scheme. Only
the encryption algorithms are shown and the corresponding decryption algorithms can be easily
constructed. The following points are to be noted regarding the different constructions.

1. Schemes described along the first column can be efficiently instantiated by Type-I hash func-
tions, i.e., hash functions for which keys are short fixed-length bit strings. Since the hash key is
part of the secret key, Type-II hash functions (where the hash key is long) are not suitable for
these schemes.

2. Schemes described along the second, third and fourth columns derive the hash key τ using SC.
Consequently, Type-II (as well as Type-I) hash functions can be used with these schemes.
– The schemes in the second column have an n-bit string K ′ as a component of the secret key

from which τ is derived as τ = SCK(K ′).
– The schemes in the third column have only K as the secret key and K ′ is derived by applying

SC to a fixed string fStr, i.e., K ′ = SCK(fStr)
– The schemes in the fourth column derive the hash key τ from the application of SC to the

nonce N .
3. Schemes AEAD-1 to AEAD-4 and their variants incorporate the header while hashing the ci-

phertext or the message. Schemes AEAD-5 to AEAD-8 and their variants, hash the header along
with the nonce.

4. Schemes AEAD-1, AEAD-2, AEAD-5 and AEAD-6 hash the ciphertext, whereas Schemes AEAD-3,
AEAD-4, AEAD-7 and AEAD-8 hash the message.

Among the several schemes, the proper one to choose would depend on the application require-
ments such as size of the secret key; use of Type-I or Type-II hash function which would in turn
be determined by hardware versus software implementation; extent to which parallelism can be
exploited; and the security bounds for the schemes to be obtained shortly. We desist from making
an explicit recommendation, preferring instead to focus on identifying the schemes and obtaining
their security analysis.

Note: In Schemes AEAD-5 to AEAD-8, the hash function Hash is used both as a double-input and
as a single input hash function. This would seem to suggest that the hash function should satisfy
AXU property for variable length vectors. That is not the case. What is required is that the hash
function is AXU for single inputs and also for double inputs; the AXU property is not required
between a single input and a double input.

The AEAD Schemes 1 to 4 are almost the same as AE schemes 1 to 4, except for the incorpora-
tion of the header information H as the first argument of the hash function. Under the assumption
that the double-input hash function has low collision and differential probabilities, the analysis of
these AEAD schemes is exactly the same as that of the corresponding AE schemes and hence, have
the same security bounds. The same holds true for the variants of AEAD-2 and AEAD-4.

We provide explanations for Schemes 5 to 8. Since N is a nonce, the pair (H,N) is also a
nonce, i.e., the freshness of N ensures the freshness of (H,N). Assuming that Hash has low collision
probabilities, the outputs V are distinct and hence play the role of nonces. Conditioned on the
event that the V s are distinct, Scheme AEAD-5 reduces to Scheme AE-1; Scheme AEAD-6 reduces
to Scheme AE-2; Scheme AEAD-7 reduces to Scheme AE-3; and Scheme AEAD-8 reduces to Scheme
AE-4. The variants AEAD-6a and AEAD-8a are similar to earlier variants in the way they derive K ′
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Table 4. AEAD schemes.

AEAD-1.EncryptK,τ (H,N,M)
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (H,C) ⊕R;

return (C, tag).

AEAD-2.EncryptK,K′(H,N,M)
τ = SCK(K′);
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (H,C) ⊕R;

return (C, tag).

AEAD-2a.EncryptK(H,N,M)
K′ = SCK(fStr);
τ = SCK(K′);
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (H,C) ⊕R;

return (C, tag).

AEAD-2b.EncryptK(H,N,M)
(R,Z, τ) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (H,C) ⊕R;

return (C, tag).

AEAD-3.EncryptK,τ (H,N,M)
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (H,M) ⊕R;

return (C, tag).

AEAD-4.EncryptK,K′(H,N,M)
τ = SCK(K′);
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (H,M) ⊕R;

return (C, tag).

AEAD-4a.EncryptK(H,N,M)
K′ = SCK(fStr);
τ = SCK(K′);
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (H,M) ⊕R;

return (C, tag).

AEAD-4b.EncryptK(H,N,M)
(R,Z, τ) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (H,M) ⊕R;

return (C, tag).

AEAD-5.EncryptK,τ (H,N,M)
V = Hashτ (H,N);
(R,Z) = SCK(V );
C = M ⊕ Z;
tag = Hashτ (C) ⊕R;

return (C, tag).

AEAD-6.EncryptK,K′(H,N,M)
(τ1, τ2) = SCK(K′);
V = Hashτ1(H,N);
(R,Z) = SCK(V );
C = M ⊕ Z;
tag = Hashτ2(C) ⊕R;

return (C, tag).

AEAD-6a.EncryptK(H,N,M)
K′ = SCK(fStr);
(τ1, τ2) = SCK(K′);
V = Hashτ1(H,N);
(R,Z) = SCK(V );
C = M ⊕ Z;
tag = Hashτ2(C) ⊕R;

return (C, tag).

AEAD-7.EncryptK,τ (H,N,M)
V = Hashτ (H,N);
(R,Z) = SCK(V );
C = M ⊕ Z;
tag = Hashτ (M) ⊕R;

return (C, tag).

AEAD-8.EncryptK,K′(H,N,M)
(τ1, τ2) = SCK(K′);
V = Hashτ1(H,N);
(R,Z) = SCK(V );
C = M ⊕ Z;
tag = Hashτ2(M) ⊕R;

return (C, tag).

AEAD-8a.EncryptK(H,N,M)
K′ = SCK(fStr);
(τ1, τ2) = SCK(K′);
V = Hashτ1(H,N);
(R,Z) = SCK(V );
C = M ⊕ Z;
tag = Hashτ2(M) ⊕R;

return (C, tag).
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by invoking SCK on fStr. Consequently, the bounds for these variants follow easily from the bounds
for AEAD-6 and AEAD-8.

The privacy and authenticity bounds for these AEAD schemes are the same as that for the
corresponding AE schemes plus an additive term of ε ×

(q
2

)
≤ ε × q2 which accounts for the

probability that there is a collision among the V s.

Formalising the above arguments gives the following two results.

Theorem 19.

Advaead-priv
AEAD-1 (t, q, σ) ≤ Advprf

SC(t+ t′, q).

Advaead-priv
AEAD-3 (t, q, σ) ≤ Advprf

SC(t+ t′, q).

Advaead-priv
AEAD-2 (t, q, σ) ≤ Advprf

SC(t+ t′, q) +
q

2n
.

Advaead-priv
AEAD-4 (t, q, σ) ≤ Advprf

SC(t+ t′, q) +
q

2n
.

Advaead-priv
AEAD-2a (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) +
q

2n
.

Advaead-priv
AEAD-4a (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) +
q

2n
.

Advaead-priv
AEAD-2b(t, q, σ) ≤ Advprf

SC(t+ t′, q) +
q

2n
.

Advaead-priv
AEAD-4b(t, q, σ) ≤ Advprf

SC(t+ t′, q) +
q

2n
.

Further, suppose {Hash}τ is ε-AXU. Then

Advaead-priv
AEAD-5 (t, q, σ) ≤ Advprf

SC(t+ t′, q) + εq2.

Advaead-priv
AEAD-7 (t, q, σ) ≤ Advprf

SC(t+ t′, q) + εq2.

Advaead-priv
AEAD-6 (t, q, σ) ≤ Advprf

SC(t+ t′, q) +
q

2n
+ εq2.

Advaead-priv
AEAD-8 (t, q, σ) ≤ Advprf

SC(t+ t′, q) +
q

2n
+ εq2.

Advaead-priv
AEAD-6a (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) +
q

2n
+ εq2

Advaead-priv
AEAD-8a (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) +
q

2n
+ εq2.

Here t′ is the time required for the following operations:

– Hashing q pairs of strings of total length σ.

– Performing a total of σ XOR operations on bits.

– Time required for bookkeeping tasks.

Theorem 20. Suppose {Hash}τ is ε-AXU. Then

Advaead-auth
AEAD-1 (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) + ε.

Advaead-auth
AEAD-3 (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) + ε.

Advaead-auth
AEAD-2 (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) +
q

2n
+ ε.
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Advaead-auth
AEAD-4 (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) +
q

2n
+ ε.

Advaead-auth
AEAD-5 (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) + εq2 + ε.

Advaead-auth
AEAD-7 (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) + εq2 + ε.

Advaead-auth
AEAD-6 (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) +
q

2n
+ εq2 + ε.

Advaead-auth
AEAD-8 (t, q, σ) ≤ Advprf

SC(t+ t′, q + 1) +
q

2n
+ εq2 + ε.

Advaead-auth
AEAD-2a (t, q, σ) ≤ Advprf

SC(t+ t′, q + 2) +
q

2n
+ ε.

Advaead-auth
AEAD-4a (t, q, σ) ≤ Advprf

SC(t+ t′, q + 2) +
q

2n
+ ε.

Advaead-auth
AEAD-6a (t, q, σ) ≤ Advprf

SC(t+ t′, q + 2) +
q

2n
+ εq2 + ε.

Advaead-auth
AEAD-8a (t, q, σ) ≤ Advprf

SC(t+ t′, q + 2) +
q

2n
+ εq2 + ε.

Advaead-auth
AEAD-2b (t, q, σ) ≤ Advprf

SC(t+ t′, q) +
q

2n
+ ε.

Advaead-auth
AEAD-4b (t, q, σ) ≤ Advprf

SC(t+ t′, q) +
q

2n
+ ε.

Here σ includes the number of bits in the forgery attempt and t′ is as defined in Theorem 19.

7 Deterministic Authenticated Encryption

In Table 5, we present DAEAD schemes. The basic idea behind the constructions is simple and is
based on the SIV construction in [33].

The scheme DAEAD-1 in Table 5 is suitable for Type-I hash functions, i.e., hash functions where
the key τ is a short fixed length string. Scheme DAEAD-2 and its variant DAEAD-2a are suitable
for both Type-I and Type-II hash functions.

Table 5. DAEAD scheme.

DAEAD-1K,τ .Encrypt(H,M)
V = Hashτ (H,M);
tag = SCK(V );
Z = SCK(tag);
C = M ⊕ Z;
return (C, tag).

DAEAD-2K,K′ .Encrypt(H,M)
τ = SCK(K′);
V = Hashτ (H,M);
tag = SCK(V );
Z = SCK(tag);
C = M ⊕ Z;
return (C, tag).

DAEAD-2aK .Encrypt(H,M)
K′ = SCK(fStr);
τ = SCK(K′);
V = Hashτ (H,M);
tag = SCK(V );
Z = SCK(tag);
C = M ⊕ Z;
return (C, tag).

Structure of the header: We have assumed the header to be a single binary string. Depending
on the application, the header can have a richer structure. In general, it can be a vector of strings.
Further, the number of components in the vector can be fixed or can be variable. Such richness in
the syntax of the header can be handled by using an appropriate hash function. If the header is a
vector of strings where the number of components in the vector is fixed, then the hash function needs
to be AXU only for fixed length vectors; if, on the other hand, the number of components in the
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vector can vary, then the hash function needs to be AXU for variable length vectors. Constructions
of such hash functions from single-input hash functions have been described in Section 3. To handle
headers with complex structures, the schemes in Table 5 have to be instantiated with appropriate
hash functions. With this done, the security analysis remains unchanged.

As in the case of AE(AD) schemes, only the encryption algorithms are described in Table 5.
The corresponding decryption algorithms are readily obtained. We provide a brief description of
the decryption algorithm for DAEAD-1. On input (H,C, tag), compute Z = SCK(tag); M = C⊕Z;
V = Hashτ (H,M); ttag = SCK(V ); return M if tag = ttag; else return ⊥. The quantity ttag is
determined from (H,C, tag) (and the key (K, τ)); denote by RGen(H,C, tag) the value of ttag.

If the pairs (H,M) are distinct, then the outputs V of the hash function are also distinct (under
the assumption that the hash function has low collision probabilities). Assuming SC to be a PRF
and applying it on distinct values of V ensures that the different values of tag are independent
and uniformly distributed. In particular, with high probability, these values are also distinct. Again
applying SC on the different values of tag ensures that the values of Z are independent and uniformly
distributed. Since C is obtained by XORing Z and M , the values of C are also independent and
uniformly distributed. So, the different (C, tag) pairs are independent and uniformly distributed
strings. From this the privacy of the scheme follows. Formalising this argument is routine and gives
the following result.

Theorem 21. Suppose {Hash}τ is ε-AU. Then

Advdaead-priv
DAEAD-1 (t, q, σ) ≤ Advprf

SC(t+ t′, 2q) + q2ε+
q2

2n
.

Advdaead-priv
DAEAD-2 (t, q, σ) ≤ Advprf

SC(t+ t′, 2q) + q2ε+
q2

2n
.

Advdaead-priv
DAEAD-2a(t, q, σ) ≤ Advprf

SC(t+ t′, 2q) + q2ε+
q2

2n
.

Here t′ is the time required for the following operations:

– Hashing q pairs of strings of total length σ.

– Performing a total of σ XOR operations on bits.

– Time required for bookkeeping tasks.

We next consider the authentication property. Write EK,τ as a shorthand for the encryption
function. Note that ttag computed in the decryption module is a function of (H,C, tag) and write
RGen(H,C, tag) to denote this function, i.e., ttag = RGen(H,C, tag).

Theorem 22. Suppose {Hash}τ is ε-AXU. Then

Advdaead-auth
DAEAD-1 (t, q, σ) ≤ Advprf

SC(t+ t′, 2q) + qε+
1

2n
.

Advdaead-auth
DAEAD-2 (t, q, σ) ≤ Advprf

SC(t+ t′, 2q) + qε+
1

2n
.

Advdaead-auth
DAEAD-2a (t, q, σ) ≤ Advprf

SC(t+ t′, 2q) + qε+
1

2n
.

Here σ includes the number of bits in the forgery attempt and t′ is as defined in Theorem 21.
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Proof. We consider DAEAD-1 with the arguments for the other schemes being similar.
Suppose the queries to the encryption oracle are (H(1),M (1)), . . . , (H(q−1),M (q−1)) and the cor-

responding outputs are (C(1), tag(1)), . . . , (C(q−1), tag(q−1)). Let the forgery attempt be (H,C, tag).
Before getting into the detailed analysis, we make a few simple but important observations.

1. For fixed values of K and τ , the pair (C, tag) is functionally determined from (H,M). If (C ′, tag′)
is different from (C, tag), then the corresponding (H ′,M ′) is necessarily different from (H,M).

2. The forgery attempt (H,C, tag) implicitly defines a message M as M = C ⊕ SCK(tag).
3. By the restriction on the adversary, (H,C, tag) cannot be equal to (H(i), C(i), tag(i)) for any i.

If (C, tag) equals (C(i), tag(i)) for some i, then since the forgery (H,C, tag) cannot be equal to any
previous (H(i), C(i), tag(i)), certainly H 6= H(i). If on the other hand, (C, tag) is not equal to any
(C(i), tag(i)), then M is different from M (i). So, in both cases, (H,M) is different from all previous
(H(i),M (i)) that have been queried to the encryption oracle.

Let Seen be the following event.

EK,τ (H(1),M (1)) = (C(1), tag(1)), . . . ,EK,τ (H(1),M (1)) = (C(q), tag(q)).

Since the sources of randomness are K and τ , Seen is equivalent to the event

q∧
i=1

(
Z(i) = M (i) ⊕ C(i)

)
∧

q∧
i=1

(
tag(i) = SCK(Hashτ (H(i),M (i)))

)
.

Recall that RGen(H,C, tag) denotes the quantity ttag that is generated during decryption and
compared to tag. We show that Pr[RGen(H,C, tag) = tag|Seen] is small, which proves the authen-
ticity of the scheme.

Note that V (i) = Hashτ (H(i),M (i)). Since (H,M) is distinct from all previous (H(i),M (i)), the
probability that V is equal to one of the V (i)s is at most qε. Let DistinctV be the event that V is
distinct from all the V (i)s.

Pr[RGen(H,C, tag) = tag|Seen] ≤ qε+ Pr[RGen(H,C, tag) = tag|Seen,DistinctV].

In the next step, replace SCK by a random oracle, i.e., the tag(i)s and the Z(i)s are strings
of appropriate lengths drawn independently and uniformly at random. Let this change be de-
noted by SC2rnd and for notational simplicity, we will write the corresponding probability as
Pr[RGen(H,C, tag) = tag|Seen,DistinctV, SC2rnd]. As is standard, it is possible to show the fol-
lowing.

Pr[RGen(H,C, tag) = tag|Seen,DistinctV]

≤ Advprf
SC(t, q, σ) + Pr[RGen(H,C, tag) = tag|Seen,DistinctV,SC2rnd].

Under the condition DistinctV and SC2rnd, ttag is uniformly distributed and independent of all
other random variables. As a result, the probability that this value is equal to tag is 1/2n.

Putting the inequalities together gives the result. ut

8 Conclusion

In this paper, we considered the problem of utilising a stream cipher with IV to construct sev-
eral important cryptographic primitives. Several constructions are given for MAC, AE, AEAD and
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DAE(AD) schemes. These constructions can be instantiated using known stream ciphers. Addition-
ally, certain types of hash functions are required. We define suitable variants of well-known hash
functions which are tailored for our applications. As a result of our work, a designer of practical
cryptographic systems gets the option of using a wider variety of secure and efficient constructions
for important cryptographic tasks than were previously known.
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