
Noname manuscript No.
(will be inserted by the editor)

Multidimensional Meet-in-the-Middle Attack and Its
Applications to KATAN32/48/64

Bo Zhu · Guang Gong

the date of receipt and acceptance should be inserted later

Abstract This paper investigates a new framework to analyze symmetric ciphers by guess-
ing intermediate states and dividing algorithms into consecutive sub-ciphers. It is suitable
for lightweight ciphers with simple key schedules and block sizes smaller than key lengths.
New attacks on the block cipher family KATAN are proposed by adopting this framework.
Our new attacks can recover the master keys of 175-round KATAN32, 130-round KATAN48
and 112-round KATAN64 faster than exhaustive search, and thus reach many more rounds
than previous attacks. We also provide new attacks on 115-round KATAN32 and 100-round
KATAN48 in order to demonstrate this new kind of attacks can be more time-efficient and
memory-efficient than existing attacks.

Keywords Multidimensional ·Meet-in-the-middle · Cryptanalysis · KATAN

1 Introduction

Lightweight devices such as NFC/RFID chips and wireless sensor networks have become
popular nowadays, because such tiny devices bring more convenience to people’s lives and
are able to solve a large number of traditional problems at very low costs. Security and
privacy protections for such devices are therefore highly demanded. However, traditional
designs of cryptographic algorithms and protocols, such as TLS/SSL, can hardly be used in
such environments due to limited computational and storage capacities.

Recently, many new cryptographic designs for lightweight devices have been carried
out. For example, the KATAN/KTANTAN families of block ciphers [5], a lightweight stream
cipher WG-7 [17], and the authenticated encryption algorithm Hummingbird-2 [10] are de-
vised specifically for constrained environments. The block cipher PRINTcipher [16] is de-
signed to be compact enough for integrated circuit printing. A 64-bit version block cipher,
LED [11], is proposed based on the structure of AES, which has similar security evaluation
but smaller implementation footprints. Security evaluation of these lightweight algorithms
should be a very important work for researchers.

Bo Zhu · Guang Gong
University of Waterloo, Waterloo, Ontario, Canada
e-mail: {bo.zhu,ggong}@uwaterloo.ca

2 Bo Zhu, Guang Gong

Meet-in-the-middle (MITM, hereafter) attack was first introduced by Diffie and Hellman
in [7] for cryptanalysis of DES, and it is a generic method to analyze high-level structures
of cryptographic algorithms. Its fundamental idea is that if the target algorithm can be de-
composed into two smaller parts and the computation of each part only involves portions
of master keys, then we can investigate the security level of each part separately and finally
combine the results from both sides. Since evaluating two smaller segments usually requires
much less work, the overall time complexity to analyze the complete algorithm could de-
crease dramatically.

Our Contributions. Inspired by the recent development of MITM techniques for crypt-
analysis, such as biclique attacks [3,15] that create the first single-key attacks on full AES
and IDEA, and splice-and-cut attacks for computing pre-images of MD5 [18], SHA-0 and
SHA-1 [2], here we investigate a new method in depth: Ciphers are first divided into con-
secutive sub-ciphers by guessing certain intermediate states, then MITM attacks are applied
to these sub-ciphers separately, and finally results are brought together to eliminate wrong
keys. We apply this multidimensional approach to the block cipher family KATAN, and ob-
tain the best cryptanalysis results so far. Our new attacks can recover the master keys of
175-round KATAN32, 130-round KATAN48, and 112-round KATAN64 faster than exhaus-
tive search, which reach many more round than existing attacks. New attacks on 115-round
KATAN32 and 100-round KATAN48 are also proposed in order to show that this new kind
of attacks can be more efficient than existing results.

Related Work. The papers [6,9] have the basic idea of guessing one internal state in
MITM attacks, but their attacks only succeed in improving memory and data complexities,
but not time complexity, of the previous work in [12]. We also note that there is an in-
dependent work [8] with similar ideas, but the authors focus on optimizing time-memory
trade-offs for composite problems, and their analysis is only applied to the cases where all
sub-ciphers have independent keys.

Our new cryptanalysis results on KATAN are summarized in Table 1, where the notation
KP stands for known plaintexts.

Table 1 Comparisons of previous and new cryptanalysis results on reduced-round KATAN ciphers.

Cipher Rounds Time Compl. Memory Compl. Data Compl. Reference

115 279 Not Given 232 KP [1]
115 277.75 272.32 3 KP Sec. 6.1

KATAN32 119 279.10 279.10 144 KP [13]
175 279.30 279.58 3 KP Sec. 3.2.1
100 278 278 128 KP [14]
100 277.37 273.32 2 KP Sec. 6.2

KATAN48 105 279.10 279.10 144 KP [13]
130 279.45 279.00 2 KP Sec. 4
94 277.68 277.68 116 KP [14]

KATAN64 99 279.10 279.10 142 KP [13]
112 279.45 279.00 2 KP Sec. 4

2 Multidimensional Meet-in-the-Middle Attack

This section will first briefly introduce the original MITM attack, and then discuss how to
extend it in a multidimensional approach.

Multidimensional Meet-in-the-Middle Attack 3

E f (k f , p) E−1
b (kb,c)

p v v′ c

Fig. 1 An illustration of meet-in-the-middle attacks.

2.1 Meet-in-the-Middle Attack

We take Double-DES (2DES) to explain the idea of MITM attacks. Let c = DESk(p) de-
note one DES encryption, where k is the 56-bit master key, and p and c are the plaintext
and ciphertext, respectively. 2DES uses two different keys k1 and k2, and its encryption is
computed as

c = 2DES(k1,k2)(p) = DESk2(DESk1(p)) .

The total number of key bits is 2 · 56 = 112, so the time complexity of the exhaustive key
search for 2DES is 2112. To launch a MITM attack, firstly, we compute v = DESk1(p) for
all possible k1’s, and store all v’s into a set S with corresponding k1’s. The time com-
plexity of this step is 256. Secondly, from the ciphertext side, we compute the decryption
v′ = DES−1

k2
(c) for each possible k2, and then check whether v′ is in the set S. If we find

a match, then the corresponding key pair (k1,k2) is possibly the right one. In this way, we
only need to evaluate DES for 2 · 256 = 257 times, which is much less than 2112. This is
the reason why we should use Triple-DES, rather than Double-DES, to obtain a reasonably
larger security margin than DES.

More formally, assume a cipher c = E(k, p) can be decomposed into two consecutive
sub-ciphers E f (k f , ·) and Eb(kb, ·), i.e. c = Eb(kb,E f (k f , p)), where k f and kb are the sub-
keys used in E f and Eb, as shown in Fig. 1. Here f and b are the abbreviations for forward
and backward. The steps of MITM attacks can be written as follows.

1. MITM phase:
1.1 By iterating each possible k f , compute the encryption v = E f (k f , p), and collect v’s

into a set S.
1.2 For every possible kb, compute the decryption v′=E−1

b (kb,c). Check whether v′ ∈ S.
If so, output the corresponding key pair (k f ,kb) as a possibly correct key.

2. Brute-force testing phase:
– If the MITM phase generates more than one pair of (k f ,kb), then we need to use

additional plaintext-ciphertext pairs to perform complete encryptions/decryptions to
test them and find the correct one.

Let us use | · | to represent the bit-length of a variable, and n to denote the block size of
a cipher, e.g., n = |p| = |c|. For simplicity, we assume bit-lengths of ciphers’ intermediate
states are smaller than block sizes, e.g., |v| ≤ n, in the following content. The time complex-
ity for Step 1.1 is 2|k f |, and for Step 1.2 it is 2|kb|. During the MITM phase, wrong keys have
the probability of 1/2|v| to obtain a false positive. Thus if k f and kb do not have common key
bits, the number of wrong keys passing the MITM phase will be 2|k f |+|kb|/2|v|= 2|k f |+|kb|−|v|.
If k f and kb have common key bits, we let kc denote all the key bits contained in both k f

and kb, so the number of remaining keys will be 2|k f |+|kb|−|kc|−|v|. We further assume k is the
master key that consists of all the key bits of k f and kb, and |v| is equal to the block size n.
Then we have

2|k f |+|kb|−|kc|−|v| = 2|k|−|v| = 2|k|−n.

4 Bo Zhu, Guang Gong

E f1 (k f1 , p) E−1
b1

(kb1 ,g)

p v1 v′1 g

E f2 (k f2 ,g) E−1
b2

(kb2 ,c)

v2 v′2 c

Fig. 2 Meet-in-the-middle attacks with one guess.

This can be easily understood from the information theory’s point of view: Since we have
the information of an n-bit plaintext-ciphertext pair (p,c), we can only reduce the key space
to 1/2n of the original. After this MITM phase, we can simply deploy brute-force testing to
remove wrong keys.

The time complexity of the first attempt of brute-force testing will be equal to 2|k|−n. The
probability of wrong keys passing the testing is 1/2n on average, so 2|k|−2n keys will pass
the first testing. If 2|k|−2n is still larger than 1, we can use another plaintext-ciphertext pair
to perform additional testing to further reduce the key space. The overall time complexity
of the brute-force testing phase will be 2|k|−n +2|k|−2n +2|k|−3n + · · · , and this phase needs
d(|k|−n)/ne pairs of plaintexts and ciphertexts.

To sum up, the total time complexity of the MITM attack is

2|k f |+2|kb|+2|k|−n +2|k|−2n +2|k|−3n + · · · ≈ 2|k f |+2|kb|+2|k|−n ,

and the total data complexity is d(|k|− n)/ne+ 1 = d|k|/ne. Similar analysis can be found
in [4].

When a matching key pair (k f ,kb) is found, it can be tested instantly, so we do not
need to save it in memory and wait for other candidate keys. Therefore, the major memory
consumption of this attack comes from maintaining the set S. There are many kinds of
data structures to construct S, such as hash tables. Actually, the construction and look-up
algorithms of S also have influence on the overall attack time. The look-up time is generally
omitted since it is usually much less than a complete cipher encryption. We suggest using
tables whose indices are (parts of) matching values, e.g., v in the above example, and let each
entry in the tables point to a (linked) list of corresponding sub-keys. Despite of different
constructions of S, the memory complexity of the MITM attack should be 2|k f | or 2|kb| at
least.

2.2 Multidimensional Meet-in-the-Middle Attack

When designing block ciphers for environment-constrained devices, we usually prefer to
adopt small block sizes for efficient performance. However, due to security requirements,
master keys cannot be too short. This usually leads us to cipher designs with key sizes larger
than block sizes. Although this kind of designs is perfectly valid, it is possible to guess
certain short intermediate states and divide the ciphers into small sub-ciphers for easier
analysis.

Let us first give a simple and rather inefficient attack framework for ease of understand-
ing. In following sections, refined methods will be given in real attacks on the KATAN block
cipher family.

Suppose we first guess an intermediate state g, as shown in Fig. 2, and perform two
MITM attacks on the sub-ciphers divided by g. Assuming a simplest case that the sub-keys
k f1 , kb1 , k f2 and kb2 do not have common key bits, the attack steps can be described as
follows.

Multidimensional Meet-in-the-Middle Attack 5

1. Compute v1 = E f1(k f1 , p) for each possible k f1 , and put all k f1 ’s into a table T1 indexed
by v1, each entry of which is a set of certain k f1 ’s.

2. Compute v′2 = E−1
b2

(kb2 ,c) for each possible kb2 , and put all kb2 ’s into a table T ′2 (similar
as T1) indexed by v′2.

3. For each possible guess of g:
(a) Compute v′1 = E−1

b1
(kb1 ,g) for each possible kb1 , and maintain a table T ′1 of kb1 in-

dexed by v′1.
(b) Compute v2 = E f2(k f2 ,g) for each possible k f2 , and maintain a table T2 of k f2 in-

dexed by v2.
(c) Every matching pair (k f1 ,kb1) for v1 = v′1, together with each matching pair (k f2 ,kb2)

for v2 = v′2, forms a candidate key for the whole encryption. We use additional
plaintext-ciphertext pairs to perform brute-force testing on these candidate keys. If
one key passes all tests, then output it as the correct key.

Since we do not need to recompute E f1 and E−1
b2

for different g’s, the time complexity
of this attack without the brute-force testing phase is

2|k f1 |+2|kb2 |+2|g| · (2|kb1 |+2|k f2 |).

For each guessed value of g, the MITM step from p to g will reduce the size of the key
space to 2|k|−|v1| and the second MITM step for the interval between g and c will fur-
ther reduce it to 2|k|−|v1|−|v2|, so after the two MITM attacks the total number of keys
left is 2|g| · (2|k|−|v1|−|v2|) = 2|k|+|g|−|v1|−|v2|. Assuming |g| = |v1| = |v2| = n, we will have
2|k|+|g|−|v1|−|v2| = 2|k|−n, which is consistent with the analysis for original MITM attacks in
the last subsection. The total time complexity of the brute-force step is still around 2|k|−n.

Please note a subtle part in the above analysis: Although the size of the master key space
is reduced to 2|k|−|v1| after the MITM attack step from p to g, the number of sub-keys to be
matched with the results from the other MITM step between g and c is only 2|k f1 |+|kb1 |−|v1|,
which may be much less than 2|k|−|v1|.

The memory complexity of the attack is 2|k f1 |+2|kb1 |+2|k f2 |+2|kb2 |, since we may need
to store T1, T ′1 , T2 and T ′2 in memory. The data complexity of the attack is d|k|/ne.

In general cases, the sub-keys, k f1 , kb1 , k f2 and kb2 , would involve many common key
bits, so the above attack cannot be applied directly. A straightforward way to solve this is
treating each sub-key bit as an independent new variable. This technique has been used in
other cryptanalysis methods, such as [14]. But we may get more efficient results or attack
more rounds by carefully investigating ciphers’ detailed designs. For example, we may per-
form linear transformations before matching sub-keys, or study round functions to perform
partial encryptions/decryptions. We will show real attack examples using these techniques
in following sections.

Certainly, we can guess more intermediate states and then segment ciphers into smaller
pieces. MITM attacks with multiple guesses are illustrated in Fig. 3. For simplicity of de-
scription, hereafter we denote the MITM attacks with multiple guesses as multidimensional
MITM (MD-MITM) attacks, and especially the attacks with n sub-ciphers will be nD-
MITM. For example, the above attack with one guess is a 2D-MITM attack, and original
MITM attacks can be seen as 1D-MITM attacks.

The steps of an (i+1)D-MITM attack can be briefly stated as follows.

1. Construct a table T1 of k f1 by computing v1 = E f1(k f1 , p).
2. Construct a table T ′i+1 of kbi+1 by computing v′i+1 = E−1

bi+1
(kbi+1 ,c).

6 Bo Zhu, Guang Gong

p

E f1

v1 v′1

E−1
b1

g1

E f2

v2 v′2

E−1
b2

g2

E f3

v3 v′i

E−1
bi

gi

E fi+1

vi+1 v′i+1

E−1
bi+1

c

Fig. 3 General process of multidimensional meet-in-the-middle attacks with multiple guesses.

3. For each guess of g1:
(a) Construct a table T ′1 by computing v′1 = E−1

b1
(kb1 ,g1), which is to match with T1.

(b) Construct a table T2 by computing v2 = E f2(k f2 ,g1).
(c) For each guess of g2:

i. Construct a table T ′2 by computing v′2 = E−1
b2

(kb2 ,g2), to match with T2.
ii. · · · (Perform recursive operations till gi.)

iii. For each guess of gi:
A. Construct a table T ′i by computing v′i = E−1

bi
(kbi ,gi), to match with Ti.

B. Compute vi+1 = E fi+1(k fi+1 ,gi), which can form a table Ti+1 in order to
match with T ′i+1.

C. Perform brute-force testing on each combination of matching sub-key pairs
from (T1,T ′1), (T2,T ′2), · · · , (Ti+1,T ′i+1), and output the passing combination
as the correct key.

If we assume |g1|= |g2|= · · ·= n, the time complexity of the MITM phase with multiple
guesses is

2|k f1 |+2|kbi+1 |+2|g1| · (2|kb1 |+2|k f2 |+2|g2| · (2|kb2 |+2|k f3 |+ · · ·+2|gi| · (2|kbi |+2|k fi+1 |)))

= 2|k f1 |+2|kbi+1 |+2n · (2|kb1 |+2|k f2 |)+22n · (2|kb2 |+2|k f3 |)+ · · ·+2i·n · (2|kbi |+2|k fi+1 |).
(1)

Please note that the order of g1,g2, · · · ,gi does not matter, and we can first guess any ones
of them in order to obtain more desirable results.

The memory complexities of MD-MITM attacks are upper-bounded by the total mem-
ory consumption of T1,T ′1 ,T2, · · · ,T ′i+1. In order to obtain the minimum value for the time

complexity equation (1), the sizes of T ′1 ,T2, · · · ,Ti+1, i.e. 2|kb1 |,2|k f2 |, · · · ,2|k fn+1 |, should be
much smaller than the sizes of T1 and T ′i+1, i.e. 2|k f1 | and 2|kbi+1 |. So it is safe to ignore
T ′1 ,T2, · · · ,Ti+1 here and give an upper bound for the memory complexities of these simple
MD-MITM attacks as 2|k f1 |+2|kbi+1 |.

We only use one known plaintext-ciphertext pair before the brute-force testing phase,
so it is easy to see that MD-MITM attacks have the same data complexities as 1D-MITM
attacks, i.e. d|k|/ne known plaintext-ciphertext pairs.

What we want to emphasize here is that the theoretical analysis in this section only presents
a general framework to perform the divide-and-conquer method on ciphers. Whether it can
really work and improve attacks’ efficiencies on a specific cipher depends on the detailed
specifications of the cipher. In the next sections, we will demonstrate several MD-MITM
attacks on the block cipher family KATAN32/48/64, which can attack more rounds and
reduce complexities of previous attacks. These new attacks highly rely on certain design
details of KATAN.

Multidimensional Meet-in-the-Middle Attack 7

Cipher |L1| |L2| x1 x2 x3 x4 x5

KATAN32/KTANTAN32 13 19 12 7 8 5 3
KATAN48/KTANTAN48 19 29 18 12 15 7 6
KATAN64/KTANTAN64 25 39 24 15 20 11 9

Cipher y1 y2 y3 y4 y5 y6
KATAN32/KTANTAN32 18 7 12 10 8 3
KATAN48/KTANTAN48 28 19 21 13 15 6
KATAN64/KTANTAN64 38 25 33 21 14 9

Table 2. Parameters defined for the KATAN family of ciphers

L2

←−−−

L1

−−−→

?
L

?L? -∧-
?-IR ∧ - ?

L - � ka

?

6

L

6

L

6

� ∧� 6

�∧�
6

L�-kb

6

Fig. 1. The Outline of a round of the KATAN/KTANTAN ciphers

feedback polynomial x8+x7+x5+x3+1. Then, the encryption process starts, and ends
after 254 additional clocks when the LFSR returns to the all 1’s state. As mentioned
earlier, we use the most significant bit of the LFSR to control the irregular update (i.e.,
as the IR signal). For sake of completeness, in Table 3 in the Appendix we give the
sequence of irregular rounds.

We note that due to the way the irregular update rule is chosen, there are no sequences
of more than 7 rounds that share the pattern of the regular/irregular updates, this ensures
that any self-similarity attack cannot utilize more than 7 rounds of the same function
(even if the attacker chooses keys that suggest the same subkeys). Thus, it is easy to see
that such attacks are expected to fail when applied to the KATAN family.

We implemented KATAN32 using Synopsys Design Compiler version Y-2006.06 and
the fsc0l d sc tc 0.13µm CMOS library. Our implementation requires 802 GE, of which
742 are used for the sequential logic, and 60 GE are used for the combinational logic.
The power consumption at 100 KHz, and throughput of 12.5 Kbps is only 381 nW. This
is a gate level power estimation obtained using Synopsys Design Compiler3.

For KATAN48 the implementation size is 927 GE (of which 842 are for the sequential
logic) and the total power consumption is estimated to 439 nW. For the 64-bit variant,
KATAN64, the total area is 1054 GE (of which 935 are for the sequential logic) and the
power consumption 555 nW.

Here we would like to note that the further area reduction for KATAN48 and KATAN64
is possible by utilizing a clock gating technique. As explained above, the only difference

3 Although the gate level power estimation gives a rough estimate, it is useful for comparison
with related work reported in the literature.

7

Fig. 4 The structure of KATAN [5].

3 Application to KATAN32

KATAN [5] is a block cipher family designed for constrained devices and embedded sys-
tems. It consists of three versions with different block sizes, 32, 48 and 64 bits, which are
named KATAN32, KATAN48 and KATAN64 respectively. Despite of the different block
sizes, they all use 80-bit master keys. The structure of KATAN is shown in Fig. 4.

In the encryption process of KATANn, the plaintext p is first divided to two pieces
and loaded into the registers L1 and L2. Next, two nonlinear functions defined by the equa-
tions (2) are operated on L1 and L2 respectively.

fa[L1] = L1[x1]⊕L1[x2]⊕ (L1[x3] ·L1[x4])⊕ (L1[x5] · IR)⊕ ka
fb[L2] = L2[y1]⊕L2[y2]⊕ (L2[y3] ·L2[y4])⊕ (L2[y5] ·L2[y6])⊕ kb

(2)

In the above equations, xi and y j are predefined indices for different versions of KATAN,
and IR is an irregular update sequence to prevent self-similarity attacks. The parameters xi,
y j and IR are given in the appendix.

ka and kb are two sub-key bits produced from a 80-bit master key K by a linear feedback
shift register (LFSR). The master key K is loaded as the initial state of the LFSR, and each
output bit of the LFSR is used as a sub-key bit sequentially. Assuming {ki} is the output
sequence of the LFSR, if i < 80, ki is equal to the i-th bit of the master key; if i≥ 80,

ki = ki−80⊕ ki−61⊕ ki−50⊕ ki−13. (3)

For the r-th round of KATAN, ka = k2r−2 and kb = k2r−1, where 1≤ r ≤ 254.
For KATAN32, after computing fa[L1] and fb[L2], the registers L1 and L2 are shifted

to left by one bit, and the most significant bits of L1 and L2 are discarded. Next, fa[L1] is
fed into the least significant bit of L2, and fb[L2] is put into L1. After 254 rounds of such
operations, the states of L1 and L2 are concatenated and output as the ciphertext c.

KATAN48 and KATAN64 have the same structure and number of rounds as KATAN32,
but L1 and L2 of KATAN48 and KATAN64 are updated two and three times in every round,
respectively, by using the same ka and kb.

3.1 2D-MITM Attacks on KATAN32

Use si to denote the 32-bit intermediate state right after the i-th round, which implies s0 = p
and s254 = c. Let us first show a simplest case of 2D-MITM on KATAN32, and improve it

8 Bo Zhu, Guang Gong

in later discussions. For simplicity, we use Ei(s) to denote E fi(k fi ,s), and D j(s) to denote
E−1

b j
(kb j ,s). ki... j is the sub-key containing all the sub-key bits whose indices are from i to j.

The attack procedure is as follows, which is a standard 2D-MITM attack.

1. Compute s40 = E1(s0) by using every possible k f1 = k0...79, and compute k80...127 from
k f1 by using linear functions derived from the LFSR (see the equation (3)). Put each k f1
in a table T1 indexed by s40 and k80...127. Each entry of the table should have one element
on average.

2. Compute s′88 = D2(s128) by using every possible kb2 = k176...255, and compute k128...175
from kb2 by using linear functions derived from the LFSR. Store each kb2 in a table
T ′2 indexed by s′88 and k128...175. Similarly, each entry of the table has one element on
average.

3. For each guess of g = s64:
(a) Compute s′40 = D1(g) for each kb1 = k80...127, and then find the matching key k f1 in

T1. On average there is only one such key, and we put it in a set S.
(b) Compute s88 = E2(g) for each k f2 = k128...175, and find the matching key kb2 in T ′2 .

Then compute k0...79 by using linear equations derived from the LFSR, and check
whether it is in the set S. If so, perform brute-force testing on this candidate key. If
it passes all tests, output it as the correct master key.

To fairly compare with the time complexities of existing attacks, we adopt the formula
proposed in [19] to estimate the time complexity of the above attack on KATAN. Use R f1 ,
Rb1 , R f2 and Rb2 to denote the numbers of rounds involved in different phases of the 2D-
MITM attack, and R to denote the total number of attacked rounds. The time complexity
without the brute-force testing phase is computed as follows.

2|k f1 | ·
R f1
R

+2|kb2 | ·
Rb2

R
+2n ·

(
2|kb1 | ·

Rb1

R
+2|k f2 | ·

R f2
R

)
The above equation can be seen as estimating the equivalent number of full R-round cipher
evaluations, as the time to complete the 2D-MITM attack.

Here we simply ignore the time complexities of linear transformations when matching
sub-keys, because these LFSR computations only involve several linear operations, which
are more cost-efficient compared to iterations of nonlinear round functions, and the exhaus-
tive key search also needs to compute the sub-keys and will consume equivalent time.

In the above 2D-MITM attack on KATAN32, since |k f1 |= |kb2 |= 80 and |kb1 |= |k f2 |=
48, its total time complexity is

280 · 40
128

+280 · 40
128

+232 ·
(

248 · 24
128

+248 · 24
128

)
+280−32 ≈ 280,

where 280−32 is the time complexity of the brute-force testing phase. Please note that 280 is
exactly the time complexity of exhaustive key search on KATAN. The memory complexity
of the attack is 280 +280 +280−32 ≈ 281, since we need to store T1, T2 and S in memory. The
data complexity is still the same as 1D-MITM attacks, i.e. d80/32e= 3 plaintext-ciphertext
pairs.

3.1.1 Reducing Time Complexities

To make the time complexity of the above attack better than exhaustive search, i.e. 280,
we can reduce the numbers of attacked rounds in the first forward and second backward

Multidimensional Meet-in-the-Middle Attack 9

phases by one. But in this case, when constructing T1 (or similarly T ′2), we cannot simply
use the intermediate state g= s38 and kb1 = k78...125 as indices like in the previous 2D-MITM
attack, because the new k f1 = k0...77 does not have the full 80-bit information of the master
key K = k0...79, and certain bits of kb1 still depend on the values of k78 and k79.

However, by assuming k78 and k79 are zero, we can compute a temporal key κ80...125
for the purpose of matching, which is equivalent to removing these two bits from the linear
equations of key scheduling. Under such circumstance, the first MITM phase between p and
g can be performed without knowing k78 and k79, and later extra information of k78 and k79
can be appended to form the 80-bit master key. The detailed attack procedure is described
as follows.

1. Compute s39 = E1(s0) by iterating every possible k f1 = k0...77, and compute κ80...125
from k0...77 by assuming k78 = k79 = 0. Put each k f1 in a table T1 indexed by s39 and
κ80...125. Each entry of the table should have one element on average.

2. Compute s′87 = D2(s126) using every possible kb2 = k174...251, and compute κ126...171
from k174...251 by treating k172 = k173 = 0. Store each kb2 in a table T ′2 indexed by s′87
and κ126...171. Similarly, each entry of the table has one element on average.

3. For each guess of g = s63:
(a) Compute s′39 = D1(g) for each kb1 = k78...125, and compute κ80...125 by subtracting

k78 and k79 from the bits of k80...125. Then use s′39 and κ80...125 to find the matching
k f1 in T1. On average there is only one matching k0...77, combine it with the k78 and
k79 to form the master key. Put the candidate master key in a set S.

(b) Compute s87 = E2(g) for each k f2 = k126...173, and compute κ126...171 by subtracting
k172 and k173 from k126...172. Then use s87 and κ126...171 to find the matching kb2 in
T ′2 . Compute k0...79 from k172...251 by using linear functions derived from the LFSR,
and check whether it is in the set S. If so, perform brute-force testing on it.

The overall time complexity of this attack, on 126-round KATAN32, is

278 · 39
126

+278 · 39
126

+232 ·
(

248 · 24
126

+248 · 24
126

)
+280−32 ≈ 279.10,

and its memory complexity is 278 +278 +248 ≈ 279. This attack already reaches more num-
ber of rounds than any previous attack on KATAN32, but we still have room for improve-
ments.

3.1.2 Increasing the Number of Attacked Rounds

We can see there is a large time complexity gap between the MD-MITM and brute-force
testing phases in the above 2D-MITM attacks on KATAN32. The time complexities of brute-
force testing are always 280−32 = 248, and the complexities of MITM phases are close to
280. If we can balance complexities of the two phases, the overall time complexities may
drop. One way to do this is reducing bit-lengths of the intermediate states for matching, i.e.
v1,v2, · · · . As a result, computing incomplete parts of original v1,v2, · · · may not need to use
up all of the sub-key bits, and we could extend the attack to more rounds. In this way, more
candidate keys are left to be tested in brute-force phases. This technique is called partial
matching, and has been used in various papers, such as [4,19].

By adopting the partial matching technique, we can extend our attack on 126 rounds of
KATAN32 to 152 rounds. For simplicity, we only use partial matching in the second MITM
part. After searching by programs, we find the best position for the second backward phase

10 Bo Zhu, Guang Gong

is from s152 to s87. Based on the 78-bit information of kb2 = k226...303, we can still compute
2 bits of s87. By using these 2 bits for matching, there will be 278 candidate keys left for
brute-force testing, and thus the total time complexity of the attack should be still less than
280.

The partial matching details are shown as follows. The column a is for ka, and b is for
kb. Here we use the same notations as [4] and [19]: 0 implies this bit is fully computable
based on information we know and thus considered as known; 1 means computing this bit
needs extra key information and is considered as unknown. To form a matching, the two
resultant bits from both sides should be known.

Rd. a b L1 L2
second backward phase
114 0
113 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
112 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
111 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
109 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
108 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
107 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
106 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
105 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1
104 1 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0
103 0 1 0 0 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1
102 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1
101 0 0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1
100 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1
99 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1
98 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1
97 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1
96 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1
95 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1
94 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1
93 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1
92 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
91 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
90 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
89 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
88 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
second forward phase
87 0
matching
2 bits 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

For the second MITM attack with partial matching, we cannot simply construct T ′2 by
using the 2 matching bits, along with a 46-bit temporal key computed from kb2 , as indices,
so we propose using a product set that is constructed by two related tables: First find an
index value from the first table, and then locate the target value from the second table by
using the index value. The attack procedure is described as follows.

1. By using every possible k f1 = k0...77, compute s39 = E1(s0), and calculate κ80...125 by
treating k78 = k79 = 0. Save k f1 in a table indexed by s39 and κ80...125. This step is
similar to the previous attack. Every entry of the table will have one element on average.

2. Compute the 2 bits of s′87 = D2(s152) by using every possible kb2 = k226...303, and save
all computation results in a table T ′2 , whose index is kb2 .

3. For each guess of g = s63:
(a) Compute the 2 bits of s87 = E2(g) for every possible k f2 = k126...173, and store all

k f2 ’s in a table T2 indexed by different values of the 2 bits. Each entry of T2 is a

Multidimensional Meet-in-the-Middle Attack 11

sub-set of k f2 ’s. After this step, T2 and T ′2 together form a product set, and we will
show how to look up its elements in next steps.

(b) For each kb1 = k78...125:
i. Compute s′39 = D1(g). Calculate κ80...125 from k80...125 by subtracting k78 and

k79. Use s′39 and κ80...125 to find the matching k f1 in T1. Now we will have the
(guessed) full 80-bit information of k0...79.

ii. Based on the knowledge of k0...79, compute the sub-key pair k f2 and kb2 , and
check whether the pair is also in the product set of T2 and T ′2 : First look up kb2
in T ′2 to find the corresponding values of the two bits, and then check whether
k f2 is in the entry (set) of T2 indexed by the two bits. If so, perform further
brute-force testing on the candidate key.

To further explain the computation of temporal sub-keys, we take κ80...125 in Step 3(b)(i) for
example: Since each bit of k80...125 can be expressed by a linear function in terms of the bits
of k0...79, we can subtract the values of k78 and k79 from these linear expressions to get the
temporal key κ80...125, only for the purpose of matching.

The total time complexity of this 2D-MITM attack is

278 · 39
152

+278 · 65
152

+232 ·
(

248 · 24
152

+248 · 24
152

)
+280−2 ≈ 279.56.

The memory consumption contains T1, T2 and T ′2 , and the total is the same as the previous
attack, i.e. 279. Please note that the data complexity of this attack is also the same as before,
i.e. 3 known plaintext-ciphertext pairs, because even if the first pair used in the MITM phase
is only consumed by 2-bit information, we can reuse it in the brute-force testing phase to
filter out more wrong keys.

3.2 3D-MITM Attacks on KATAN32

For MD-MITM attacks, computations of certain steps may have been repeated. For example,
as in Fig. 3, E f3 is computed for 22n times, so we may cache computation results of first 2n

times and reuse them later.
As previous subsections, we first start from a simple 3D-MITM attack. The two guessed

states are g1 = s64 and g2 = s88. The first MITM part starts from s0, ends at g1, and meets
at s40. The second MITM part starts from g1, ends at g2, and meets at s80. The third one is
from g2 to s152, and meets at s112. The key point of this attack is to keep the numbers of
the key bits of k f2 and kb2 small enough, such that we can expect only one sub-key in each
intermediate matching step, in order to keep the attack simple. The detailed attack procedure
is described as follows.

1. Compute s40 = E1(s0) and kb1 = k80...127 for each possible k f1 = k0...79, and store k f1 in
a table T1 indexed by s40 and kb1 . Every entry of T1 will have one element on average.

2. Compute s′112 = D3(s152) for each kb3 = k224...303, and store kb3 in a table T ′3 indexed
s′112. Each entry of T ′3 is a set containing certain kb3 ’s.

3. For each guessed pair of g2 = s88 and k f3 = k176...223, compute s112 = E3(g2) and store
the computation results in a table T3 indexed by g2 and k f3 . After this step, T3 and T ′3
form a product set.

4. For each guess of g1 = s64:

12 Bo Zhu, Guang Gong

(a) Compute s′40 = D1(g1) for each kb1 = k80...127, and find the matching k f1 = k0...79 in
T1 by using the indices kb1 and s′40. Next, based on the 80-bit master key k0...79, we
compute k128...175, and then store k0...79 in a table S indexed by k128...175. Each entry
of S will have one element on average.

(b) Compute s80 = E2(g1) for each 32-bit k f2 = k128...159, and store k f2 in a table T2
indexed by s80, where each entry has one element on average.

(c) For each guess of g2 = s88:
– For each 16-bit kb2 = k160...175:

i. Compute s′80 =D2(s88), and look up the table T2 by s′80 to find the matching
k f2 = k128...159. Thus we get a consecutive 48-bit sub-key k128...175.

ii. Look up the table S by k128...175 to find the matching k0...79.
iii. Finally use k0...79 to compute the corresponding pair of k f3 and kb3 , and

check whether the pair is also in the product set of T3 and T ′3 . If so, do
further brute-force testing on k0...79.

The total number of attacked rounds is 152. The time complexity of this 3D-MITM
attack is

280 · 40
152 +280 · 40

152 +232+48 · 24
152 +232 ·

(
248 · 24

152 +232 · 16
152 +232+16 · 8

152

)
+280−32 ≈ 279.84.

Since we need to store T1, T3, T ′3 , S and T2 in memory, the memory complexity is 280+280+
232+48 +248 +232 ≈ 281.58. We use only one known plaintext-ciphertext pair in the MITM
attack phase, so the total data complexity of the 3D-MITM attack is 3 known plaintext-
ciphertext pairs as before.

3.2.1 Improvements

To make the memory complexity become under 280, we can lower the numbers of attacked
rounds in the phases f1, f3 and b3 by one. In this case, its memory complexity will decrease
to about 281.58−2 = 279.58, and the time complexity will decrease as well.

The partial matching technique can also be used in 3D-MITM attacks to increase the
number of attacked rounds. Adopting partial matching in the phases f3 and b3, we can
still use the similar positions for the two matching bits as the 2D-MITM attack in the last
subsection.

Our final 3D-MITM attack on KATAN32 can reach 175 rounds at most. The first MITM
part starts from s0, meets at s39, and ends at g1 = s63. The second one is from g1 to g2 = s87,
and meets at s79. The third one meets at s110 and ends at s175. The overall attack is similar to
the previous 3M-MITM one, except partial matching is employed in the third MITM part.
The detailed attack procedure is described as follows.

1. For each possible k f1 = k0...77, calculate s39 = E1(s0), and compute κ80...125 by treating
k78 = k79 = 0. Store k f1 in a table T1 indexed by s39 and κ80...125. Every entry of T1 will
have one element on average.

2. For each kb3 = k272...349, compute the 2 bits of s′110 = D3(s175) for matching use, and
store kb3 in a table T ′3 indexed by values of the two bits. Each entry of T ′3 is a set con-
taining certain kb3 ’s.

3. For each guessed pair of g2 = s87 and k f3 = k174...219, compute the two bits of s110 =
E3(s87) and store the computation results in a table T3 indexed by g2 and k f3 . After this
step, T3 and T ′3 form a product set.

4. For each guess of g1 = s63:

Multidimensional Meet-in-the-Middle Attack 13

(a) Compute s′39 = D1(g1) for each kb1 = k78...125. Compute κ80...125 from k80...125 by
subtracting k78 and k79. Find the matching k f1 in T1 by using the indices κ80...125
and s′39. Next, compute k126...173 based on k0...79, and then store k0...79 in a table S
indexed by k126...173. Each entry of S will have one element on average.

(b) Compute s79 = E2(g1) for each k f2 = k126...157, and store k f2 in a table T2 indexed
by s79, each entry of which has one element on average.

(c) For each guess of g2 = s87:
– For each 16-bit kb2 = k158...173:

i. Compute s′79 = D2(g2), and look up the table T2 by s′79 to find the matching
k f2 = k126...157. Now we will have the complete 48-bit information about
k126...173.

ii. Look up the table S by k126...173 to find the matching k0...79.
iii. Finally use k0...79 to compute the sub-key pair of k f3 and kb3 , and check

whether the pair is also in the product set of T3 and T ′3 . If so, do further
brute-force testing on k0...79.

The total time complexity of this attack is

278 · 39
175 +278 · 65

175 +232+46 · 23
175 +232 ·

(
248 · 24

175 +232 · 16
175 +232+16 · 8

175

)
+280−2 ≈ 279.30.

The memory complexity is 278 + 278 + 232+46 + 248 + 232 ≈ 279.58. The data complexity
stays as the same, i.e. 3 known plaintext-ciphertext pairs.

4 Applications to KATAN48 and KATAN64

We can apply similar MD-MITM attacks to other versions of KATAN, i.e. KATAN48 and
KATAN64, but only one intermediate state g can be guessed because the block sizes of
KATAN48 and KATAN64 are larger than halves of their key lengths. We can also use the
partial matching technique here in order to increase numbers of attacked rounds. We omit
the detailed analysis procedure and just give descriptions of the new attacks. The details of
partial matching steps are listed in the appendix.

The 2D-MITM attack on KATAN48 can reach 130 rounds at most. The guessed state is
g = s55. The first MITM part meets at s39, and the second meets at s71. The partial matching
technique is used in the second MITM part. The attack steps are described as follows.

1. Compute s39 = E1(s0) by using every possible k f1 = k0...77, and compute κ80...109 by
treating k78 = k79 = 0. Save k0...77 in a table indexed by s39 and κ80...125.

2. Compute the 2 bits of s′71 = D2(s130) by using every possible kb2 = k182...259, and save
all computation results in a table T ′2 , whose index is kb2 .

3. For each guess of g = s55:
(a) Compute the 2 bits of s71 = E2(g) by using every possible k f2 = k110...141. Store

all k f2 ’s in a table T2 indexed by values of the 2 bits, and each entry is a sub-set
containing certain k f2 ’s. After this step, T2 and T ′2 together form a product set.

(b) Compute s′39 = D1(g) for each kb1 = k78...109, calculate κ80...109 by subtracting k78
and k79 from k80...109, and find the matching k0...77 in T1. Next, based on the knowl-
edge of k0...79, compute the sub-key pair of k f2 and kb2 , and check whether the pair is
in the product set of T2 and T ′2 . If so, do further brute-force testing on the candidate
key.

14 Bo Zhu, Guang Gong

The time complexity is

278 · 39
130

+278 · 59
130

+248 ·
(

232 · 16
130

+232 · 16
130

)
+280−2 ≈ 279.45.

The memory complexity is 278+278+232≈ 279. The data complexity is d80/48e= 2 known
plaintext-ciphertext pairs.

The new attack on KATAN64 is similar as above, except after searching by programs we
find it will allow us to attack more rounds if the partial matching technique is performed in
the first MITM part. The final number of attacked rounds on KATAN64 is 112. The guessed
point is g = s65, the first MITM attack meets at s46, and the second one meets at s73. The
attack steps are as follows.

1. Compute the 2 bits of s46 = E1(s0) by using every possible k f1 = k0...77, and save all
computation results in a table T1 indexed by k f1 .

2. Compute s′73 = D2(s112) by using every possible kb2 = k146...222, and compute κ130...143
by treating k144 = k145 = 0. Save k146...222’s into a table T ′2 indexed by s′72 and κ130...143.

3. For each guess of g = s65:
(a) Compute the 2 bits of s′46 = D1(g) by using every possible kb1 = k114...129. Store

all kb1 ’s in a table T ′1 indexed by values of the 2 bits, and each entry is a sub-set
containing certain kb1 ’s. After this step, T1 and T ′1 together form a product set.

(b) Compute s73 = E2(g) for each k f2 = k130...145, calculate κ130...143 by subtracting k144
and k145 from k130...143, and find the matching k146...222 in T ′2 . Next, based on the
knowledge of k144...223, compute the sub-key pair of k f1 and kb1 , and check whether
the pair is in the product set of T1 and T ′1 . If so, do further brute-force testing on the
candidate key.

The time complexity is

278 · 46
112

+278 · 39
112

+248 ·
(

232 · 19
112

+232 · 8
112

)
+280−2 ≈ 279.45.

The memory complexity is 278+278+216≈ 279. The data complexity is d80/64e= 2 known
plaintext-ciphertext pairs.

5 Further Optimization Methods

There are still many techniques that may help us reduce the attacks’ complexities and reach
more rounds.

One way to reduce the time complexities is that when computing intermediate states
for partial matching we do not actually need to complete the calculations of partial encryp-
tions/decryptions. Consider the detailed steps of the partial matching used in the 2D-MITM
attack on KATAN32 (see Sec 3.1.2). One of the two bits used for matching in s′87 has already
been obtained after the decryption of the 106th round, and the other bit is computed in the
104th round. So we do not need to continue the partial decryptions after that. Moreover, the
computations of these two bits depend on only parts of previous states, and thus we may
also be able to save some time on the computations before the 104th round. But this tech-
nique will not push our attacks to more rounds, and might make the attack procedures very
complicated to explain. In addition, in order to make our complexity estimations generous,
this optimization method is not used in our attacks.

Multidimensional Meet-in-the-Middle Attack 15

Another way to improve the attacks is to segment the ciphers’ round functions into
smaller steps. For example, the round functions of KATAN48 and KATAN64 update the
internal states by two and three times, respectively, so we may divide them to two or three
sub-functions. And we can even separate operations of updating L1 and L2 to different sub-
steps, which is applicable to any KATAN variant. By analyzing iterations of smaller steps or
functions, we may further reduce time and memory complexities, or extend attacks to more
rounds.

The paper [19] proposes an improved partial matching technique called indirect partial
matching, in order to obtain more usable intermediate bits for matching. Originally, when
computing a partial matching state, if the value of one bit si depends on the key bit k j
only known to its opposite phase, then si will be considered as unknown. Nonetheless, after
adding this key bit k j into computations, k j may still remain as a linear variable in interme-
diate states after a few rounds. Thus, if we look for possible matches of si⊕ k j instead of si,
this bit information can still be used for matching. This technique may help us extend our
attacks to more rounds.

6 Applications to KATAN with Less Rounds

Since the MD-MITM attacks in Section 3 and 4 focus on increasing the maximum num-
bers of attacked rounds and their time complexities are close to exhaustive search’s, it is
still questionable that whether this new kind of multidimensional approach can be practi-
cal enough to improve existing attacks on ciphers with less rounds. In this section, we will
demonstrate how to apply MD-MITM attacks to reduced-round KATAN, and obtain less
time complexities than the attacks in [1,14].

6.1 New Attack on 115-Round KATAN32

We will show how to attack KATAN32 with exactly the same number of rounds as in the
paper [1], i.e. 115 rounds. For simplicity of description, we do not use any advanced opti-
mization methods, such as partial matching.

This reduced-round attack is based on the one mentioned in Section 3.1.1, and our idea
is to further reduce the time complexities by iterating less sub-key bits. The 115-round
KATAN32 is segmented by s55, and the MITM part for the first sub-cipher meets at s35
and the second MITM part meets at s79. The attack procedure is also similar to previous
attacks, and can be generally described as follows.

1. k0...69 and k70...109 in the first MITM phase forms a product set.
2. The second MITM phase of k110...157 and k158...229 yields a consecutive 80-bit sub-key

k150...229. Then we recheck k150...229 in the product set constructed in the first MITM
phase.

3. Passed keys are further examined by using additional pairs of plaintexts and ciphertexts.

The total time complexity of this new attack is

270 · 35
115

+272 · 36
115

+232 ·
(

240 · 20
115

+248 · 24
115

)
+280−32 ≈ 277.75,

which is less than the time complexity of the attack in [1], i.e. 279. The memory complexity
for this attack is 270 +272 +240 ≈ 272.32.

16 Bo Zhu, Guang Gong

6.2 New Attack on 100-Round KATAN48

Similar to the attack on 115-round KATAN32, we can construct a simple 2D-MITM attack
on 100-round KATAN48. The guessed state is s48. The first MITM part meets at s35 and the
second one meets at s64. k0...69 and k70...95 in the first MITM phase can form a product set,
and k120...199 derived from the second MITM phase is checked again in the product set.

The overall time complexity is

270 · 35
100

+272 · 36
100

+248 ·
(

226 · 13
100

+232 · 16
100

)
+280−48 ≈ 277.37.

Although this simple attack may be further optimized, it has less time complexity than the
attack on KATAN48 in [14]. The memory complexity of this new attack is 270+272+226 ≈
272.32, which is also less than the one in [14].

6.3 Discussions

A simple MD-MITM attack without any optimization will not get much advantage over
traditional MITM attacks on KATAN64 with 94 rounds (the maximum number of rounds
attacked in [14]), since its block size, i.e. 64 bits, is close to the key size, 80 bits. It is
feasible to get lower time complexity by adopting partial matching as used on KATAN64 in
Section 3.1.2. But as we already demonstrate the power of MD-MITM attacks on 115-round
KATAN32 and 100-round KATAN48, and our primary goal is to extend attacks on KATAN
to as many rounds as possible, we will leave the potential work on 94-round KATAN64 to
interested readers.

One trick in our attacks, including the ones in Section 3 and 4, is to first derive a consec-
utive sub-key for later use, such as k151...230 used in the new attack on 115-round KATAN32.
This is the most time-consuming step during the whole attack, and limits the lower bounds
of time complexities for possible attacks. But since the computational cost of this step is low
compared to a complete encryption/decryption of the cipher, the overall complexities of our
attacks could be better than exhaustive search. However, we do not rule out the possibility
of other ways to carry out MD-MITM attacks that may improve upon our methods.

The attacks on 115-round KATAN32 and 110-round KATAN48 proposed in this section
demonstrate that this MD-MITM method not only can increase the numbers of possibly at-
tacked rounds, but also could be used to improve the time and memory efficiencies of attacks
on reduced-round ciphers. Compared to traditional MITM attacks that may need to iterate
most of their attacking steps, MD-MITM approach can save computational consumption in
certain phases, such as the first forward and last backward phases. This might also be one
of the reasons why traditional MITM attacks cannot reach the same numbers of attacked
rounds of KATAN as MD-MITM attacks.

7 Concluding Remarks

In this paper, we investigate a cryptanalysis framework called multidimensional meet-in-
the-middle attack, which is applicable to lightweight ciphers with simple key scheduling
algorithms and block sizes smaller than master key sizes. Refined analysis and attacks are
presented on the block cipher family KATAN32/48/64 for demonstration. Our new attacks

Multidimensional Meet-in-the-Middle Attack 17

p

E f1

v1 v′1

E−1
b1

g1 g2

E f3

v3 v′3

E−1
b3

c

look-up table

Fig. 5 Multidimensional MITM attacks with look-up tables.

reach many more rounds than existing attacks, and can also be more efficient than existing
ones when being applied to KATAN with a smaller number of rounds.

For MD-MITM attacks with dimensions larger than two, there are portions of the attacks
that can be pre-computed. For example, the two ends of the middle portion for a 3D-MITM
attack are both guessed values. Thus we can build a look-up table for the middle computa-
tions off-line without any knowledge about plaintexts and ciphertexts, which is illustrated in
Fig. 5. Especially, we can use any approach to construct the loop-up table in Fig. 5, not only
limited to MITM methods.

We may also analyze other lightweight ciphers as a future work. Consider KATAN’s
sibling block cipher family KTANTAN32/48/64 [5], which has the same round functions as
KATAN but a simpler key scheduling algorithm. There already exist several attacks on full
KTANTAN [19,4]. By refining our matching techniques, we may be able to construct more
efficient attacks on KTANTAN.

Acknowledgement

The authors would like to thank Claude Carlet, Itai Dinur, Xinxin Fan, Yin Tan, and anony-
mous reviewers for helpful comments. This work is supported by NSERC Discovery Grant
and ORF Grant.

References

1. M. R. Albrecht and G. Leander. An all-in-one approach to differential cryptanalysis for small block
ciphers. In L. R. Knudsen and H. Wu, editors, Selected Areas in Cryptography, volume 7707 of Lecture
Notes in Computer Science, pages 1–15. Springer, 2012.

2. K. Aoki and Y. Sasaki. Meet-in-the-middle preimage attacks against reduced SHA-0 and SHA-1. In
S. Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages 70–89. Springer,
2009.

3. A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique cryptanalysis of the full AES. In D. H. Lee
and X. Wang, editors, ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages 344–371.
Springer, 2011.

4. A. Bogdanov and C. Rechberger. A 3-subset meet-in-the-middle attack: Cryptanalysis of the lightweight
block cipher KTANTAN. In A. Biryukov, G. Gong, and D. R. Stinson, editors, Selected Areas in Cryp-
tography, volume 6544 of Lecture Notes in Computer Science, pages 229–240. Springer, 2010.

5. C. D. Cannière, O. Dunkelman, and M. Knezevic. KATAN and KTANTAN - a family of small and
efficient hardware-oriented block ciphers. In C. Clavier and K. Gaj, editors, CHES, volume 5747 of
Lecture Notes in Computer Science, pages 272–288. Springer, 2009.

6. N. T. Courtois. Algebraic complexity reduction and cryptanalysis of GOST, 2011. http://www.
nicolascourtois.com/papers/gostac11.pdf.

7. W. Diffie and M. Hellman. Exhaustive cryptanalysis of the NBS data encryption standard. Computer,
10(6):74–84, 1977.

8. I. Dinur, O. Dunkelman, N. Keller, and A. Shamir. Efficient dissection of composite problems, with
applications to cryptanalysis, knapsacks, and combinatorial search problems. In Advances in Cryptology
- Crypto 2012, volume 7417 of Lecture Notes in Computer Science, pages 719–740. Springer, 2012.

18 Bo Zhu, Guang Gong

9. I. Dinur, O. Dunkelman, and A. Shamir. Improved attacks on full GOST. In A. Canteaut, editor, FSE,
volume 7549 of Lecture Notes in Computer Science, pages 9–28. Springer, 2012.

10. D. W. Engels, M.-J. O. Saarinen, P. Schweitzer, and E. M. Smith. The Hummingbird-2 lightweight
authenticated encryption algorithm. In A. Juels and C. Paar, editors, RFIDSec, volume 7055 of Lecture
Notes in Computer Science, pages 19–31. Springer, 2011.

11. J. Guo, T. Peyrin, A. Poschmann, and M. J. B. Robshaw. The LED block cipher. In B. Preneel and
T. Takagi, editors, CHES, volume 6917 of Lecture Notes in Computer Science, pages 326–341. Springer,
2011.

12. T. Isobe. A single-key attack on the full GOST block cipher. In A. Joux, editor, Fast Software Encryption,
volume 6733 of Lecture Notes in Computer Science, pages 290–305. Springer, 2011.

13. T. Isobe and K. Shibutani. Improved all-subkeys recovery attacks on FOX, KATAN and SHACAL-2
block ciphers. To appear at FSE 2014.

14. T. Isobe and K. Shibutani. All subkeys recovery attack on block ciphers: Extending meet-in-the-middle
approach. In L. R. Knudsen and H. Wu, editors, Selected Areas in Cryptography, volume 7707 of Lecture
Notes in Computer Science, pages 202–221. Springer, 2012.

15. D. Khovratovich, G. Leurent, and C. Rechberger. Narrow-bicliques: Cryptanalysis of full IDEA. In
D. Pointcheval and T. Johansson, editors, Advances in Cryptology EUROCRYPT 2012, volume 7237 of
Lecture Notes in Computer Science, pages 392–410. Springer Berlin / Heidelberg, 2012.

16. L. R. Knudsen, G. Leander, A. Poschmann, and M. J. B. Robshaw. PRINTcipher: A block cipher for IC-
Printing. In S. Mangard and F.-X. Standaert, editors, CHES, volume 6225 of Lecture Notes in Computer
Science, pages 16–32. Springer, 2010.

17. Y. Luo, Q. Chai, G. Gong, and X. Lai. A lightweight stream cipher WG-7 for RFID encryption and
authentication. In GLOBECOM, pages 1–6. IEEE, 2010.

18. Y. Sasaki and K. Aoki. Finding preimages in full MD5 faster than exhaustive search. In A. Joux, editor,
EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 134–152. Springer, 2009.

19. L. Wei, C. Rechberger, J. Guo, H. Wu, H. Wang, and S. Ling. Improved meet-in-the-middle cryptanalysis
of KTANTAN (poster). In U. Parampalli and P. Hawkes, editors, ACISP, volume 6812 of Lecture Notes
in Computer Science, pages 433–438. Springer, 2011.

Appendix A Parameters for the KATAN Family of Block Ciphers

The parameters for the nonlinear functions (2) are given in Table 2. The irregular update sequence (IR) is
listed in Table 3.

Table 2 Parameters for KATAN.

|L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6
KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

Appendix B Partial Matching Details of the Attacks on KATAN48/64

The detailed computation steps of partial matching used in the second MITM part of the attack on KATAN48
are listed as follows.

Rd. a b L1 L2
second backward phase
92 0 0 0000000000000000000 00000000000000000000000000000
91 1 1 0000000000000000011 00000000000000000000000000011
90 0 0 0000000000000001101 00000000000000000000000001100
89 0 0 0000000000000110110 00000000000000000000000110000
88 0 0 0000000000011011011 00000000000000000000011000001
87 0 0 0000000001101101101 00000000000000000001100000111

Multidimensional Meet-in-the-Middle Attack 19

Table 3 Irregular Update Sequence (IR) for KATAN.

#round IR
1 - 20 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1

21 - 40 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0
41 - 60 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0
61 - 80 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1
81 - 100 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1

101 - 120 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1
121 - 140 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0
141 - 160 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1
161 - 180 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0
181 - 200 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0
201 - 220 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0
221 - 240 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1
241 - 254 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0

86 0 0 0000000110110110111 00000000000000000110000011110
85 0 0 0000011011011011111 00000000000000011000001111001
84 0 0 0001101101101111111 00000000000001100000111100111
83 0 0 0110110110111111111 00000000000110000011110011111
82 1 0 1011011011111111111 00000000011000001111001111111
81 0 1 1101101111111111111 00000001100000111100111111111
80 0 0 0110111111111111111 00000110000011110011111111111
79 0 0 1011111111111111111 00011000001111001111111111111
78 0 0 1111111111111111111 01100000111100111111111111111
77 0 0 1111111111111111111 10000011110011111111111111111
76 1 1 1111111111111111111 00001111001111111111111111111
75 0 0 1111111111111111111 00111100111111111111111111111
74 0 0 1111111111111111111 11110011111111111111111111111
73 0 0 1111111111111111111 11001111111111111111111111111
72 1 1 1111111111111111111 00111111111111111111111111111
second forward phase
71 0 0 0000000000000000000 00000000000000000000000000000
matching
2 bits 1111111111111111111 00111111111111111111111111111

The steps of partial matching for the first MITM part of the attack on KATAN64 are listed as follows.

Rd. a b L1 L2
first forward phase
39 0 0 0000000000000000000000000 000000000000000000000000000000000000000
40 1 1 1110000000000000000000000 111000000000000000000000000000000000000
41 0 0 0001110000000000000000000 000111000000000000000000000000000000000
42 0 0 0000001110000000000000000 000000111000000000000000000000000000000
43 0 0 1100000001110000000000000 000000000111000000000000000000000000000
44 0 0 0011100000001110000000000 111000000000111000000000000000000000000
45 0 0 1110011100000001110000000 110111000000000111000000000000000000000
46 0 1 1111110011100000001110000 101110111000000000111000000000000000000
first backward phase
58 1 1 0000000000000000000000000 000000000000000000000000000000000000000
57 1 1 0000000000000000000000111 000000000000000000000000000000000000111
56 1 1 0000000000000000000111111 000000000000000000000000000000000111111
55 1 1 0000000000000000111111111 000000000000000000000000000000111111111
54 1 1 0000000000000111111111111 000000000000000000000000000111111111111
53 1 1 0000000000111111111111111 000000000000000000000000111111111111111
52 1 1 0000000111111111111111111 000000000000000000000111111111111111111
51 1 1 0000111111111111111111111 000000000000000000111111111111111111111
50 1 1 0111111111111111111111111 000000000000000111111111111111111111111

20 Bo Zhu, Guang Gong

49 1 1 1111111111111111111111111 000000000000111111111111111111111111111
48 1 1 1111111111111111111111111 000000000111111111111111111111111111111
47 1 1 1111111111111111111111111 000000111111111111111111111111111111111
matching
2 bits 1111111111111111111111111 101110111111111111111111111111111111111

