
The Parallel-Cut Meet-In-The-Middle Attack?

Ivica Nikolić, Lei Wang, and Shuang Wu

Nanyang Technological University, Singapore
{inikolic,Wang.Lei,WuShuang}@ntu.edu.sg

Abstract. We propose a new type of meet-in-the-middle attack that
splits the cryptographic primitive in parallel to the execution of the op-
erations. The result of the division are two primitives that have smaller
input sizes and thus require lower attack complexities. However, the divi-
sion is not completely independent and the sub-primitives depend (out-
put of one is the input for the other) mutually on a certain number
of bits. When the number of such bits is relatively small, we show a
technique based on three classical meet-in-the-middle attacks that can
recover the secret key of the cipher faster than an exhaustive search.
We apply our findings to the lightweight block cipher Klein and show
attacks on 10/11/13 rounds of Klein-64/-80/-96. Our approach requires
only one or two pairs of known plaintexts and always recovers the secret
key.
Key words: meet-in-the-middle attack, cryptanalysis, parallel-cut, block
cipher, hash function, Klein

1 Introduction

The meet-in-the-middle attack (MITM) [4] is one of the most popular methods
for analysis of ciphers and hash functions. The MITM succeeds when the ana-
lyzed primitive can be divided into two parts, each with some independent (of
the other part) input bits. More advanced forms of MITM try to exploit the
possible division of the primitive in way such that the number of steps covered
by the attack is as large as possible. In addition, the division is not always se-
quential – that is the first part covers some rounds at the beginning and at the
end of the primitive, while the second covers some middle rounds. Indeed, this
idea forms the basis of the splice-and-cut technique [1] developed by Aoki and
Sasaki for finding preimages in hash functions.

What is common for all of the MITM methods, is that they split the initial
cipher (or hash function) into two subciphers which are in fact round-reduced
versions of the initial cipher – each of the subciphers has the same state size as
the cipher, and possibly a smaller key. In this work we propose different division
of the cipher into subciphers. Our idea is to split the cipher into two parts that
have both smaller key and state sizes. This is achieved by dividing each word (or
byte) of the state and the key into two parts and investigating the effects of the

? The work in this paper is supported by the Singapore National Research Foundation
Fellowship 2012 (NRF-NRFF2012-06).

state (and key schedule) transformations on such division. When the division
allows one part of the state to be updated based on the values of the bits of that
part and only a few other bits from the other part, then we basically end up with
two smaller subciphers which have twice as smaller key and state sizes, and thus
require much lower complexity even for a brute attack. We call this approach
parallel-cut meet-in-the-middle attack to emphasize the fact that the division is
parallel to execution flow (see Fig. 1), as each transformation in the cipher is
divided into two smaller transformations. In contrast, the classical MITM can
be seen as perpendicular-cut, since the division is perpendicular to the execution
flow of the whole cipher.

Even with such unorthodox division, no modern cipher allows to be split into
subciphers that are completely independent, and there are always bits that are
common for both of the subciphers. The division of the parallel-cut should be
such that the number of these bits is minimal. We show that the bits indeed can
be used to our advantage by presenting approach based on three classical MITM
attacks: the first and the second MITMs are used to recover the master keys of
the subciphers, and the final, third MITM is used to match the common bits. To
make sure that the initial master key can be recovered, the intermediate results
of the first two MITMs have to be stored in the table (and later used in the
third MITM). Thus at the current stage, our approach requires non-negligible
memory. On the other, as in the case of the classical MITM, the data requirement
is minimal – one or a few pairs of known plaintext-ciphertext.

We apply the idea of parallel-cut meet-in-the-middle attack on the example
of the lightweight block cipher Klein. The published analysis of this cipher is as
follows. The designers have shown a 5-round integral attack with time complexity
of 248 [5]. Aumasson et al. [2] and Yu et al. [10] have independently proposed key
recovery attacks for 8-round Klein-64 by exploiting the same high probability
truncated differential. Aumasson et al. used the technique of neutral bits [3] to
reduce the complexity and make the attack practical. Yu et al. also proposed an
integral attack on 7-round Klein-64 and 8-round Klein-80. At the Rump Session
of FSE 2013, Lallemand and Naya-Plasencia [6] announced improved attacks on
Klein, including full-round attack on Klein-64 as well as improved attacks on
Klein-80 and Klein-96.

We show that both the key schedule and the round function of Klein can
be divided into two independent parts with only a few bit guesses per round.
Each such function acts only on the upper (for the first subcipher) or the lower
(for the second subcipher) parts of the bytes in Klein. This leads to a complete
separation of the cipher into two independent subciphers with twice as small key
and state sizes and allows to apply our new method. By using a meet-in-the-
middle (MITM) approach we recover the key of each subcipher. At the end, we
apply another MITM to match the guessed bits and thus to find the master key.
We also show that additional improvements of our technique in terms of memory
complexity are possible – in general these improvements are not universal, but
dependent of the structure of the cipher. Another, cipher specific property given
on the example of cryptanalysis of Klein is the time-memory tradeoff that can

be achieved using our approach. We note that our attacks require only one (or
two, in the case of larger keys) pair of known plaintext-ciphertext and result in
key recoveries for 10/11/13 rounds of Klein-64/-80/-96 faster than exhaustive
search. To confirm the correctness of our findings, we have implemented the
attack on 4 rounds. A comparison of the attacks on Klein is shown in Table 1.

Table 1. Comparison of attacks on Klein

Key Rounds Type Time Data Memory Source

64 7 Integral 245.5 234.3 CP 224† [10]

64 8 Trunc. diff. 246.8 232 CP 216† [10]

64 8 Trunc. diff. 235 234 CP 213† [2]

64 12 Trunc. diff. 260.8 257.2 CP negl [6]

80 8 Integral 277.5 234.4 CP 224† [10]

80 14 Trunc. diff. 277 244 CP negl [6]

96 15 Trunc. diff. 291 250 CP negl [6]

64 10 PC MITM 262 1 KP 260 this paper

80 11 PC MITM 274 2 KP 274 this paper

96 13 PC MITM 294 2 KP 282 this paper

n r MITM
2
n
2

+6b r+t
2
c

2 KP
2
6b r−t

2
c

this paper+2
n
2

+6r−32

+2
6(r−t)+n

2
−32

+2n−64

CP: Chosen plaintext
KP: Known plaintext
†: Memory requirement based on our estimation

The paper is structured as follows. In Section 2 we describe our new tech-
nique. In Section 3, we give an application of the parallel-cut MITM for the
analysis of Klein. More advanced techniques, such as partial matching tech-
nique (which allows to extend the attack for an additional round), and time-
memory tradeoff are presented as well. Finally, Section 4 concludes the paper
and proposes a few open problems.

2 The Parallel-Cut MITM

The MITM attack is mostly used to recover the secret key of a cipher and to
find preimage of a hash/compression function. In both of the cases, we deal with
a cryptographic primitive F (X,Y) that has two inputs X,Y - the input X is
known to the attacker and the input Y is unknown. The MITM targets to recover
the second unknown input Y , given only a single pair (P,C) of one input and
one output, i.e. F (P, Y) = C.

The standard MITM attack regards the r-round cryptographic primitive
F (X,Y) as a composition of two primitives: the first being r1-round primitive
F1(X,Y1), and the second r1-round F2(X,Y2), where F (X,Y) = F2(F1(X,Y1), Y2),

r1+r2 = r, and the inputs Y1, Y2 are functions of the input Y . The MITM would
succeed if for some F1(X,Y1), F2(X,Y2), the inputs Y1, Y2 have independent bits,
i.e. some bits of Y are input only to Y1 and vice-versa. When F2(X,Y2) is in-
vertible and the state size of the primitive is not too large, the MITM can be
described as:

1. Fix arbitrary value V of the bits of Y that are input to both F1, F2

2. Create a set A of all intermediate state values for F1 by going through all pos-
sible independent bits of Y1 from the input P , i.e. A = {S|S = F1(V ||i, P)}

3. Create a set B of all intermediate state values for F2 by going through
all possible independent bits of Y2 from the output C, i.e. B = {S|S =
F−12 (V ||j, C)}

4. Check on collisions between the sets A,B. A collision corresponds to the
target value Y

When the state size is n bits, and there are k1 independent bits in Y1 and k2 in
Y2, the colliding set would have a size of 2k1+k2−n, and can be produced with
2k1 calls to F1, and 2k2 calls to F2. In case k1 +k2 < n the procedure is repeated
2n−k1−k2 times.

A crucial observation in the above attack is that the primitive F is divided
into two sequential parts, that is the division is perpendicular to the execution
flow. Our variant of MITM cuts the primitive in parallel to the execution flow
(see Fig. 1) and thus the name parallel-cut MITM (PC MITM). Let us take
a closer look at this idea. We assume we have an n-bit block cipher EK(P)
with a pair (P,C) of known plaintext-ciphertext, and we want to find the secret
key K. Let G(S,Kr) be the round function of the cipher, where S is the input
state and Kr is the round key. If r is the number of rounds in the cipher, then
the cipher can be described as Si+1 = G(Si,Ki) and S0 = P, Sr = C. Assume
we can split the round function G(Sr,Kr) into two smaller round functions
G1(S1

r ,K
1
r), G2(S2

r ,K
2
r), such that G(Sr,Kr) = G1(S1

r ,K
1
r)||G2(S2

r ,K
2
r), where

S1
r ,K

1
r are the n

2 + a1,
n
2 + b1 leftmost bits, while S2

r ,K
2
r are the n

2 + a2,
n
2 + b2

rightmost bits of Sr,Kr, respectively (see Fig. 2). That is

G1 : {0, 1}n
2 +a1 × {0, 1}n

2 +b1 → {0, 1}n
2 (1)

G2 : {0, 1}n
2 +a2 × {0, 1}n

2 +b2 → {0, 1}n
2 (2)

In other words, each of two halves of the output state, can be determined by the
knowledge of one half of the input state and one half of the round key, and a
few bits from the other half. If in each round of the cipher, the positions of these
bits are the same, then for the whole cipher it follows that the left half of the
ciphertext, can be determined from the left half of the plaintext and r · (a1 + b1)
bits that come from the opposite right half. Similar observation holds for the
right half of the ciphertext, but this time the number of bits is r · (a2 + b2).

Hence we can split the whole cipher into two subciphers, with twice as small
state and key sizes that depend additionally on some known bits. Before we move
further we would like to point out that the division of the state and the round
keys on left and right half is only to simplify the presentation. The division can

Cipher

Subcipher 1 Subcipher 2

Subcipher 1

Subcipher 2

plaintext

plaintext

plaintext

master key

master key

master key

ciphertext

ciphertext

ciphertext

Fig. 1. The flow division in MITM attacks. The original primitive is given at the top,
followed by the division used in the standard MITM attacks. At the bottom is the
parallel-cut division.

be on any two sets, e.g. the first 10 and the last 20 bits of the state and round
keys belong to the first, while the rest belongs to the second cipher. This division
is correct1, as long as both the input and the output states depend on same bits
(plus a few guessed).

If the number of guessed bits per round is zero, i.e. ai = bi = 0, i = 1, 2,
then we have divided the cipher into two completely independent ciphers, thus
we can easily recover the key (which is now only half of the size of the initial
key) independently for each subcipher – this key recovery attack requires only

2 · 2 k
2 effort, for a cipher with k-bit key. However this is not the case for modern

ciphers and there are always some unknown bits, i.e. either ai > 0, or bi > 0,
or both. Further we assume that ai > 0, bi = 0, i = 1, 2 as later in the paper we
deal with such case only.

Now let us see how to use the guessing bits to our advantage. Let us focus
on the first subcipher E1 that takes as input the left half of the plaintext, the
left half of the key, and b1 guessing bits per round, and outputs the left half of
the ciphertext. Thus it is r-round cipher with n

2 -bit state, k
2 -bit and additionally

depends on r · b1 unknown bits. To find the key used in this subcipher from
the known pair of plaintext-ciphertext (note that if (P,C) = (P1||P2, C1||C2) is
the known pair for the whole cipher, then (P1, C1) is the known pair for this

1 Actually we are looking for such a division that minimizes the number of guessed
bits from the other half.

n
 b

it
s

n bits

n
 b

it
sG

G1

G2

a 1
a 2

b1b2

n
/2

n
/2

n
/2

n
/2

Fig. 2. Division of the round function G (top), into two smaller functions G1, G2 (bot-
tom).

subcipher), we actually apply a classical MITM attack2, where the independent
inputs for the MITM are the guessing bits:

1. Fix a key K for the subcipher.
2. Create a set A of states obtained after r

2 -rounds of encryption of P1 with
all possible values of the guessing bits in of these r

2 rounds. The size of A is
2

r
2 ·b1 .

3. Create a set B of states obtained after r
2 -rounds of decryption of C1 with

all possible values of the guessing bits in of these r
2 rounds. The size of B is

2
r
2 ·b1 .

4. For each collision between A and B, store in a master table T1 the key K,
the r · b1 values for the guessing bits, as well as the r · b2 values of the bits
that the second subcipher depends on.

5. Go to step 1.

Obviously whenever we obtain a collision, we find a a key that encrypts P1 to
C1 with some specific guessing bits (that come from the other subcipher). The
logic behind storing additionally the values of the guessing bits for the second
subcipher will be explained later. The size of the state is n

2 bits, thus for each
key |A| = |B| = 2

r
2 ·b1 , and the size of the colliding set is 2r·b1−

n
2 . Therefore

the master table T1 for all keys will have 2
k
2+r·b1−n

2 entries. To produce the

2 Note that a simple exhaustive key search would required 2
k
2
+r·b2 encryption queries,

hence when r · b2 > k
2

the exhaustive search of the subcipher has a higher complex-
ity then the exhaustive search of the cipher – therefore we present more advanced
technique of finding the key for the subcipher.

set A,B for all keys of the subcipher, and thus the master table T1, we need
2

k
2 · 2 r

2 ·b1 = 2
k
2+

r
2 ·b1 encryption queries.

Next we focus on the second subcipher E2 and perform exactly the same
MITM attack, but this time we use the guessing bits from the first subcipher,
i.e. the bits coming from the first subcipher are the guessing bits for the second.
We create another master table T2 for E2 – the time complexity is 2

k
2+

r
2 ·b1 , and

the table has 2
k
2+r·b2−n

2 entries. Note that in both T1 and T2 each entry consists
of a k

2 -bit key, r · b1 (r · b2) guesses for the incoming (outcoming) bits, and r · b2
(r · b1) guesses for outcoming (incoming) bits. The final step of the key recovery
attack for the whole cipher E is to find collisions between the master tables
T1, T2 on the guesses. As there are r · (b1 + b2) guesses, we will end up with

2
k
2+r·b1−n

2 · 2 k
2+

r
2 ·b1 · 2−r(b1+b2) = 2k−n,

possible keys3. If k > n we will need only a few additional plaintext-ciphertext
pairs to find the exact key.

In general the above PC MITM can be described as:

1. Split the cipher E into two subciphers E1, E2 such that each subcipher de-
pends on as less as possible bits of the other subcipher

2. For each of the subciphers, using a classical MITM recover the key under all
possible values of the guessing bits coming from the other subcipher

3. For each pair of recovered keys of the first and the second subcipher, check if
the guessing bits correspond – use another MITM to perform this procedure

The success of the PC MITM, in particular the number of rounds that can
be attacked, depends on how well the (round-reduced) cipher allows division
into subciphers with minimal bit guesses per round. This on the other hand is
related to the round diffusion, however a strong diffusion does not necessarily
mean a strong resistance against PC MITM. For example, a hypothetical 64-bit
cipher that has only modular additions, XORs, and rotations on 32 bits can
achieve a full diffusion in one-two rounds, however it can easily be attacked with
PC MITM as for each addition only 1 bit coming from the lower half has to be
guessed. In the sequel we present a PC MITM attack on Klein.

3 Application to Klein

3.1 Notations

First, we introduce the notations used in this section. For a byte b, the values
bH and bL stand for the higher and lower nibbles of b, i.e. b = bH ||bL, |bH | =
|bL| = 4. The i-th bit of b is denoted as bi, where b0 is the least significant bit.
Thus bH = b7||b6||b5||b4, bL = b3||b2||b1||b0 and b = b7||b6||b5||b4||b3||b2||b1||b0.

3 This number is in fact the average number of possible k-bit keys that encrypt n-bit
plaintext P to ciphertext C, i.e. with our approach we find all the possible keys for
the cipher.

The most significant and least significant bits of b are denoted as MSB(b) and
LSB(b) respectively. For example MSB(bL) = b3 and LSB(bH) = b4.

Let X be an s-byte vector, i.e. X = (X[0], . . . , X[s − 1]). With XH , XL we
denote the vectors of higher and lower nibbles of X, i.e. XH = (X[0]H , . . . , X[s−
1]H), XL = (X[0]L, . . . , X[s − 1]L). We use the symbol of || to denote concate-
nation of nibbles within bytes, i.e. XH ||XL = X. In addition, we use MSB(X)
to denote the s-bit concatenation of the MSBs in all bytes of the vector X, i.e.
MSB(X) = MSB(X[0])|| . . . ||MSB(X[s − 1]) = X[0]7|| . . . ||X[s − 1]7. For a
vector of nibbles such as XL, MSB(XL) = X[0]3|| . . . ||X[s− 1]3.

3.2 Description of Klein

Klein is a family of 64-bit block ciphers and has three versions: Klein-64, Klein-
80 and Klein-96, which use secret keys of 64, 80 and 96 bits and iterate the
same round function for 12, 16 and 20 rounds, respectively. The three versions
differ only in the key length and essentially in the key schedule. The 64-bit
state of Klein can be seen both as containing 16 nibbles4 or 8 bytes (a pair
of two consecutive nibbles consists a byte). This dual view is important for the
description of the state transformations as well as for our attacks. Obviously,
a nibble transformation can always be seen as a byte transformation, but not
necessarily the other way around. Thus, we will describe the state transformation
as nibble oriented in the cases when this is possible. The i-th round function of
Klein has four distinct operations:

AddRoundKey : XOR of the 16-nibble subkey Ki−1 to the state.
SubNibbles : Application of an 4-bit Sbox to each nibble of the state.
RotateNibbles : Cyclic rotation of the state leftwards by 4 nibbles.
MixNibbles : Application of the AES MixColumn to two groups of 4 bytes.

Note that only the MixNibbles step is byte-oriented, whereas the other three
operations are nibble-oriented. After the last round, another subkey is XORed
to the state.

The MixNibbles operation is the diffusion layer and consists of two instances
of the AES operation MixColumns which can be expressed as a matrix multipli-
cation in the finite field GF28 = F2[x]/x8 + x4 + x3 + x + 1:

MixColumn(v) =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ·


v[0]
v[1]
v[2]
v[3]

 (3)

The key schedule of Klein is as follows. At first, the master key denoted
as K0, is split into t bytes {K0[0],K0[1], ...,K0[t − 1]}, where t = 8, 10 and 12
for 64-bit, 80-bit, and 96-bit key, respectively. Then the subkey Ki is computed
from Ki−1 for i = 1, 2, ..., r.

4 One nibble is 4 bits.

Ki-1[0] Ki-1[1]

S S S S

Ki-1[2] Ki-1[3] Ki-1[4] Ki-1[5] Ki-1[6] Ki-1[7]

Ki[0] Ki[1] Ki[2] Ki[3] Ki[4] Ki[5] Ki[6] Ki[7]

i

Fig. 3. Key schedule of Klein-64

1. Cyclic rotation of the bytes leftward by one position, independently in the
left and right halves of Ki−1, i.e. rotate both K0

i−1 = (Ki−1[0],Ki−1[1], ...,
Ki−1[t2 − 1]) and K1

i−1 = (Ki−1[t2],Ki−1[t2 + 1], ...,Ki−1[t− 1]).
2. Application of a Feistel-like transformation on the left and right halves of

Ki−1, i.e. K0
i = K1

i−1 and K1
i = K0

i−1 ⊕K1
i−1.

3. XOR of the round counter i (one byte) to the third byte of Ki, i.e. Ki[2] =
Ki[2]⊕ i.

4. Application of four S-boxes to the four nibbles in the second and the third
bytes of K1

i , (K1
i [1] = Ki[

t
2 + 1]) i.e. K1

i [1] = S[K1
i [1]H]||S[K1

i [1]L], K1
i [2] =

S[K1
i [2]H]||S[K1

i [2]L], where S[·] stands for the 4-bit Sbox.

where S[·] stands for the 4-bit Sbox. The key schedule for Klein-64 is shown in
Fig. 3.

After each round of the key schedule, only the leftmost 64 bits of Ki−1 are
used as a subkey in the i-th round of the encryption.

3.3 The Parallel-Cut Division of Klein

From the specification of Klein, we can see that the key schedule, AddRound-
Key, SubNibbles and RotateNibbles are all nibble-oriented and do not have dif-
fusion between the higher and lower nibbles within the bytes of the state. This
property for the key schedule only, has already been pointed out in [2]. We
call the byte transformation T (X) a nibble-separable, if it can be expressed as
T (X) = TH(XH)||TL(XL), where TH(Y), TL(Y) are nibble transformations.
The nibble-separation allows to launch PC MITM. If there were no MixNibbles
operations, the higher and lower nibbles would never mix and the cipher could
be divided completely into two independent subciphers. Thus let us focus on
the MixColumn operation used in MixNibbles of Klein and try to find the the
diffusion rate between the higher and lower nibbles.

Observation 1 The operation MixColumn is nibble-separable with an additional
dependency on 4 MSB inputs from the opposite halves, i.e. for an input v,
MixColumns(v) = MixColumns(v)H ||MixColumns(v)L, where

MixColumn(v)H = MixColumnH(vH ,MSB(vL)),

MixColumn(v)L = MixColumnL(vL,MSB(vH)).

Moreover, the entropy introduced by the MSBs is only 3 bits.

The above observation claims that MixColumns is almost nibble-separable, and
the higher/lower output nibbles can be computed from the higher/lower input
nibbles and only four additional most significant bits of the lower/higher nibbles.
Also, instead of 4-bit entropy, these 4 MSBs introduce only 3-bit entropy.

Proof. First let us rewrite (3) as:

MixColumn(v) =


00 01 01 01
01 00 01 01
01 01 00 01
01 01 01 00

 ·


v[0]
v[1]
v[2]
v[3]

 +


02 · (v[0] + v[1])
02 · (v[1] + v[2])
02 · (v[2] + v[3])
02 · (v[3] + v[0])

 (4)

Obviously, a multiplication by the constant 01 is nibble-separable, hence the 0−1
matrix multiplication in the right side is nibble-separable. Further, let us focus
on the multiplication by 02 in the finite field used in MixColumn. Let x and y
be two elements of the finite field such that y = 02 · x. In a bitwise expression,
the relation between x and y is:

y0
y1
y2
y3
y4
y5
y6
y7


=



x7

x0 + x7

x1

x2 + x7

x3 + x7

x4

x5

x6


. (5)

Thus it follows that yL = y3||y2||y1||y0 can be computed from xL = x3||x2||x1||x0

and MSB(xH) = x7. Similarly, yH can be determined from xH and MSB(xL) =
x4. Now let us focus on the whole MixColumn operation. Let w = MixColumn(v),
where {w[i]} are 8-bit bytes and w = (w[0], w[1], w[2], w[3]) is a vector. Let
wH = (w[0]H , w[1]H , w[2]H , w[3]H) and wL = (w[0]L, w[1]L, w[2]L, w[3]L) be the
vectors of higher and lower nibbles of the vector of bytes. From (4), it follows
that wL can be determined by vL and the four MSBs: MSB((v[0] + v[1])H),
MSB((v[1] + v[2])H), MSB((v[2] + v[3])H) and MSB((v[3] + v[0])H).

More precisely, if the four MSBs are known, we have a linear bijection between
wL and vL. Then the 4-bit value of MSBH required in the computation of the

lower nibbles can be defined as follows:

MSBH =


MSBH

0

MSBH
1

MSBH
2

MSBH
3

 =


1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 ·


MSB(v[0]H)
MSB(v[1]H)
MSB(v[2]H)
MSB(v[3]H)

 = M ·


v[0]7
v[1]7
v[2]7
v[3]7

 (6)

Though there are four free bits v[i]7, i ∈ {0, 1, 2, 3} at the input, MSBH has
only 23 possible values. This comes from the fact that the rank of the binary
matrix M in (6) is only 3, which results in a range space of size 23. Thus the
four bits of MSBH are linearly dependent and each bit can be computed from
the other three. Similar property holds too for the higher nibbles wH and vH . �

We can conclude that in order to perform the computing of the higher/lower
nibbles through MixColumn, we only need the values of 4 bits from the other
half with 23 possible combinations. Without the knowledge of the 3 bits, 13 bits
of the output can still be determined. This fact will be used further in the partial
matching technique introduced in section 3.4.

The parallel-cut division of Klein is as follows.

Lemma 1. The r-round 64-bit cipher Kleinr(P,K) with k-bit key K can be
split into two r-round 32-bit sub-ciphers KleinHr (PH ,KH ,msbL) and KleinLr
(PL,KL,msbH) with k

2 -bit keys, where msbL and msbH are both 6r-bit values.
Then the higher nibbles CH and the lower nibbles CL of the ciphertext C can be
computed as

CH = KleinHr (PH ,KH ,msbL),

CL = KleinLr (PL,KL,msbH).

Proof. It follows that the key schedule is nibble-separable, thus all the higher/lower
nibbles of all the subkeys can be determined from KH/KL. Similarly, all the
transformations besides MixNibbles, are nibble-separable as well. In one appli-
cation of MixNibbles, there are two MixColumns. According to observation 1, the
computation of the higher/lower nibbles of one MixColumn requires 3-bit extra
information of the MSBs from the lower/higher nibbles, and therefore the whole
MixNibbles requires 6 bits. Thus, for r-round Klein, the size of the required
additional information msbL/msbH is 6r bits. �

Using the notations in section 2, we know the parallel-cut division of Klein
has parameters of

a1 = a2 = 6, b1 = b2 = 0, n = 64 and k ∈ {64, 80, 96}.

3.4 Attack Algorithm and Its Improvements

Once we know the parameters of the division, the generic parallel-cut MITM
attack introduced in section 2 can be applied to Klein. The attack algorithms
are the same for all versions of Klein. The outline of the attack is shown in
Fig. 4. According to the formula of the complexity, attacking r-round Klein (r
is even) with k-bit key requires no more than d k

64e known plaintext-ciphertext

pair(s), 2
k
2+3r + 2

k
2+6r−32 + 2k−64 time and 23r + 26r+

k
2−32 memory.

KL PL CL

MSBH

KH PH CH

MSBL MSBL MSBL MSBL

MSBH MSBH MSBH

K C

Match on the lower nibbles

Match on the higher nibbles

P

Match on
the MSBs

the first MitM

the second MitM

Fig. 4. Outline of the attack on Klein

Partial matching technique. In the attack on even number of rounds, we
compute the lower/higher nibbles of the middle state in both directions as the
matching point. In fact, we could skip the guessing of MSBs in one round and
apply the technique of partial matching. It is based on the fact that even if the
MSB values are unknown, we could still determine certain bits at the output of
the MixNibbles operation.

For the lower nibbles in (5), i.e. the case of multiplication by 02, if the values
of (x0, x1, x2, x3) are known, we could determine the value of the following three
bits of y:

(y1 + y0, y2, y3 + y0) = (x0, x1, x2).

When w = MixColumn(v) and the values of vL = (v[0]L, v[1]L, v[2]L, v[3]L) are
known, we could still determine the value of 3 bits (w[i]1 + w[i]0, w[i]2, w[i]3 +
w[i]0) for each byte of w[i], where i ∈ {0, 1, 2, 3}, or in total 3 · 4 = 12 bits.

Due to the linear relation of the MSBs of vH , there is another bit that can
be determined too. Consider the values of the least significant bits in wL, i.e.
(w[0]0, w[1]0, w[2]0, w[3]0). They can be expressed using the bits of v as follows:

w[0]0
w[1]0
w[2]0
w[3]0

 =


v[1]0 + v[2]0 + v[3]0 + v[0]7 + v[1]7
v[2]0 + v[3]0 + v[0]0 + v[1]7 + v[2]7
v[3]0 + v[0]0 + v[1]0 + v[2]7 + v[3]7
v[0]0 + v[1]0 + v[2]0 + v[3]7 + v[0]7

 . (7)

Therefore the value w[0]0+w[1]0+w[2]0+w[3]0 = v[0]0+v[1]0+v[2]0+v[3]0 can
be determined without the knowledge of vH . Similarly, for the higher nibbles,
the equation takes the form:

w[0]4
w[1]4
w[2]4
w[3]4

 =


v[1]4 + v[2]4 + v[3]4 + v[0]3 + v[1]3 + v[0]7 + v[1]7
v[2]4 + v[3]4 + v[0]4 + v[1]3 + v[2]3 + v[1]7 + v[2]7
v[3]4 + v[0]4 + v[1]4 + v[2]3 + v[3]3 + v[2]7 + v[3]7
v[0]4 + v[1]4 + v[2]4 + v[3]3 + v[0]3 + v[3]7 + v[0]7

 . (8)

Again w[0]4 +w[1]4 +w[2]4 +w[3]4 = v[0]4 + v[1]4 + v[2]4 + v[3]4, thus it can be
determined without the knowledge of vL.

As a result, we can determine the values of 3 × 4 + 1 = 13 bits of wL/wH

only from the value of lower/higher nibbles of the input vL/vH .

Attack on odd rounds. Using the above partial matching technique, we can
skip one round in both of the first two MITMs (recall that PC MITM uses three
distinct MITMs). Therefore, the computational complexity of one direction can
be reduced by a factor of 26 and the size of the matching point is also reduced
from 32 bits to 13 × 2 = 26 bits (213 bits for one MixColumn). The expected
number of matches 26r−6−26 = 26r−32 in the MITMs is not affected since the
size of matching sets and the size of the filter are both reduced by a factor of 26.

The complexity of the attack on even number of rounds cannot be reduced
using this technique, as we are able to apply the reduction only in one round
and, more importantly, in one direction of the MITM – the second would remain
the same thus the combined complexity would stay intact. On the other hand,
for the attack on odd number r of rounds, the complexity can be reduced. We
split the cipher with r−1

2 rounds at the left side, and r−1
2 rounds at the right

side, with an additional single round in the middle. This is precisely the round
where the partial matching technique is applied. Thus the complexity of MITM

becomes 26
r−1
2 = 23r−3 and the number of remaining candidates is still 26r−32.

The complexity of the attack on even number of rounds, per half key KL,
is 23r. Hence a unified expression for the complexity on both even and odd
r would be 26b

r
2 c. As a result, the total complexity of our attack on r-round

Klein becomes 26b
r
2 c+

k
2 + 26r+

k
2−32 + 2k−64 computations and 26b

r
2 c+ 26r+

k
2−32

memory.

A time-memory trade-off. Further we show that the time and memory re-
quirements of our attacks are flexible to a certain extend, i.e. we can reduce
the memory requirement while increasing the time complexity of the first two
MITMs only. The idea is to choose and fix the MSBs of the nibbles in the first
t rounds. Since we need 12 bit guesses per round, the whole attack (the three
MITMs) will be repeated 212t times to find all the filtered keys.

Before we choose the values of the MSBs, a precomputation is needed. For
all 2

k
2 KL/KH , we compute the value of the MSBs in round t + 1 using the

guessed MSBs in round 1 to round t and build a lookup table. Once a 12t-bit
value of the MSBs is fixed, we can directly find about 2

k
2−6t corresponding half

key by indexing the 6t-bit MSB value in round t + 1.
For a chosen value of the MSBs in the first t rounds and all the 2

k
2−6t

corresponding keys, the first two MITMs are now on r − t rounds, thus re-

quire 2
k
2+6b r−t

2 c−6t time and 26b
r−t
2 c memory, with 2

k
2+6r−12t−32 candidates re-

maining. The remaining third MITM is only on 12(r − t) bits, and requires

2
k
2+6r−12t−32 time and memory, with 2k−12t−64 expected matches.

For all values of the MSBs in t rounds, the above steps are repeated 212t

times. Therefore, the total complexity is T (k, r, t) = 212t · (2
k
2+6b r−t

2 c−6t +

Table 2. Practical Result on 4-round Klein-64

Plaintext 0000 0000 0000 0000

Ciphertext 0000 0000 0000 0000

Key DE7F A226 0917 5484

2
k
2+6r−12t−32+2k−12t−64) = 2

k
2+6b r+t

2 c+2
k
2+6r−32+2k−64 time and M(k, r, t) =

26b
r−t
2 c + 26(r−t)+

k
2−32 memory. Note, when t = 0, one obtains the same com-

plexities as mentioned in the previous sections.

3.5 Final Results

The round functions for all three versions of Klein are identical, thus the tech-
nique from Section 3.4 can be applied to all of them. In the formulae for the
complexities, when the parameter t changes, the time and memory only for the
first level MITMs (i.e. the MITMs on the lower/higher halves) are affected. When
t increases, the first level MITMs require more time and less memory. In order
to find the best attacks in terms of maximal number of rounds, first we find the
largest attackable number of rounds with t = 0. Then we compare the computa-
tional costs of the first and second level MITMs. If the first level MITM requires
more time complexity than the second level MITM, then the memory cannot
be reduced while maintaining the same number of rounds – otherwise the time
complexity would increase, making the attack worse than the simple exhaustive
key search. However, when the second level MITM is more costly, then we try
to find the value for the parameter t to reduce the memory requirement of our
attack. The final results are as follows.

For Klein-64, we can attack 10 out of 12 rounds. The parameters for the
attack are k = 64, r = 10 and t = 0. The complexity is T (64, 10, 0) = 262 time
and M(64, 10, 0) = 260 memory.

For Klein-80, we can attack 11 out of 16 rounds. The optimal parameters
for the attack are k = 80, r = 11 and t = 0. The complexity is T (80, 11, 0) = 274

time and M(80, 11, 0) = 274 memory.

For Klein-96, we can attack 13 out of 20 rounds and apply the time-memory
tradeoff to reduce the memory requirement without increasing the time com-
plexity. This comes from the fact that our time complexity increases only in
the first two MITMs, but not in the third. Thus the optimal parameters for the
attack are k = 96, r = 13 and t = 2. The complexity is T (96, 13, 2) = 294 time
and M(96, 13, 2) = 282 memory.

In order to confirm the correctness of our approach, we have implemented
the attack on 4-round Klein-64 - it takes 244 computations and 224 memory.
We have set the plaintext and ciphertext to all-zero vectors and successfully
recovered the 64-bit key. The result is given in Table 2.

4 Conclusion

We have proposed a new type of meet-in-the-middle attack which splits the
cipher along the execution flow in a way such that the produced subciphers have
as less as possible exchanging bits. We have shown that Klein can be divided
into two smaller ciphers with only 6 exchanged bits per round. Then, two MITM
attacks have been used to attack the two independent parts, and one final MITM
to connect them. This results in attacks on 10 rounds for Klein-64, 11 rounds
for Klein-80, and 13 rounds for Klein-96. The main advantage of the attack
is the data requirement – it is completely practical. As our divide-and-conquer
approach is based on the MITM attack, the data complexity is minimal – to
recover the key we require only one or two pairs of known plaintext-ciphertexts.

The three-step (three MITMs) approach we use in the PC MITM is our way of
taking advantage of the exchanged bits produced after the parallel-cut division.
However, by no means it should be considered that this is the only way and
some MITMs can be avoided. In particular, when the number of exchanged bits
is relatively small, and when the target is to find preimages for hash functions
(rather than recover the key), it might be beneficial first to fix the exchanged
bits, and then to search preimages for the smaller hash functions. Also, it is not
required to divide the initial cipher into two subciphers that necessary have the
same state/key sizes. Rather, the division should be such that the number of
exchanged bits between the ciphers is equal. This results in balanced complexity
of the first two MITMs.

We would like to point out two open problems, solution of which could lead
to improvements of the complexity of PC MITM. The first is related to the
memory requirement of our approach. Though MITM attacks in general have a
memoryless variant, in the case (as ours) when one needs to find not one but
all the matches, the proposed approach from [7] fails. Intuitively, it seems such
memoryless MITM for n-bit function cannot exist when the time complexity is
bounded by 2n – otherwise one has to be sure that in the Floyd cycle finding
algorithm, the starting vertex for each separate collision is at different path that
leads to a cycle. A formal proof, either confirming or disapproving our conjecture,
would contribute significantly to the field of cryptography. The second open
problem is related to the way we perform the PC MITM attack – first we match
separately in the middle of the lower/higher nibble states, and then we match on
the guessed bits. In general this can be seen as a problem of finding partial pair
collisions between four functions – each with two inputs and two outputs. The
functions are coupled in pairs, and each pair has one general independent input
and one input coming from a function of the other pair. The problem consists
in finding the two independent inputs that produce collisions at the second
output of each pair. We have solved the problem by guessing the exchanged
inputs between the pairs, generating all independent inputs, and finally matching
the guesses. A better solution in terms of time/memory complexity, exploiting
simultaneously the dependency between the inputs and outputs, might exist.

We argue that the PC MITM is not specific only to Klein and it can be
applied not only to ciphers that allow nibble separation. The area of application

is much wider and can include word-oriented primitives as well. A good starting
point are the block ciphers TEA [9] and XTEA [8] – two primitives that operate
with 32-bit words and allow parallel-cut division with a relatively small number
of exchanged bits per round achieved with the shift operations.

References

1. Kazumaro Aoki and Yu Sasaki. Preimage attacks on one-block MD4, 63-step MD5
and more. In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica, editors,
Selected Areas in Cryptography, volume 5381 of Lecture Notes in Computer Science,
pages 103–119. Springer, 2008.

2. Jean-Philippe Aumasson, Maŕıa Naya-Plasencia, and Markku-Juhani Saarinen.
Practical Attack on 8 Rounds of the Lightweight Block Cipher KLEIN. In Daniel
Bernstein and Sanjit Chatterjee, editors, Progress in Cryptology - INDOCRYPT
2011, volume 7107 of Lecture Notes in Computer Science, pages 134–145. Springer
Berlin / Heidelberg, 2011.

3. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matt Franklin, editor, Ad-
vances in Cryptology - CRYPTO 2004, volume 3152 of Lecture Notes in Computer
Science, pages 199–214. Springer Berlin / Heidelberg, 2004.

4. Whitfield Diffie and Martin E Hellman. Special feature exhaustive cryptanalysis
of the NBS data encryption standard. Computer, 10(6):74–84, 1977.

5. Zheng Gong, Svetla Nikova, and Yee Law. KLEIN: A New Family of Lightweight
Block Ciphers. In Ari Juels and Christof Paar, editors, RFID. Security and Privacy,
volume 7055 of Lecture Notes in Computer Science, pages 1–18. Springer Berlin /
Heidelberg, 2012.

6. Virginie Lallemand and Maŕıa Naya-Plasencia. Cryptanalysis of full KLEIN-64.
In FSE Rump Session, 2013.

7. Hikaru Morita, Kazuo Ohta, and Shoji Miyaguchi. A switching closure test to
analyze cryptosystems. In Joan Feigenbaum, editor, Advances in Cryptology —
CRYPTO 1991, volume 576 of Lecture Notes in Computer Science, pages 183–193.
Springer Berlin / Heidelberg, 1992.

8. Roger M. Needham and David J. Wheeler. TEA extensions. Technical report,
University of Cambridge, 1997.

9. David J. Wheeler and Roger M. Needham. TEA, a tiny encryption algorithm.
In Bart Preneel, editor, FSE, volume 1008 of Lecture Notes in Computer Science,
pages 363–366. Springer, 1994.

10. Xiaoli Yu, Wenling Wu, Yanjun Li, and Lei Zhang. Cryptanalysis of reduced-
round KLEIN block cipher. In Chuankun Wu, Moti Yung, and Dongdai Lin,
editors, Inscrypt, volume 7537 of Lecture Notes in Computer Science, pages 237–
250. Springer, 2011.

