Skip to main content
Log in

Two classes of p-ary bent functions and linear codes with three or four weights

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

In this paper, a secondary construction of p-ary bent functions is presented. Two classes of p-ary bent functions of algebraic degree p are constructed by modifying the values of some known bent functions on some set of \(\mathbb {F}_{p^{2k}}\). Furthermore, the resulted p-ary bent functions are employed to construct a class of linear codes with three or four weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bae, S., Li, C., Yue, Q.: Some results on two-weight and three-weight linear codes preprint, 2015.

  • Carlet, C.: Two New Classes of Bent Functions. Advances in Cryptology-EUROCRYPT93, Springer, Pp. 77–101 (1994).

  • Carlet, C.: On Bent and Highly Nonlinear Balanced/Resilient Functions and Their Algebraic Immunities. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer, Pp. 1–28 (2006).

  • Carlet, C.: Boolean functions for cryptography and error correcting codes. Boolean Models and Methods in Mathematics. Comput. Sci. Eng. 2, 257–397 (2010).

    MATH  Google Scholar 

  • Carlet, C., Mesnager, S.: On Dillon’s class \(\mathcal {H}\) of bent functions, Niho bent functions and o-polynomials. J. Combin. Theory Ser A. 118 (8), 2392–2410 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  • Chee, Y. M., Tan, Y., Zhang, X. D.: Strongly regular graphs constructed from p-ary bent functions. J. Algebr. Comb. 34 (2), 251–266 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  • Dillon, J. F.: Elementary hadamard difference sets, Ph.D. thesis, University of Maryland College Park, 1974.

  • Ding, C., Wang, X.: A coding theory construction of new systematic authentication codes. Theoretical Comput. Sci. 330 (1), 81–99 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  • Ding, C., Luo, J., Niederreiter, H.: Two Weight Codes Punctured from Irreducible Cyclic Codes. Proc. of the First International Workshop on Coding Theory and Cryptography, Singapore, World Scientific, 119-124 (2008).

  • Ding, C.: Linear codes from some 2-designs. IEEE Trans. Inform. Theory. 61 (6), 3265–3275 (2015).

    Article  MathSciNet  Google Scholar 

  • Ding, C., Li, C., Li, N., Zhou, Z.: Three-weight cyclic codes and their weight distributions. Discret. Math. 339, 415–427 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  • Ding, C.: A construction of binary linear codes from Boolean functions. Discret. Math. 339 (9), 2288–2303 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  • Ding, K., Ding, C.: Binary linear codes with three weights. IEEE Trans. Inform. Theory. 18 (11), 1879–1882 (2014).

    MATH  Google Scholar 

  • Ding, K., Ding, C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inf. Theory. 61 (11), 5835–5842 (2015).

    Article  MathSciNet  Google Scholar 

  • Ding, C., Niederreiter, H.: Cyclotomic linear codes of order 3. IEEE Trans. Inf. Theory. 53 (6), 2274–2277 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  • Helleseth, T., Kholosha, A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory. 52 (5), 2018–2032 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  • Helleseth, T., Kholosha, A.: New binomial bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory. 56 (9), 4646–4652 (2010).

    Article  MathSciNet  Google Scholar 

  • Heng, Z., Yue, Q.: A class of binary linear codes with at most three weights. IEEE Commun. Lett. 19 (9), 1488–1491 (2015).

    Article  Google Scholar 

  • Heng, Z., Yue, Q.: Two classes of two-weight linear codes. Finite Fields Appl. 38, 72–92 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  • Hou, X.: D.: p-Ary and q-ary versions of certain results about bent functions and resilient functions. Finite Fields Appl. 10 (4), 566–582 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  • Huffman, W. C., Pless, V.: Fundamentals of Error-Correcting codes cambridge, U.K.: Cambridge univ press, 2003.

  • Jia, W., Zeng, X., Helleseth, T., Li, C.: A class of binomial bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory. 58 (9), 6054–6063 (2012).

    Article  MathSciNet  Google Scholar 

  • Kumar, P. V., Scholtz, R. A., Welch, L. R.: Generalized bent functions and their properties. J. Combin. Theory Ser A. 40 (1), 90–107 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  • Li, C., Yue, Q.: A class of cyclic codes from two distinct fnite felds codes. Finite Fields Appl. 34 (2), 305–316 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  • Li, C., Yue, Q., Li, F.: Hamming weights of the duals of cyclic codes with two zeros. IEEE Trans. Inf. Theory. 60 (7), 3895–3902 (2014).

    Article  MathSciNet  Google Scholar 

  • Li, N., Helleseth, T., Tang, X., Kholosha, A.: Several new classes of bent functions from Dillon exponents. IEEE Trans. Inf. Theory. 59 (3), 1818–1831 (2013).

    Article  MathSciNet  Google Scholar 

  • Lidl, R., Niederrreiter, H.: Finite Fields. Addison-Wesley, London (1983).

    Google Scholar 

  • Mesnager, S.: Several new infinite families of bent functions and their duals. IEEE Trans. Inf. Theory. 60 (7), 4397–4407 (2014).

    Article  MathSciNet  Google Scholar 

  • Mesnager, S.: Bent functions: fundamentals and results. Springer, New York. to appear.

  • Rothaus, O. S.: On bent functions. J. Combin. Theory Ser A. 20 (3), 300–305 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  • Tan, Y., Pott, A., Feng, T.: Strongly regular graphs associated with ternary bent functions. J. Combin. Theory Ser A. 117 (6), 668–682 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  • Tang, C., Li, N., Qi, F., Zhou, Z., Helleseth, T.: Linear codes with two or three weights from weakly regular bent functions. IEEE Trans. Inf. Theory. 62 (3), 1166–1176 (2016).

    Article  MathSciNet  Google Scholar 

  • Xiang, C.: Linear codes from a generic construction. Cryptogr. Commun. (2015). doi:10.1007/s12095-015-0158-1.

  • Xu, G., Cao, X., Xu, S.: Constructing new APN functions and bent functions over finite fields of odd characteristic via the switching method. Cryptogr Commun. 8 (1), 155–171 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan, J., Carlet, C., Ding, C.: The weight distribution of a class of linear codes from perfect nonlinear functions. IEEE Trans. Inf. Theory. 52 (2), 712–717 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng, X., Hu, L., Jiang, W., Yue, Q., Cao, X.: The weight distribution of a class of p-ary cyclic codes. Finite Fields Appl. 16 (1), 56–73 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, Z., Ding, C.: A class of three-weight cyclic codes. Finite Fields Appl. 25, 79–93 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, Z., Li, N., Fan, C., Helleseth, T.: Linear codes with two or three weights from quadratic bent functions. Des. Codes Cryptogr. (2015). doi:10.1007/s10623-015-0144-9.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants 11371011, 61403157 and 61572027), Anhui Provincial Natural Science Foundation (Grant No.1608085QA05), the Foundation for Distinguished Young Talents in Higher Education of Anhui Province of China (Grant No. gxyqZD2016258) and the Funding of Jiangsu Innovation Program for Graduate Education (Grant No. KYZZ 150090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangkui Xu or Xiwang Cao.

Appendix :

Appendix :

The number \(A_{2}^{\bot }\) of codewords with weight 2 in the dual code of \(\mathcal {C}_{D}\) of Theorem 3.

Let D be the set defined in (15). Since 0∉D, the minimum distance of \(\mathcal {C}_{D}^{\bot }\) cannot be one. Assume that xD. We claim that if c xD for any \(c \in \mathbb {F}_{p}^{*}\setminus \{1\}\), then \(\text {Tr}^{k}_{1}(\lambda x^{p^{k}+1})=0\) and \(\text {Tr}_{1}^{n}(ux)\text {Tr}_{1}^{n}(x)^{p-1}=0\). Otherwise, it follows from xD and c xD that c=1. This is a contradiction with \(c \in \mathbb {F}_{p}^{*}\setminus \{1\}\). To give the number \(A_{2}^{\bot }\) of codewords with weight 2 in \(\mathcal {C}_{D}^{\bot }\), we define the following set

$$D_{1}=\{x\in \mathbb{F}_{p^{n}}^{*}: \text{Tr}^{k}_{1}(\lambda x^{p^{k}+1})=0\ \text{and} \ \text{Tr}_{1}^{n}(ux)\text{Tr}_{1}^{n}(x)^{p-1}=0\}. $$

Indeed, \(D_{1}=\{x\in \mathbb {F}_{p^{n}}^{*}: x\in D ~\text {and} ~cx\in D\}\subseteq D\) for any \(c \in \mathbb {F}_{p}^{*}\setminus \{1\}\). By the orthogonal property of additive characters and Theorem 1, we have

$$\begin{array}{@{}rcl@{}} |D_{1}|+1&=&\frac{1}{p^{2}}\sum\limits_{x\in\mathbb{F}_{p^{n}}}(\sum\limits_{y\in\mathbb{F}_{p}}\omega_{p}^{y\text{Tr}^{k}_{1}(\lambda x^{p^{k}+1})})(\sum\limits_{z\in\mathbb{F}_{p}}\omega_{p}^{z\text{Tr}_{1}^{n}(ux)\text{Tr}_{1}^{n}(x)^{p-1}}) \\ &=&p^{n-2}+\frac{1}{p^{2}}\sum\limits_{y\in\mathbb{F}_{p}^{*}}\sum\limits_{x\in\mathbb{F}_{p^{n}}}\omega_{p}^{y\text{Tr}^{k}_{1}(\lambda x^{p^{k}+1})}+\frac{1}{p^{2}}\sum\limits_{z\in\mathbb{F}_{p}^{*}}\sum\limits_{x\in\mathbb{F}_{p^{n}}}\omega_{p}^{z\text{Tr}_{1}^{n}(ux)\text{Tr}_{1}^{n}(x)^{p-1}} \\ &&+\frac{1}{p^{2}}\sum\limits_{y\in \mathbb{F}_{p}^{*}}\sum\limits_{z\in \mathbb{F}_{p}^{*}}\sum\limits_{x\in\mathbb{F}_{p^{n}}}\omega_{p}^{y\text{Tr}^{k}_{1}(\lambda x^{p^{k}+1})+z\text{Tr}_{1}^{n}(ux)\text{Tr}_{1}^{n}(x)^{p-1}} \\ &=&p^{n-2}+\frac{1}{p^{2}}\sum\limits_{y\in\mathbb{F}_{p}^{*}}\widehat{\chi}_{f_{y\lambda,0}}(0)+\frac{1}{p^{2}}\sum\limits_{y\in \mathbb{F}_{p}^{*}}\sum\limits_{z\in \mathbb{F}_{p}^{*}}\widehat{\chi}_{f_{y\lambda,zu}}(0)+\frac{1}{p^{2}}\sum\limits_{z\in\mathbb{F}_{p}^{*}}\sum\limits_{x\in\mathbb{F}_{p^{n}}}\omega_{p}^{z\text{Tr}_{1}^{n}(ux)\text{Tr}_{1}^{n}(x)^{p-1}} \\ &=&p^{n-2}-p^{k-2}(p-1)-p^{k-2}(p-1)^{2}+\frac{1}{p^{2}}{\Omega}, \end{array} $$
(24)

where

$${\Omega}=\sum\limits_{z\in\mathbb{F}_{p}^{*}}\sum\limits_{x\in\mathbb{F}_{p^{n}}}\omega_{p}^{z\text{Tr}_{1}^{n}(ux)\text{Tr}_{1}^{n}(x)^{p-1}}. $$

Let T i be the set defined in (4) for i=0,1,⋯ ,p−1. By a similar process of calculating the Walsh transform coefficient of f(x) in Lemma 5, we have

$$\begin{array}{@{}rcl@{}} {\Omega}=(p-1)p^{n-1}. \end{array} $$
(25)

Combining (24) and (25), we get

$$|D_{1}|=(2p-1)p^{n-3}-(p-1)p^{k-1}-1. $$

Note that if xD 1, then c xD 1 for any \(c\in \mathbb {F}_{p}^{*}\). This implies that the minimum distance of \(\mathcal {C}^{\bot }\) is equal to 2. In fact, for each p−1 distinct elements x,2x,⋯ ,(p−1)xD 1, we can obtain \({\ p-1\choose 2}(p-1)\) codewords with weight 2 in \(\mathcal {C}_{D}^{\perp }\). Therefore, the number \(A_{2}^{\perp }\) of codewords with weight 2 in \(\mathcal {C}_{D}^{\perp }\) is

$$A_{2}^{\perp}=\frac{|D_{1}|}{p-1}{\ p-1 \choose 2}(p-1)={\ p-1 \choose 2}|D_{1}|. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Cao, X. & Xu, S. Two classes of p-ary bent functions and linear codes with three or four weights. Cryptogr. Commun. 9, 117–131 (2017). https://doi.org/10.1007/s12095-016-0199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-016-0199-0

Keywords

Mathematics Subject Classification (2010)

Navigation