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Abstract Linear codes have been an interesting subject of study for many years, as linear
codes with few weights have applications in secrete sharing, authentication codes, associa-
tion schemes, and strongly regular graphs. In this paper, a class of linear codes with a few
weights over the finite field GF(p) are presented and their weight distributions are also de-
termined, wherep is an odd prime. Some of the linear codes obtained are optimalin the
sense that they meet certain bounds on linear codes.
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1 Introduction

Throughout this paper, letp be an odd prime and letq = pm for some positive integer
m. An [n, k, d] codeC over GF(p) is ak-dimensional subspace of GF(p)n with minimum
(Hamming) distanced. Let Ai denote the number of codewords with Hamming weighti in
a codeC of lengthn. Theweight enumeratorof C is defined by 1+A1z+A2z2+ · · ·+Anzn.
Theweight distribution(1,A1, . . . ,An) is an important research topic in coding theory, as it
contains crucial information as to estimate the error correcting capability and the probability
of error detection and correction with respect to some algorithms. A codeC is said to be a
t-weight code if the number of nonzeroAi in the sequence(A1,A2, · · · ,An) is equal tot.
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Let D = {d1, d2, . . . , dn} ⊆ GF(q). Let Tr denote the trace function from GF(q) onto
GF(p) throughout this paper. We define a linear code of lengthn over GF(p) by

CD = {(Tr(xd1),Tr(xd2), . . . ,Tr(xdn)) : x∈ GF(q)}, (1)

and callD thedefining setof this codeCD. By definition, the dimension of the codeCD is at
mostm.

This construction is generic in the sense that many classes of known codes could be
produced by properly selecting the defining setD ⊆ GF(q). If the defining setD is well
chosen, some optimal linear codes with few weights can be obtained. This construction
technique was employed in [6], [13], [14], [7], [9], [10] and[25] for obtaining linear codes
with a few weights. For more details, we refer interested readers to [8,21,29,23,24,22] and
the references therein.

The purpose of this paper is to construct a class of linear codes over GF(p) with a
few nonzero weights using this generic construction method, and determine their weight
distributions. Some of the linear codes obtained in this paper are optimal in the sense that
they meet some bounds on linear codes. The linear codes with afew weights presented
in this paper have applications also in secret sharing [1,4,27], authentication codes [11],
combinatorial designs and graph theory [2,3], and association schemes [2], in addition to
their applications in consumer electronics, communication and data storage systems.

The remainder of this paper is organized as follows. Section2 introduces some basic
notations and results of group characters, Gauss sums, exponential sums and cyclotomic
fields which will be needed in subsequent sections. Section 3presents a class of linear codes
with a few weights and the proofs of their parameters are given in Section 4. Section 5
summarizes this paper.

2 Preliminaries

In this section, we state some notations and basic facts on group characters, Gauss sums,
exponential sums and cyclotomic fields. These results will be used later in this paper.

2.1 Some notations fixed throughout this paper

For convenience, we adopt the following notations unless otherwise stated in this paper.

• p∗ = (−1)(p−1)/2p.

• ζp = e
2π

√
−1

p , a primitive p-th root of unity.
• L(x) = xp2

+x.
• Im(L) = {L(x) : x∈ GF(q)}.
• xb ∈ GF(q) denotes a solution of the equationL(x) =−bp if b∈ Im(L).
• mp = m mod p∈ {0,1, ..., p−1}, the least non-negative residue modulom.
• SQ and NSQ denote the set of all squares and nonsquares in GF(p)∗, respectively.
• η andη̄ are the quadratic characters of GF(q)∗ and GF(p)∗, repsectively. We extend these

quadratic characters by lettingη(0) = 0 andη̄(0) = 0.
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2.2 Group characters and Gauss sums

An additive characterof GF(q) is a nonzero functionχ from GF(q) to the set of nonzero
complex numbers such thatχ(x+y) = χ(x)χ(y) for any pair(x,y) ∈ GF(q)2. For eachb∈
GF(q), the function

χb(c) = ζTr(bc)
p for all c∈ GF(q) (2)

defines an additive character of GF(q). Whenb = 0, χ0(c) = 1 for all c ∈ GF(q), and is
called thetrivial additive characterof GF(q). The characterχ1 in (2) is called thecanonical
additive characterof GF(q). It is known that every additive character of GF(q) can be
written asχb(x) = χ1(bx) [20, Theorem 5.7].

The Gauss sumG(η,χ1) over GF(q) is defined by

G(η,χ1) = ∑
c∈GF(q)∗

η(c)χ1(c) = ∑
c∈GF(q)

η(c)χ1(c) (3)

and the Gauss sumG(η̄, χ̄1) over GF(p) is defined by

G(η̄, χ̄1) = ∑
c∈GF(p)∗

η̄(c)χ̄1(c) = ∑
c∈GF(p)

η̄(c)χ̄1(c), (4)

whereχ̄1 is the canonical additive characters of GF(p).
The following three lemmas are proved in [20, Theorem 5.15 and Theorem 5.33] and

[14, lemma 7], respectively.

Lemma 1 With the symbols and notations above, we have

G(η,χ1) = (−1)m−1
√
−1

( p−1
2 )2m√

q

and

G(η̄, χ̄1) =
√
−1

( p−1
2 )2√

p=
√

p∗.

Lemma 2 Let χ be a nontrivial additive character ofGF(q) with q odd, and let f(x) =
a2x2+a1x+a0 ∈ GF(q)[x] with a2 6= 0. Then

∑
c∈GF(q)

χ( f (c)) = χ(a0−a2
1(4a2)

−1)η(a2)G(η,χ).

Lemma 3 If m ≥ 2 is even, thenη(y) = 1 for each y∈ GF(p)∗. If m ≥ 1 is odd, then
η(y) = η̄(y) for each y∈ GF(p).

2.3 A type of exponential sums

For anya andb in GF(q), we define the following exponential sum

S(a,b) = ∑
x∈GF(q)

χ1
(

axp+1+bx
)

in this paper. To prove our main results, we need the values ofthe sumS(a,b) and the help
of a number of lemmas that are proved in [5, Theorem 1, Theorem2, Theorem 2.3].
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Lemma 4 Let m be odd, f(x) = apxp2
+ax∈ Fq[x] and b∈ GF(q). Then f(x) is a permuta-

tion polynomial overGF(q) and

S(a,b) =
√

p∗
m

η(a)χ1(−axp+1
a,b ),

where p∗= (−1)
p−1

2 p and xa,b is the unique solution of the equation f(x) =−bp.
Particularly, S(a,0) =

√
p∗mη(a).

Lemma 5 Let m be even, f(x) = apxp2
+ax∈ Fq[x] and b∈ GF(q). There are two cases.

1. If a
q−1
p+1 6= (−1)

m
2 , then f(x) is a permutation polynomial overGF(q). Let xa,b be the

unique solution of the equation f(x) =−bp. Then

S(a,b) = (−1)
m
2 pm/2χ1(−axp+1

a,b )

2. If a
q−1
p+1 = (−1)

m
2 , then f(x) is not a permutation polynomial overGF(q). We have

S(a,b) = 0 unless the the equation f(x) = −bp is solvable. If this equation is solvable,
with solution xa,b say, then

S(a,b) =−(−1)
m
2 pm/2+1χ1(−axp+1

a,b ).

Particularly,

S(a,0) =

{

(−1)
m
2 p

m
2 if a

q−1
p+1 6= (−1)

m
2 ,

(−1)
m
2 +1p

m
2 +1 if a

q−1
p+1 = (−1)

m
2 .

2.4 Cyclotomic fields

In this subsection, we state some basic facts on cyclotomic fields. These results will be used
in the rest of this paper.

LetZ be the rational integer ring andQ be the rational field. Some results on cyclotomic
field Q(ζp) [17] are given in the following lemma.

Lemma 6 We have the following basic facts.

1. The ring of integers in K= Q(ζp) is OK = Z[ζp] and{ζ i
p : 1≤ i ≤ p−1} is an integral

basis ofOK .
2. The field extension K/Q is Galois of degree p−1 and the Galois group Gal(K/Q) =

{σa : a∈ (Z/pZ)∗}, where the automorphismσa of K is defined byσa(ζp) = ζa
p.

3. The field K has a unique quadratic subfield L= Q(
√

p∗). For 1≤ a≤ p−1, σa(
√

p∗) =
η̄(a)

√
p∗. Therefore, the Galois group Gal(L/Q) is {1,σγ}, whereγ is any quadratic

nonresidue inGF(p).
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3 The linear codes with a few weights

We only describe the codes and introduce their parameters inthis section. The proofs of
their parameters will be given in Section 4.

In this paper, the defining setD of the codeCD of (1) is given by

D = {x∈ GF(q)∗ : Tr(xp+1−x) = 0}. (5)

Whenp= 2, the weight distribution of the codeCD was settled in [26]. In this paper, we
study the codeCD for p being an odd prime.

The following three theorems are the main results of this paper.

Theorem 1 Let m≥ 3 be odd, and let D be defined in (5). Then the setCD of (1) is an[n,m]
linear code overGF(p) with at most five weights and the weight distribution in Tables 1 and
2, where

n= pm−1−1+(−1)
p−1

2
m−1

2 η̄(mp)p
m−1

2 . (6)

Table 1: The weight distribution ofCD of Theorem 1 whenmp = 0

Weightw Multiplicity Aw

0 1
(p−1)pm−2 pm−1−1

(p−1)(pm−2− (−1)
p−1

2
m−1

2 p
m−3

2 ) p−1
2 (pm−2+(−1)

p−1
2

m−1
2 p

m−1
2 )

(p−1)(pm−2+(−1)
p−1

2
m−1

2 p
m−3

2 ) p−1
2 (pm−2− (−1)

p−1
2

m−1
2 p

m−1
2 )

(p−1)pm−2+(−1)
p−1

2
m−1

2 p
m−3

2 1
2(p−1)2pm−2

(p−1)pm−2− (−1)
p−1

2
m−1

2 p
m−3

2 1
2(p−1)2pm−2

Table 2: The weight distribution ofCD of Theorem 1 whenmp 6= 0

Weightw Multiplicity Aw

0 1

(p−1)pm−2 pm−2−1+ η̄(mp)(−1)
p−1

2
m−1

2 (p−1)p
m−3

2

(p−1)pm−2+ η̄(mp)(−1)
p−1

2
m−1

2 p
m−1

2 pm−2(p−1)− η̄(mp)(−1)
p−1

2
m−1

2 (p−1)p
m−3

2

(p−1)pm−2+ η̄(mp)(−1)
p−1

2
m−1

2 (p+1)p
m−3

2 1
2(p−1)(p−2)p

m−3
2 (p

m−1
2 − η̄(mp)(−1)

p−1
2

m−1
2 )

(p−1)pm−2+ η̄(mp)(−1)
p−1

2
m−1

2 (p−1)p
m−3

2 p−1
2 (pm−1− η̄(mp)(−1)

p−1
2

m−1
2 p

m−1
2 )

(p−1)pm−2+ η̄(mp)(−1)
p−1

2
m−1

2 p
m−3

2 (p−1)pm−2+ η̄(mp)(−1)
p−1

2
m−1

2 (p−1)2p
m−3

2

Example 1Let (p,m) = (3,5). Then the codeCD has parameters[71,5,42] and weight enu-
merator 1+30z42+60z45+90z48+42z51+20z54, which is verified by a Magma program.

Example 2Let (p,m) = (3,9). Then the codeCD has parameters[6560,9,4320] and weight
enumerator 1+2268z4320+4374z4347+6560z4374+4374z4401+2106z4428, which is verified
by a Magma program.
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Remark 1The codeCD of Theorem 1 is a five-weight linear code except in the following
two cases:

1. Whenm= 3 andmp = 0, the frequency of the weight(p−1)(pm−2− (−1)
p−1

2
m−1

2 p
m−3

2 )
of Table 1 turns out to be 0. Thus, the codeCD has four nonzero weights.

2. Whenm= 3, mp 6= 0 andp≡ 2 (mod 3), the frequency of the weight(p−1)pm−2 of
Table 2 turns out to be 0. Thus, the codeCD has only four nonzero weights.

Example 3Let (p,m) = (3,3). Then the codeCD has parameters[8,3,4] and weight enu-
merator 1+6z4+6z5+8z6+6z7, which is verified by a Magma program. This code is almost
optimal, since the optimal linear code has parameters[8,3,5].

Example 4Let (p,m) = (5,3). Then the codeCD has parameters[19,3,14] and weight enu-
merator 1+36z14+24z15+60z16+4z19, which is verified by a Magma program. This code
is optimal.

Theorem 2 Let m≥ 2 be even and m≡ 2 (mod 4), and let D be defined in (5). Then the
setCD of (1) is an[n,m] linear code overGF(p) with at most three weights and the weight
distribution in Table 3 and Table 4, where

n=

{

pm−1−1− (p−1)p
1
2 (m−1+(−1)

m
2 ) if mp = 0,

pm−1−1+ p
1
2 (m−1+(−1)

m
2 ) if mp 6= 0.

(7)

Table 3: The weight distribution ofCD of Theorem 2 whenmp = 0

Weightw Multiplicity Aw

0 1
(p−1)pm−2 pm−2− (p−1)p

m
2 −1−1

(p−1)(pm−2− p
m
2 −1) (p−1)(2pm−2+ p

m
2 −1)

(p−1)pm−2− (p−2)p
m
2 −1 (p−1)2pm−2

Table 4: The weight distribution ofCD of Theorem 2 whenmp 6= 0

Weightw Multiplicity Aw

0 1
(p−1)pm−2 pm−2+ p−1

2 (pm−1+ p
m
2 )−1

(p−1)pm−2+ p
m
2 −1 (p−1)(2pm−2− p

m
2 −1)

(p−1)pm−2+2p
m
2 −1 (p−1)(p−2)

2 (pm−2− p
m
2 −1)

Example 5Let (p,m) = (3,6). Then the codeCD has parameters[224,6,144] and weight
enumerator 1+342z144+324z153+62z162, which is verified by a Magma program.

Example 6Let (p,m) = (5,6). Then the codeCD has parameters[3149,6,2500] and weight
enumerator 1+7124z2500+2525z4900+2550z3600, which is verified by a Magma program.
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Remark 2The codeCD of Theorem 2 has three weights except in the casem= 2, as the
frequency of the weight(p−1)pm−2+2p

m
2 −1 of Table 4 turns out to be 0. Hence, The code

CD of Theorem 2 is a two-weight linear code if and only ifm= 2.

Example 7Let (p,m) = (3,2). Then the codeCD has parameters[3,2,2] and weight enu-
merator 1+6z2+2z3, which is verified by a Magma program. This code is optimal.

Theorem 3 Let m≥ 6 be even and m≡ 0 (mod 4), and let D be defined in (5). Then the set
CD of (1) is a four-weight linear code overGF(p) with the parameter[n,m] and the weight
distribution in Tables 5 and 6, where n is defined by (7).

Table 5: The weight distribution ofCD of Theorem 3 whenmp = 0

Weightw Multiplicity Aw

0 1
pm−2(p−1)− (p−1)2p

m
2 −1 (p2−1)pm−2

pm−2(p−1) pm−4− (p−1)p
m
2 −2−1

(p−1)p
m
2 (p

m
2 −2−1) (p−1)(2pm−4+ p

m
2 −2)

(p−1)pm−2− (p−2)p
m
2 (p−1)2pm−4

Table 6: The weight distribution ofCD of Theorem 3 whenmp 6= 0

Weightw Multiplicity Aw

0 1
(p−1)(p

m
2 −1+ pm−2) pm− pm−2

(p−1)pm−2 pm−4+ p−1
2 (p

m
2 −1+ pm−3)−1

(p−1)pm−2+ p
m
2 (p−1)(2pm−4− p

m
2 −2)

(p−1)pm−2+2p
m
2 1

2(p−1)(p−2)(pm−4− p
m
2 −2)

Example 8Let (p,m) = (3,8). Then the codeCD has parameters[2267,8,1458] and weight
enumerator 1+ 350z1458+ 5832z1512+ 306z1539+ 32z1620, which is verified by a Magma
program.

Example 9Let (p,m) = (5,8). Then the codeCD has parameters[78749,8,62500] and
weight enumerator 1+7124z62500+375000z63000+4900z63125+3600z63750, which is veri-
fied by a Magma program.

4 The proofs of the main results

Our task of this section is to prove Theorems 1, 2 and 3, respectively. To this end, we shall
prove a few more auxiliary results before proving the main results of this paper.
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4.1 Some auxiliary results

Lemma 7 With the symbols and notations above, we have

∑
c∈GF(p)∗

S(c,−c) =











(−1)
p−1

2 η̄(mp)
√

p∗m+1 if m is odd,

−(p−1)p
1
2 (m+1+(−1)

m
2 ) if m is even and mp = 0,

p
1
2 (m+1+(−1)

m
2 ) if m is even and mp 6= 0.

Proof For anyc∈ GF(p)∗, it is easily seen thatf (x) = cpxp2
+cx=−(−c)p is solvable and

1
2 is its solution.

By definition, Lemmas 4 and 5, we have

∑
c∈GF(p)∗

S(c,−c)

= ∑
c∈GF(p)∗

∑
x∈GF(q)

χ1
(

cxp+1−cx
)

=







∑c∈GF(p)∗
√

p∗mη(c)χ1(− c
4) if m is odd,

∑c∈GF(p)∗ (−1)
m
2 pm/2χ1(− c

4) if m≡ 2( mod 4),
∑c∈GF(p)∗ −(−1)

m
2 pm/2+1χ1(− c

4) if m≡ 0( mod 4),

=











√
p∗m∑c∈GF(p)∗ η̄(c)χ̄1(− cTr(1)

4 ) if m is odd,
−pm/2 ∑c∈GF(p)∗ χ̄1(

cTr(1)
4 ) if m≡ 2( mod 4),

−pm/2+1 ∑c∈GF(p)∗ χ̄1(
cTr(1)

4 ) if m≡ 0( mod 4) ,

=































√
p∗m∑c∈GF(p)∗ η̄(c) if m is odd andmp = 0,√
p∗m∑c∈GF(p)∗ η̄(−mp

4 )η̄(− cmp

4 )χ̄1(− cmp

4 ) if m is odd andmp 6= 0,
−pm/2(p−1) if m≡ 2( mod 4) andmp = 0,
pm/2 if m≡ 2( mod 4) andmp 6= 0,
−pm/2+1(p−1) if m≡ 0( mod 4) andmp = 0,
pm/2+1 if m≡ 0( mod 4) andmp 6= 0,

=































0 if m is odd andmp = 0,√
p∗mη̄(−mp)G(η̄, χ̄1) if m is odd andmp 6= 0,

−pm/2(p−1) if m≡ 2( mod 4) andmp = 0,
pm/2 if m≡ 2( mod 4) andmp 6= 0,
−pm/2+1(p−1) if m≡ 0( mod 4) andmp = 0,
pm/2+1 if m≡ 0( mod 4) andmp 6= 0 .

The desired conclusion then follows from Lemma 1.

The next lemma will be employed in proving the code length.

Lemma 8 Let
n0 = |{x∈ GF(q) : Tr(xp+1−x) = 0}|.

Then

n0 =











pm−1+(−1)
p−1

2 η̄(mp)p−1√p∗m+1 if m is odd,

pm−1− (p−1)p
1
2 (m−1+(−1)

m
2 ) if m is even and mp = 0,

pm−1+ p
1
2 (m−1+(−1)

m
2 ) if m is even and mp 6= 0.
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Proof By definition, we have

n0 =
1
p ∑

x∈GF(q)
∑

y∈GF(p)

ζy(Tr(xp+1)−x)
p

= pm−1+
1
p ∑

y∈GF(p)∗
∑

x∈GF(q)

ζTr(yxp+1−y)
p

= pm−1+
1
p ∑

y∈GF(p)∗
S(y,−y).

The desired conclusion then follows from Lemma 7.

From Lemma 6, the conclusion of the following lemma is straightforward and we omit
their proofs.

Lemma 9 With the symbols and notations above, we have the following.

1. ∑y∈GF(p)∗ σy(ζ z
p ) =

{

p−1 if z= 0,
−1 if z 6= 0.

2. ∑y∈GF(p)∗ σy(
√

p∗m
) =

{

0 if m is odd,√
p∗m

(p−1) if m is even.

3. ∑y∈GF(p)∗ σy(
√

p∗ ζ z
p ) =

{

0 if z= 0,
η̄(z)p∗ if z 6= 0.

Particularly,

∑
y∈GF(p)∗

σy(
√

p∗
m

ζ−
mp
4

p ) =

{

0 if m is odd and mp = 0,

(−1)
p−1

2 η̄(mp)
√

p∗m+1 if m is odd and mp 6= 0.

and

∑
y∈GF(p)∗

σy(ζ
−mp

4
p ) =

{

p−1 if mp = 0,
−1 if mp 6= 0.

The following result will play an important role in proving the main results of this paper.

Lemma 10 Let b∈ GF(q)∗, L(x) = xp2
+x and

M = ∑
y∈GF(p)∗

∑
z∈GF(p)∗

∑
x∈GF(q)

ζTr(yxp+1+(bz−y)x)
p .

(I) If m is odd, then we have the following.

– When mp = 0,

M =



























0 if Tr(xp+1
b ) = 0,

(−1)
p−1

2 (p−1)
√

p∗m+1 if Tr(xp+1
b ) ∈ SQandTr(xb) = 0,

−(−1)
p−1

2 (p−1)
√

p∗m+1 if Tr(xp+1
b ) ∈ NSQandTr(xb) = 0,

−(−1)
p−1

2
√

p∗m+1 if Tr(xp+1
b ) ∈ SQandTr(xb) 6= 0,

(−1)
p−1

2
√

p∗m+1 if Tr(xp+1
b ) ∈ NSQandTr(xb) 6= 0.
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– When mp ∈ SQ,

M =



























(−1)
p−1

2 (p−1)
√

p∗m+1 if Tr(xp+1
b ) = 0 andTr(xb) = 0,

−(−1)
p−1

2
√

p∗m+1 if Tr(xp+1
b ) = 0 andTr(xb) 6= 0,

−2· (−1)
p−1

2
√

p∗m+1 if Tr(xp+1
b ) ∈ SQandTr(xb) = 0,

0 if Tr(xp+1
b ) ∈ NSQ,

(p−2)(−1)
p−1

2
√

p∗m+1 or −2· (−1)
p−1

2
√

p∗m+1 if Tr(xp+1
b ) ∈ SQandTr(xb) 6= 0.

– When mp ∈ NSQ,

M =



























−(−1)
p−1

2 (p−1)
√

p∗m+1 if Tr(xp+1
b ) = 0 andTr(xb) = 0,

(−1)
p−1

2
√

p∗m+1 if Tr(xp+1
b ) = 0 andTr(xb) 6= 0,

0 if Tr(xp+1
b ) ∈ SQ,

2· (−1)
p−1

2
√

p∗m+1 if Tr(xp+1
b ) ∈ NSQandTr(xb) = 0,

−(p−2)(−1)
p−1

2
√

p∗m+1 or 2· (−1)
p−1

2
√

p∗m+1 if Tr(xp+1
b ) ∈ NSQandTr(xb) 6= 0.

where xb is the unique solution of the equation xp2
+x=−bp.

(II) If m ≡ 2 (mod 4), then we have the following.

– When mp = 0,

M =















−p
m
2 (p−1)2 if Tr(xp+1

b ) = 0 andTr(xb) = 0,
p

m
2 (p−1) if Tr(xp+1

b ) = 0 andTr(xb) 6= 0
or Tr(xp+1

b ) 6= 0 andTr(xb) = 0,
−p

m
2 if Tr(xp+1

b ) 6= 0 andTr(xb) 6= 0.

– When mp 6= 0,

M =















p
m
2 (p−1) if Tr(xp+1

b ) = 0 andTr(xb) = 0,
−p

m
2 if Tr(xp+1

b ) = 0 andTr(xb) 6= 0
or Tr(xp+1

b ) 6= 0 and A= 0,
p

m
2 (p−1) or − p

m
2 (p+1) if Tr(xp+1

b ) 6= 0 and A6= 0,

where A=−mp

4 + Tr(xb)
2

4Tr(xp+1
b )

and xb is the unique solution of the equation xp2
+x=−bp.

(III) If m ≡ 0 (mod 4), then we have the following.

– When mp = 0,

M =























0 if b /∈ Im(L),
−p

m
2 +1(p−1)2 if b ∈ Im(L), Tr(xp+1

b ) = 0 andTr(xb) = 0,
p

m
2 +1(p−1) if b ∈ Im(L), Tr(xp+1

b ) = 0 andTr(xb) 6= 0
or Tr(xp+1

b ) 6= 0 andTr(xb) = 0,
−p

m
2 +1 if b ∈ Im(L), Tr(xp+1

b ) 6= 0 andTr(xb) 6= 0.

– When mp 6= 0,

M =























0 if b /∈ Im(L),
p

m
2 +1(p−1) if b ∈ Im(L), Tr(xp+1

b ) = 0 andTr(xb) = 0,
−p

m
2 +1 if b ∈ Im(L), Tr(xp+1

b ) = 0 andTr(xb) 6= 0
or Tr(xp+1

b ) 6= 0 and A= 0,
p

m
2 +1(p−1) or − p

m
2 +1(p+1) if b ∈ Im(L), Tr(xp+1

b ) 6= 0 and A 6= 0.
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where A= −mp

4 + Tr(xb)
2

4Tr(xp+1
b )

and xb is some solution of the equation L(x) = −bp under the

condition that b∈ Im(L).

Proof We have

M = ∑
y∈GF(p)∗

∑
z∈GF(p)∗

∑
x∈GF(q)

ζTr(yxp+1+(bz−y)x)
p

= ∑
y∈GF(p)∗

∑
z∈GF(p)∗

∑
x∈GF(q)

ζ
yTr(xp+1+( z

y b−1)x)
p

= ∑
y∈GF(p)∗

∑
z∈GF(p)∗

∑
x∈GF(q)

ζyTr(xp+1+(zb−1)x)
p

= ∑
y∈GF(p)∗

σy( ∑
z∈GF(p)∗

∑
x∈GF(q)

ζTr(xp+1+(bz−1)x)
p ). (8)

It is easily seen thatL(x) = xp2
+ x is a permutation polynomial over GF(q) if m≡ 2

(mod 4) or m is odd. Hence,xb is the unique solution of the equationL(x) = −bp, while
zxb+

1
2 is the unique solution of the equationL(x) =−(bz−1)p for z∈ GF(p)∗.

For m ≡ 0 (mod 4), althoughL(x) = xp2
+ x is not a permutation polynomial over

GF(q), zxb +
1
2 is the solution of the equationL(x) = −(bz− 1)p for z∈ GF(p)∗ when

b∈ Im(L) with some solutionxb.
Therefore, by Lemmas 4 and 5, Equation (8) becomes

M =























∑y∈GF(p)∗ σy(∑z∈GF(p)∗
√

p∗m η(1)ζ−Tr((zxb+
1
2 )

p+1)
p ) if m is odd

∑y∈GF(p)∗ σy(∑z∈GF(p)∗(−1)
m
2 p

m
2 ζ−Tr((zxb+

1
2 )

p+1)
p ) if m≡ 2( mod 4)

0 if m≡ 0( mod 4) andb /∈ Im(L)

∑y∈GF(p)∗ σy(∑z∈GF(p)∗ −(−1)
m
2 p

m
2 +1ζ−Tr((zxb+

1
2 )

p+1)
p ) if m≡ 0( mod 4) andb∈ Im(L)

=























∑y∈GF(p)∗ σy(
√

p∗m ζ−
mp
4

p ∑z∈GF(p)∗ ζ−Tr(xp+1
b )z2−Tr(xb)z

p ) if m is odd,

∑y∈GF(p)∗ σy(−p
m
2 ζ−

mp
4

p ∑z∈GF(p)∗ ζ−Tr(xp+1
b )z2−Tr(xb)z

p ) if m≡ 2( mod 4),
0 if m≡ 0( mod 4) andb /∈ Im(L),

∑y∈GF(p)∗ σy(−p
m
2 +1 ζ−

mp
4

p ∑z∈GF(p)∗ ζ−Tr(xp+1
b )z2−Tr(xb)z

p ) if m≡ 0( mod 4)andb∈ Im(L),

We distinguish the following three cases.
(I) If m is odd, by Lemma 2, we have

M =







∑y∈GF(p)∗ σy(
√

p∗m ζ−
mp
4

p ∑z∈GF(p)∗ ζ−Tr(xb)z
p ) if Tr (xp+1

b ) = 0

∑y∈GF(p)∗ σy(
√

p∗m ζ−
mp
4

p (η̄(−Tr(xp+1
b )ζ

Tr(xb)
2

4Tr(xp+1
b )

p G(η̄, χ̄1)−1)) if Tr (xp+1
b ) 6= 0

=



















(p−1)A0 if Tr (xp+1
b ) = 0 and Tr(xb) = 0,

−A0 if Tr (xp+1
b ) = 0 and Tr(xb) 6= 0,

√
p∗m+1η̄(−Tr(xp+1

b )∑y∈GF(p)∗ σy(ζ
−mp

4
p )−A0 if Tr (xp+1

b ) 6= 0 and Tr(xb) = 0,√
p∗m+1η̄(−Tr(xp+1

b )∑y∈GF(p)∗ σy(ζ A
p )−A0 if Tr (xp+1

b ) 6= 0 and Tr(xb) 6= 0,

whereA0 = ∑y∈GF(p)∗ σy(
√

p∗m ζ−
mp
4

p ) andA = −mp

4 + Tr(xb)
2

4Tr(xp+1
b )

. The desired conclusion in

Part (I) of this lemma then follows from Lemma 9.
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(II) If m≡ 2 (mod 4), by Lemmas 2 and 1, we have

M =

{

∑y∈GF(p)∗ σy(−p
m
2 ζ−

mp
4

p ∑z∈GF(p)∗ ζ−Tr(xb)z
p ) if Tr (xp+1

b ) = 0

∑y∈GF(p)∗ σy(−p
m
2 ζ−

mp
4

p (∑z∈GF(p) ζ−Tr(xp+1
b )z2−Tr(xb)z

p −1)) if Tr (xp+1
b ) 6= 0

=







−p
m
2 ∑y∈GF(p)∗ σy( ζ−

mp
4

p ∑z∈GF(p)∗ ζ−Tr(xb)z
p ) if Tr (xp+1

b ) = 0

−p
m
2 ∑y∈GF(p)∗ σy( ζ−

mp
4

p (η̄(−Tr(xp+1
b )ζ

Tr(xb)
2

4Tr(xp+1
b )

p G(η̄, χ̄1)−1)) if Tr (xp+1
b ) 6= 0

=



















−p
m
2 (p−1)A1 if Tr (xp+1

b ) = 0 and Tr(xb) = 0,
p

m
2 A1 if Tr (xp+1

b ) = 0 and Tr(xb) 6= 0,

−p
m
2 (−1)

p−1
2 η̄(Tr(xp+1

b ))∑y∈GF(p)∗ σy(
√

p∗ζ−
mp
4

p )+ p
m
2 A1 if Tr (xp+1

b ) 6= 0 and Tr(xb) = 0,

−p
m
2 (−1)

p−1
2 η̄(Tr(xp+1

b ))∑y∈GF(p)∗ σy(
√

p∗ζ A
p )+ p

m
2 A1 if Tr (xp+1

b ) 6= 0 and Tr(xb) 6= 0,

whereA1 = ∑y∈GF(p)∗ σy( ζ−
mp
4

p ) andA=−mp

4 + Tr(xb)
2

4Tr(xp+1
b )

. The desired conclusion in Part (II)

of this lemma then follows from Lemma 9.
(III) If m≡ 0 (mod 4), then from Lemmas 2 and 1 we have

M =











0 if b /∈ Im(L)

−p
m
2 +1 ∑y∈GF(p)∗ σy(ζ

−mp
4

p ∑z∈GF(p)∗ ζ−Tr(xb)z
p ) if b∈ Im(L) and Tr(xp+1

b ) = 0

−p
m
2 +1 ∑y∈GF(p)∗ σy(ζ

−mp
4

p (∑z∈GF(p) ζ−Tr(xp+1
b )z2−Tr(xb)z

p −1)) if b∈ Im(L) and Tr(xp+1
b ) 6= 0

=















0 if b /∈ Im(L),
−p

m
2 +1(p−1)A1 if b∈ Im(L), Tr(xp+1

b ) = 0 and Tr(xb) = 0,
p

m
2 +1A1 if b∈ Im(L), Tr(xp+1

b ) = 0 and Tr(xb) 6= 0,
−p

m
2 +1(−1)

p−1
2 η̄(Tr(xp+1

b ))A+ p
m
2 +1A1 if b∈ Im(L) and Tr(xp+1

b ) 6= 0,

whereA1 = ∑y∈GF(p)∗ σy( ζ−
mp
4

p ) andA= ∑y∈GF(p)∗ σy(
√

p∗ζ
− mp

4 +
Tr(xb)

2

4Tr(xp+1
b )

p ). The desired con-
clusion in Part (III) of this lemma then follows from Lemma 9.

This completes the proof of this lemma.

In order to calculate the Hamming weight of each codeword inCD, we need the follow-
ing result.

Lemma 11 For any b∈ GF(q)∗, let

N(b) = |{x∈ GF(q) : Tr(xp+1−x) = 0 andTr(bx) = 0}|.

There are three cases.
(I) If m is odd, then we have the following.

• When mp = 0,

N(b) =



























pm−2 if Tr(xp+1
b ) = 0,

(p−1)B+ pm−2 if Tr(xp+1
b ) ∈ SQandTr(xb) = 0,

−(p−1)B+ pm−2 if Tr(xp+1
b ) ∈ NSQandTr(xb) = 0,

−B+ pm−2 if Tr(xp+1
b ) ∈ SQandTr(xb) 6= 0,

B+ pm−2 if Tr(xp+1
b ) ∈ NSQandTr(xb) 6= 0.
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• Whenη̄(mp) = 1,

N(b) =



























pB+ pm−2 if Tr(xp+1
b ) = 0 andTr(xb) = 0,

pm−2 if Tr(xp+1
b ) = 0 andTr(xb) 6= 0,

−B+ pm−2 if Tr(xp+1
b ) ∈ SQandTr(xb) = 0,

B+ pm−2 if Tr(xp+1
b ) ∈ NSQ,

(p−1)B+ pm−2 or −B+ pm−2 if Tr(xp+1
b ) ∈ SQandTr(xb) 6= 0.

• Whenη̄(mp) =−1,

N(b) =



























−pB+ pm−2 if Tr(xp+1
b ) = 0 andTr(xb) = 0,

pm−2 if Tr(xp+1
b ) = 0 andTr(xb) 6= 0,

−B+ pm−2 if Tr(xp+1
b ) ∈ SQ,

B+ pm−2 if Tr(xp+1
b ) ∈ NSQandTr(xb) = 0,

−(p−1)B+ pm−2 or B+ pm−2 if Tr(xp+1
b ) ∈ NSQandTr(xb) 6= 0.

where B= (−1)
p−1

2
m−1

2 p
m−3

2 .
(II) If m ≡ 2 (mod 4), then we have the following.

• When mp = 0,

N(b) =















−(p−1)p
m
2 −1+ pm−2 if Tr(xp+1

b ) = 0 andTr(xb) = 0,
pm−2 if Tr(xp+1

b ) = 0 andTr(xb) 6= 0,
or Tr(xp+1

b ) 6= 0 andTr(xb) = 0,
−p

m
2 −1+ pm−2 if Tr(xp+1

b ) 6= 0 andTr(xb) 6= 0.

• When mp 6= 0,

N(b) =















p
m
2 −1+ pm−2 if Tr(xp+1

b ) = 0 andTr(xb) = 0,
pm−2 if Tr(xp+1

b ) = 0 andTr(xb) 6= 0,
or Tr(xp+1

b ) 6= 0 and A= 0,
p

m
2 −1+ pm−2 or − p

m
2 −1+ pm−2 if Tr(xp+1

b ) 6= 0 and A6= 0,

where A=−mp

4 + Tr(xb)
2

4Tr(xp+1
b )

and xb is the unique solution of the equation xp2
+x=−bp.

(III) If m ≡ 0 (mod 4), then we have the following.

• When mp = 0,

N(b) =























−(p−1)p
m
2 −1+ pm−2 if b /∈ Im(L),

−(p−1)p
m
2 + pm−2 if b ∈ Im(L), Tr(xp+1

b ) = 0 andTr(xb) = 0,
pm−2 if b ∈ Im(L), Tr(xp+1

b ) = 0 andTr(xb) 6= 0,
or Tr(xp+1

b ) 6= 0 andTr(xb) = 0,
−p

m
2 + pm−2 if b ∈ Im(L), Tr(xp+1

b ) 6= 0 andTr(xb) 6= 0.

• When mp 6= 0,

N(b) =























p
m
2 −1+ pm−2 if b /∈ Im(L),

p
m
2 + pm−2 if b ∈ Im(L), Tr(xp+1

b ) = 0 andTr(xb) = 0,
pm−2 if b ∈ Im(L), Tr(xp+1

b ) = 0 andTr(xb) 6= 0,
or Tr(xp+1

b ) 6= 0 and A= 0,
p

m
2 + pm−2 or − p

m
2 + pm−2 if b ∈ Im(L), Tr(xp+1

b ) 6= 0 and A6= 0.
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where A= −mp

4 + Tr(xb)
2

4Tr(xp+1
b )

and xb is some solution of the equation L(x) = xp2
+ x = −bp

when b∈ Im(L).

Proof By definition, we have

N(b) = p−2 ∑
x∈GF(q)

(

∑
y∈GF(p)

ζyTr(xp+1−x)
p

)(

∑
z∈GF(p)

ζzTr(bx)
p

)

= p−2 ∑
z∈GF(p)∗

∑
x∈GF(q)

ζTr(bzx)
p + p−2 ∑

y∈GF(p)∗
∑

x∈GF(q)

ζTr(yxp+1−yx)
p +

p−2 ∑
y∈GF(p)∗

∑
z∈GF(p)∗

∑
x∈GF(q)

ζTr(yxp+1+(bz−y)x)
p + pm−2.

Note that

∑
z∈GF(p)∗

∑
x∈GF(q)

ζTr(bzx)
p = 0.

The desired conclusions then follow from Lemmas 7 and 10, andthe fact that

(−1)
p−1

2
√

p∗
m+1

= (−1)
p−1

2
m−1

2 p
m+1

2 .

In order to calculate the frequency of each weight inCD, we need a few more auxiliary
results which are given and proved in the following three lemmas.

Lemma 12 For any a∈ GF(p), let

Na = |{x∈ GF(q) : Tr(xp+1) = a}|.

Then

Na =































pm−1 if m is odd and a= 0,
pm−1+ p−1√p∗m+1η̄(−a) if m is odd and a6= 0,
pm−1− p

m
2 −1(p−1) if m≡ 2( mod 4) and a= 0,

pm−1+ p
m
2 −1 if m≡ 2( mod 4) and a6= 0,

pm−1− p
m
2 (p−1) if m≡ 0( mod 4) and a= 0,

pm−1+ p
m
2 if m≡ 0( mod 4) and a6= 0.
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Proof By definition, Lemmas 4 and 5, we have

Na =
1
p ∑

x∈GF(q)
∑

y∈GF(p)

ζy(Tr(xp+1)−a)
p

= pm−1+
1
p ∑

y∈GF(p)∗
ζ−ya

p ∑
x∈GF(q)

ζTr(yxp+1)
p

= pm−1+
1
p ∑

y∈GF(p)∗
ζ−ya

p S(y,0)

=







pm−1+ p−1 ∑y∈GF(p)∗ ζ−ya
p

√
p∗mη(y) if m is odd

pm−1+ p−1 ∑y∈GF(p)∗ ζ−ya
p (−p

m
2 ) if m≡ 2( mod 4)

pm−1+ p−1 ∑y∈GF(p)∗ ζ−ya
p (−p

m
2 +1) if m≡ 0( mod 4)

=















pm−1+ p−1√p∗m∑y∈GF(p)∗ η̄(y) if m is odd anda= 0
pm−1+ p−1√p∗mη̄(−a)∑y∈GF(p)∗ ζ−ya

p η̄(−ya) if m is odd anda 6= 0
pm−1+ p−1(−p

m
2 )∑y∈GF(p)∗ ζ−ya

p if m≡ 2( mod 4)
pm−1+ p−1(−p

m
2 +1)∑y∈GF(p)∗ ζ−ya

p if m≡ 0( mod 4)

=















pm−1+ p−1√p∗m∑y∈GF(p)∗ η̄(y) if m is odd anda= 0,
pm−1+ p−1√p∗mη̄(−a)G(η̄, χ̄1) if m is odd anda 6= 0,
pm−1− p

m
2 −1 ∑y∈GF(p)∗ ζ−ya

p if m≡ 2( mod 4),
pm−1− p

m
2 ∑y∈GF(p)∗ ζ−ya

p if m≡ 0( mod 4).

Note that∑y∈GF(p)∗ η̄(y) = 0 and

∑
y∈GF(p)∗

ζ−ya
p =

{

p−1 if a= 0,
−1 if a 6= 0,

The desired conclusion then follows from Lemma 1.

Lemma 13 For any a∈ GF(p), let

N(a,0) = |{x∈ GF(q) : Tr(xp+1) = a andTr(x) = 0}|.

Then, for mp = 0, we have

N(a,0) =































pm−2 if m is odd and a= 0,
pm−2+ p−1√p∗m+1η̄(−a) if m is odd and a6= 0,
pm−2− p

m
2 −1(p−1) if m≡ 2( mod 4) and a= 0,

pm−2+ p
m
2 −1 if m≡ 2( mod 4) and a6= 0,

pm−2− p
m
2 (p−1) if m≡ 0( mod 4) and a= 0,

pm−2+ p
m
2 if m≡ 0( mod 4) and a6= 0.

and for mp 6= 0, we have

N(a,0) =



























pm−2+ p−2η̄(−mp)
√

p∗m+1
(p−1) if m is odd and a= 0,

pm−2− p−2η̄(−mp)
√

p∗m+1 if m is odd and a6= 0,
pm−2 if m is even and a= 0,

pm−2− η̄(mp)η̄(a)(−1)
p−1

2 p
m
2 −1 if m≡ 2( mod 4) and a6= 0,

pm−2− η̄(mp)η̄(a)(−1)
p−1

2 p
m
2 if m≡ 0( mod 4) and a6= 0.
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Proof By definition, we have

N(a,0) = p−2 ∑
x∈GF(q)

(

∑
y∈GF(p)

ζy(Tr(xp+1)−a)
p

)(

∑
z∈GF(p)

ζzTr(x)
p

)

= p−2 ∑
z∈GF(p)

∑
x∈GF(q)

ζTr(zx)
p + p−2 ∑

y∈GF(p)∗
∑

z∈GF(p)
∑

x∈GF(q)

ζTr(yxp+1+zx−ya)
p

= p−2(q+ ∑
z∈GF(p)∗

∑
x∈GF(q)

ζTr(zx)
p )+ p−2 ∑

y∈GF(p)∗

(

ζ−ya
p ∑

z∈GF(p)
∑

x∈GF(q)

ζ
y(Tr(xp+1+ z

y x))
p

)

.

Note that

∑
z∈GF(p)∗

∑
x∈GF(q)

ζTr(zx)
p = 0.

Therefore,

N(a,0) = pm−2+ p−2 ∑
y∈GF(p)∗

(

ζ−ya
p ∑

z∈GF(p)
∑

x∈GF(q)

ζy(Tr(xp+1+zx))
p

)

= pm−2+ p−2 ∑
y∈GF(p)∗

σy

(

ζ−a
p ∑

z∈GF(p)
∑

x∈GF(q)

ζTr(xp+1+zx)
p

)

. (9)

It is clear that− 1
2z is the solution of the equationxp2

+x= −zp for anyz∈ GF(p). Hence,
by Lemmas 4 and 5, Equation (9) becomes

N(a,0) = pm−2+ p−2 ∑
y∈GF(p)∗

σy

(

ζ−a
p ∑

z∈GF(p)
∑

x∈GF(q)

ζTr(xp+1+zx)
p

)

=















pm−2+ p−2 ∑y∈GF(p)∗ σy(ζ−a
p ∑z∈GF(p)

√
p∗mζ−

mp
4 z2

p ) if m is odd,

pm−2+ p−2 ∑y∈GF(p)∗ σy(ζ−a
p ∑z∈GF(p)−p

m
2 ζ−

mp
4 z2

p ) if m≡ 2( mod 4),

pm−2+ p−2 ∑y∈GF(p)∗ σy(ζ−a
p ∑z∈GF(p)−p

m
2 +1ζ−

mp
4 z2

p ) if m≡ 0( mod 4).

(10)

We distinguish the following two cases.

1. Whenmp = 0, Equation (10) becomes

N(a,0) =







pm−2+ p−2 ∑y∈GF(p)∗ σy(ζ−a
p ∑z∈GF(p)

√
p∗m

) if m is odd,
pm−2+ p−2 ∑y∈GF(p)∗ σy(ζ−a

p ∑z∈GF(p)−p
m
2 ) if m≡ 2( mod 4),

pm−2+ p−2 ∑y∈GF(p)∗ σy(ζ−a
p ∑z∈GF(p)−p

m
2 +1) if m≡ 0( mod 4),

=







pm−2+ p−1√p∗m−1 ∑y∈GF(p)∗ σy(ζ−a
p

√
p∗) if m is odd,

pm−2− p
m
2 −1 ∑y∈GF(p)∗ σy(ζ−a

p ) if m≡ 2( mod 4),
pm−2− p

m
2 ∑y∈GF(p)∗ σy(ζ−a

p ) if m≡ 0( mod 4).

2. Whenmp 6= 0, from Lemmas 2 and 1, we can easily get

∑
z∈GF(p)

ζ−
mp
4 z2

p = η̄(−mp)
√

p∗.
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Thus, Equation (10) becomes

N(a,0) =











pm−2+ p−2 ∑y∈GF(p)∗ σy

(

ζ−a
p η̄(−mp)

√
p∗m+1

)

if m is odd,

pm−2+ p−2 ∑y∈GF(p)∗ σy

(

ζ−a
p (−p

m
2 )η̄(−mp)

√
p∗
)

if m≡ 2( mod 4),
pm−2+ p−2 ∑y∈GF(p)∗ σy

(

ζ−a
p (−p

m
2 +1)η̄(−mp)

√
p∗
)

if m≡ 0( mod 4).

=







pm−2+ p−2η̄(−mp)
√

p∗m+1 ∑y∈GF(p)∗ σy

(

ζ−a
p

)

if m is odd,
pm−2− p

m
2 −2η̄(−mp)∑y∈GF(p)∗ σy

(

ζ−a
p
√

p∗
)

if m≡ 2( mod 4),
pm−2− p

m
2 −1η̄(−mp)∑y∈GF(p)∗ σy

(

ζ−a
p

√
p∗
)

if m≡ 0( mod 4).

The desired conclusions then follow from the facts that

∑
y∈GF(p)∗

σy(ζ−a
p ) =

{

p−1 if a= 0 ,
−1 if a 6= 0,

and

∑
y∈GF(p)∗

σy(ζ−a
p

√

p∗) =

{

0 if a= 0 ,
(−a

p

)

p∗ if a 6= 0.

Lemma 14 Suppose that mp 6= 0. Let

N̄0 = |{x∈ GF(q) : Tr(xp+1)− 1
mp

Tr(x)2 = 0}|.

Then

N̄0 =

{

pm−1+ p−1η̄(−mp)
√

p∗m+1
(p−1) if m is odd,

pm−1 if m is even.

Proof By definition, we have

N̄0 =
1
p ∑

x∈GF(q)
∑

y∈GF(p)

ζ
y(Tr(xp+1)− 1

mp
Tr(x)2)

p

= pm−1+
1
p ∑

y∈GF(p)∗
∑

x∈GF(q)

ζ
y(Tr(xp+1)− 1

mp
Tr(x)2)

p

= pm−1+
1
p ∑

y∈GF(p)∗
σy( ∑

x∈GF(q)

ζ
Tr(xp+1)− 1

mp
Tr(x)2

p ). (11)

Since the Fourier expansion ofζ
− 1

mp
X2

p can be expressed as

ζ
− 1

mp
X2

p = ∑
z∈GF(p)

azζ zX
p

for anyX ∈ GF(p), we have

az =
1
p ∑

X∈GF(p)

ζ
− 1

mp
X2−zX

p (12)

for anyz∈ GF(p) and

ζ
− 1

mp
Tr(x)2

p = ∑
z∈GF(p)

azζzTr(x)
p .
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Therefore, Equation (11) becomes

N̄0 = pm−1+
1
p ∑

y∈GF(p)∗
σy( ∑

z∈GF(p)

az ∑
x∈GF(q)

ζTr(xp+1)+zTr(x)
p )

=















pm−1+ p−1 ∑y∈GF(p)∗ σy(
√

p∗m∑z∈GF(p) azζ
− mp

4 z2

p ) if m is odd ,

pm−1+ p−1 ∑y∈GF(p)∗ σy(−p
m
2 ∑z∈GF(p) azζ

−mp
4 z2

p ) if m≡ 2( mod 4),

pm−1+ p−1 ∑y∈GF(p)∗ σy(−p
m+1

2 ∑z∈GF(p) azζ
− mp

4 z2

p ) if m≡ 0( mod 4).

(13)

However, by Equation (12) and Lemma 2 we obtain

∑
z∈GF(p)

azζ
− mp

4 z2

p = ∑
z∈GF(p)

1
p ∑

X∈GF(p)

ζ
− 1

mp
X2−zX−mp

4 z2

p

= ∑
z∈GF(p)

1
p

η̄(− 1
mp

)G(η̄, χ̄1)

= η̄(−mp)
√

p∗.

Hence, Equation (13) becomes

N̄0 =







pm−1+ p−1√p∗m+1η̄(−mp)∑y∈GF(p)∗ σy(1) if m is odd ,
pm−1+ p−1(−p

m
2 )η̄(−mp)∑y∈GF(p)∗ σy(

√
p∗) if m≡ 2( mod 4),

pm−1+ p−1(−p
m+1

2 )η̄(−mp)∑y∈GF(p)∗ σy(
√

p∗) if m≡ 0( mod 4).

The desired conclusions then follow from the fact that
{

σy(1) = 1,
∑y∈GF(p)∗ σy(

√
p∗) = 0.

4.2 The proof of Theorems 1, 2 and 3

By definition, the code length ofCD is n= |D|= n0−1, wheren0 was defined in Lemma 8.
This means that Equations (6) and (7) follow.

For eachb∈ GF(q)∗, define

cb = (Tr(bd1), Tr(bd2), . . . , Tr(bdn)), (14)

whered1,d2, . . . ,dn are the elements ofD. Then the Hamming weight wt(cb) of cb is

wt(cb) = n0−N(b), (15)

wheren0 andN(b)were defined before. By Lemmas 8 and 11, we have wt(cb)=n0−N(b)>
0 for eachb ∈ GF(q)∗. This means that the codeCD hasq distinct codewords. Hence, the
dimension of the codeCD is m.

Next we shall prove the multiplicitiesAwi of the codewords with weightwi in CD, and
will distinguish the following three cases.

1. The case thatm is odd.
It follows from Lemma 4 thatL(x) = xp2

+x is a permutation polynomial over GF(q).
Thus the unique solutionxb of L(x) = −bp runs through GF(q)∗ whenb runs through
GF(q)∗.
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• When mp = 0, the desired conclusion of Table 1 follows from Equation (15) and
Lemmas 8, 11, 12 and 13.

• Whenmp 6= 0, we only give the proof for the casēη(mp) = 1 and omit the proof for
the casēη(mp) = −1 whose proof is similar. Suppose thatm2 = 1 andη̄(mp) = 1,
then from Lemmas 8 and 11 we obtain

wt(cb) = n0−N(b)

=



























B1 if Tr (xp+1
b ) = 0 and Tr(xb) = 0,

B1+Bp if Tr (xp+1
b ) = 0 and Tr(xb) 6= 0,

B1+B(p+1) if Tr (xp+1
b ) ∈ SQ and Tr(xb) = 0,

B1+B(p−1) if Tr (xp+1
b ) ∈ NSQ,

B1+B or B1+B(p+1) if Tr (xp+1
b ) ∈ SQ and Tr(xb) 6= 0,

whereB1 = pm−2(p− 1) and B = (−1)
p−1

2
m−1

2 p
m−3

2 . Therefore, the weight wt(cb)
satisfies

wt(cb) ∈ {B1,B1+Bp,B1+B(p+1),B1+B(p−1),B1+B}

for eachb∈ GF(q)∗. Define

w1 = B1,

w2 = B1+Bp,

w3 = B1+B(p+1),

w4 = B1+B(p−1),

w5 = B1+B.

We now determine the numberAwi of the codewords with weightwi in CD. By Lem-
mas 12 and 13, we can directly determine







Aw1 = N(0,0)−1= pm−2−1+(p−1)B,
Aw2 = (N0−1)− (N(0,0)−1) = B1− (p−1)B,
Aw4 = p−1

2 Na =
p−1

2 (pm−1−Bp),
(16)

wherea is a nonsquare in GF(p)∗. Since 06∈ D, the minimum distanced⊥ of the
dual codeC⊥

D of CD cannot be 1. This means that the minimum weight of the dual
codeC⊥

D is at least 2. The first two Pless Power Moments [16, p.260] lead to the
following system of equations:

{

Aw1 +Aw2 +Aw3 +Aw4 +Aw5 = pm−1,
w1Aw1 +w2Aw2 +w3Aw3 +w4Aw4 +w5Aw5 = (p−1)npm−1,

(17)

where the code lengthn= n0−1= pm−1−1+ pB. Solving the system of equations
in (17) yields

{

Aw3 =
1
2(p−1)(p−2)p

m−3
2 (p

m−1
2 − (−1)

p−1
2

m−1
2 ),

Aw5 = (p−1)pm−2+(−1)
p−1

2
m−1

2 (p−1)2p
m−3

2 .

This completes the proof of the weight distribution of Table2.
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2. The case thatm≡ 2 (mod 4).
It follows from Lemma 5 thatL(x) = xp2

+x is a permutation polynomial over GF(q).
Similar to the analysis for the casembeing odd, we have the following.
• Whenmp = 0, it is clear that the desired conclusion of Table 3 follows from Equation

(15) and Lemmas 8, 11, 12 and 13.
• Whenmp 6= 0, by Lemmas 8 and 11 we have

wt(cb) = n0−N(b)

=















(p−1)pm−2 if Tr(xp+1
b ) = 0 and Tr(xb) = 0,

(p−1)pm−2+ p
m
2 −1 if Tr(xp+1

b ) = 0 and Tr(xb) 6= 0
or Tr(xp+1

b ) 6= 0 andA= 0,
(p−1)pm−2 or (p−1)pm−2+2p

m
2 −1 if Tr(xp+1

b ) 6= 0 andA 6= 0,

(18)

whereA=−mp

4 + Tr(xb)
2

4Tr(xp+1
b )

. Therefore, the weight wt(cb) satisfies

wt(cb) ∈ {(p−1)pm−2,(p−1)pm−2+ p
m
2 −1,(p−1)pm−2+2p

m
2 −1}

for eachb∈ GF(q)∗. Define

w1 = (p−1)pm−2,

w2 = (p−1)pm−2+ p
m
2 −1,

w3 = (p−1)pm−2+2p
m
2 −1.

We now determine the numberAwi of the codewords with weightwi in CD. Note that

|{b∈ GF(q) : Tr(xp+1
b ) 6= 0 and A= 0}|

= |{b∈ GF(q) : A= 0}|− |{b∈ GF(q) : Tr(xp+1
b ) = 0 and A6= 0}|

= |{x∈ GF(q) : Tr(xp+1)− 1
mp

Tr(x)2 = 0}|− |{x∈ GF(q) : Tr(xp+1) = 0 and Tr(x) = 0}|,

as L(x) = xp2
+ x is a permutation polynomial over GF(q) for this casem ≡ 2

(mod 4). Thus from Equation (18) and Lemmas 12, 13 and 14, we can directly
obtain

Aw2 = (N0−N(0,0))+(N̄0−N(0,0)) = (p−1)(2pm−2− p
m
2 −1).

Since the minimum weight of the dual codeC⊥
D is at least 2, from the first two Pless

Power Moments [16, p.260] we can computeAw1 andAw3. This completes the proof
of the weight distribution of Table 4.

3. The case thatm≡ 0 (mod 4).
• If mp = 0, then by Lemmas 8 and 11 we have

wt(cb) = n0−N(b)

=























B1− (p−1)2p
m
2 −1 if b /∈ Im(L),

B1 if b∈ Im(L), Tr(xp+1
b ) = 0 and Tr(xb) = 0,

B1− (p−1)p
m
2 if b∈ Im(L), Tr(xp+1

b ) = 0 and Tr(xb) 6= 0
or Tr(xp+1

b ) 6= 0 and Tr(xb) = 0,
B1− (p−2)p

m
2 if b∈ Im(L), Tr(xp+1

b ) 6= 0 and Tr(xb) 6= 0,

whereB1 = pm−2(p−1).
Recall thatL(x) = xp2

+x. If b∈ Im(L), then this means thatL(x) =−bp is solvable.
We point out the following facts:
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– If m≡ 0 (mod 4), thenL(x) is not a permutation polynomial over GF(q). How-
ever, for anyb∈ GF(q), if L(x) =−bp is solvable in this casem≡ 0 (mod 4),
then it hasp2 solutions.

– If m≡ 0 (mod 4), then the number ofb is pm−2 such thatL(x) = −bp is solv-
able whenb runs through GF(q).

Therefore, we have

wt(cb) =















pm−2(p−1)− (p−1)2p
m
2 −1 occurspm− pm−2 times,

pm−2(p−1) occursp−2N(0,0)−1 times,
(p−1)p

m
2 (p

m
2 −2−1) occurs(N0+ pm−1−2N(0,0))p−2 times,

(p−1)pm−2− (p−2)p
m
2 occurs(pm− pm−1−N0+N(0,0))p−2 times,

whenb runs through GF(q)∗, whereN0 andN(0,0) were defined before. The desired
conclusion of Table 5 then follows from Lemmas 12 and 13.

• If mp 6= 0, then from Lemmas 8 and 11 we get

wt(cb) = n0−N(b)

=























(p−1)p
m
2 −1+B1 if b /∈ Im(L),

B1 if b∈ Im(L), Tr(xp+1
b ) = 0 and Tr(xb) = 0,

B1+ p
m
2 if b∈ Im(L), Tr(xp+1

b ) = 0 and Tr(xb) 6= 0
or Tr(xp+1

b ) 6= 0 andA= 0,
B1 or B1+2p

m
2 if b∈ Im(L), Tr(xp+1

b ) 6= 0 andA 6= 0,

(19)

whereB1 = pm−2(p−1). Therefore, the weight wt(cb) satisfies

wt(cb) ∈ {(p−1)p
m
2 −1+B1, B1, B1+ p

m
2 , B1+2p

m
2 }

for eachb∈ GF(q)∗. Define

w1 = (p−1)p
m
2 −1+B1,

w2 = B1,

w3 = B1+ p
m
2 ,

w4 = B1+2p
m
2 .

We now determine the numberAwi of the codewords with weightwi in CD. It is clear
that

Aw1 = pm− pm−2.

By Equation (19) and Lemmas 12, 13 and 14, we can directly obtain

Aw3 = p−2(N0−N(0,0)+ N̄0),
= (p−1)(2pm−4− p

m
2 −2).

Since the minimum weight of the dual codeC⊥
D is at least 2, the first two Pless Power

Moments [16, p.260] lead to the following system of equations:
{

Aw1 +Aw2 +Aw3 +Aw4 = pm−1,
w1Aw1 +w2Aw2 +w3Aw3 +w4Aw4 = (p−1)npm−1,

(20)

wheren= n0−1= pm−1+ p
m
2 −1. Solving the system of equations in (20) gives

{

Aw2 = pm−4+ p−1
2 (p

m
2 −1+ pm−3)−1,

Aw4 = 1
2(p−1)(p−2)(pm−4− p

m
2 −2).

This completes the proof of the weight distribution of Table6.

Summarizing all the conclusions above completes the proofsof Theorems 1, 2 and 3.
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5 Concluding remarks

In this paper, we presented a class of linear codesCD with a few weights and completely
determined their weight distributions. The result showed that they have at most five weights.
Particularly, the codesCD presented in this paper have three weights whenm≥ 6 andm≡
2 (mod 4). Many classes of linear codes with a few weights were constructed (see, for
example, [14,29,23,2,15,18,4,28,12]). Whenm is odd, the codeCD presented in this paper
has the same parameter and weight distribution as that ofCD presented in [19]. But they
have different defining setD.

Any linear code over GF(p) can be used to obtain secret sharing schemes [4,27]. In
order to obtain secret sharing schemes with interesting access structures, one would like
to have linear codesC such thatwmin/wmax >

p−1
p [27], wherewmin andwmax denote the

minimum and maximum nonzero weight of the linear code.
Whenm≥ 5 is odd andmp = 0, the codeCD of Section 3 satisfies that

wmin

wmax
=

pm−2− p(m−3)/2

pm−2+ p(m−3)/2
>

p−1
p

.

Whenm≥ 5 is odd andmp 6= 0, the codeCD of Section 3 satisfies that

wmin

wmax
=

(p−1)pm−2− (p+1)p(m−3)/2

(p−1)pm−2+(p+1)p(m−3)/2
>

p−1
p

.

Whenm≥ 6 , m≡ 2 (mod 4) andmp = 0, the codeCD of Section 3 satisfies that

wmin

wmax
=

pm−2− pm/2−1

pm−2
>

p−1
p

.

Whenm≥ 6 , m≡ 2 (mod 4) andmp 6= 0, the codeCD of Section 3 satisfies that

wmin

wmax
=

(p−1)pm−2

(p−1)pm−2+2pm/2−1
>

p−1
p

.

Whenm≥ 6 , m≡ 0 (mod 4) andmp = 0, the codeCD of Section 3 satisfies that

wmin

wmax
=

pm−2− pm/2

pm−2
>

p−1
p

.

Whenm≥ 6 , m≡ 0 (mod 4) andmp 6= 0, the codeCD of Section 3 satisfies that

wmin

wmax
=

(p−1)pm−2

(p−1)pm−2+2pm/2
>

p−1
p

.

Hence, the linear codesCD presented in this paper satisfy the condition thatwmin/wmax>
p−1

p , and can be employed to obtain secret sharing schemes with interesting access structures
[1,4,14,27].
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