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Abstract Due to their efficient encoding and decoding algorithms, cyclic codes, a subclass
of linear codes, have applications in communication systems, consumer electronics, and
data storage systems. There are several approaches to constructing all cyclic codes over
finite fields, including the generator matrix approach, the generator polynomial approach,
and the generating idempotent approach. Another one is a sequence approach, which has
been intensively investigated in the past decade. The objective of this paper is to survey the
progress in this direction in the past decade. Many open problems are also presented in this
paper.
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1 Introduction

Let q be a power of a primep. An [n,k,d] code over GF(q) is ak-dimensional subspace of
GF(q)n with minimum (Hamming) nonzero weightd. Let Ai denote the number of code-
words with Hamming weighti in a linear codeC of lengthn. Theweight enumeratorof C

is defined by
1+A1z+A2z2+ · · ·+Anzn.

Theweight distributionof C is the sequence(1,A1, . . . ,An).
An [n,k,d] code over GF(q) is calledoptimal if there is no[n,k,d+1] or [n,k+1,d]

code over GF(q). The optimality of a cyclic code may be proved by a bound on linear codes
or by an exhaustive computer search on all linear codes over GF(q) with fixed lengthn and
fixed dimensionk or fixed lengthn and fixed minimum distanced. An [n,k,d] code is said
to bealmost optimalif a linear code with parameters[n,k+1,d] or [n,k,d+1] is optimal.

A vector(c0,c1, · · · ,cn−1) ∈ GF(q)n is said to beeven-likeif ∑n−1
i=0 ci = 0, and isodd-like

otherwise. Theeven-like subcodeof a linear code consists of all the even-like codewords of
this linear code.
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An [n,k] code is calledcyclic if (c0,c1, · · · ,cn−1)∈ C implies(cn−1,c0,c1, · · · ,cn−2)∈C .
Let gcd(n,q) = 1. By identifying a vector(c0,c1, · · · ,cn−1) ∈ GF(q)n with

c0+c1x+c2x2+ · · ·+cn−1x
n−1 ∈ GF(q)[x]/(xn−1),

a codeC of lengthn over GF(q) corresponds to a subset of GF(q)[x]/(xn −1). The linear
codeC is cyclic if and only if the corresponding subset in GF(q)[x]/(xn − 1) is an ideal
of the ring GF(q)[x]/(xn − 1). It is well known that every ideal of GF(q)[x]/(xn − 1) is
principal. LetC = (g(x)) be a cyclic code, whereg is monic and has the least degree. Then
g(x) is called thegenerator polynomialandh(x) = (xn−1)/g(x) is referred to as thecheck
polynomial ofC . Thedual code, denoted byC⊥, of C has generator polynomial̄h(x), which
is the reciprocal ofh(x). Thecomplement code, denoted byC c, is generated byh(x). It is
known thatC⊥ andC c have the same weight distribution.

The error correcting capability of cyclic codes may not be asgood as some other linear
codes in general. However, cyclic codes have wide applications in storage and communica-
tion systems because they have efficient encoding and decoding algorithms [5,17,22].

Cyclic codes have been studied for decades and a lot of progress has been made (see,
for example, [4,19] for information). The total number of cyclic codes over GF(q) and their
constructions are closely related to cyclotomic cosets modulo n, and thus many areas of
number theory. One way of constructing cyclic codes over GF(q) with lengthn is to use the
generator polynomial

xn−1
gcd(S(x),xn−1)

(1)

where

S(x) =
n−1

∑
i=0

six
i ∈ GF(q)[x]

ands∞ = (si)
∞
i=0 is a sequence of periodn over GF(q). Throughout this paper, we call the

cyclic codeCs with the generator polynomial of (1) thecode defined by the sequence s∞, and
the sequences∞ thedefining sequenceof the cyclic codeCs.

It can be seen that every cyclic code of lengthn over GF(q) can be expressed asCs for
some sequences∞ of periodn over GF(q). Because of this, this construction of cyclic codes
is said to befundamental. An impressive progress in the construction of cyclic codeswith
this approach has been made in the past decade (see, for example, [8,9,10,11,16,23,24]).

The objective of this paper is to give a survey of recent development in this sequence
construction of cyclic codes over finite fields. In view that this topic is huge, we have to
do a selective survey. Our idea is that this survey paper complements the monograph [11],
so that the two references together could give a well roundedtreatment of the sequence
construction of cyclic codes over finite fields. It is hoped that this survey could stimulate
further investigation into this sequence approach.

2 Preliminaries

In this section, we present basic notation and results ofq-cyclotomic cosets modulon, planar
and almost perfect nonlinear functions, and sequences thatwill be employed in subsequent
sections.
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2.1 Some notation and symbols fixed throughout this paper

Throughout this paper, we adopt the following notation unless otherwise stated:

– p is a prime,q is a positive power ofp, andm is a positive integer.
– Zn = {0,1, · · · ,n−1}, the ring of integers modulon.
– Nq(x) is a function defined byNq(x) = 0 if x≡ 0 (mod q) andNq(x) = 1 otherwise.
– α is a generator of GF(qm)∗, the multiplicative group of GF(q).
– ma(x) is the minimal polynomial ofa∈ GF(qm) over GF(q).
– Tr(x) is the trace function from GF(qm) to GF(q).
– δ(x) is a function on GF(qm) defined byδ(x) = 0 if Tr(x) = 0 andδ(x) = 1 otherwise.
– Ci denotes theq-cyclotomic coset modulon containingi.
– Γ is the set of all coset leaders of theq-cyclotomic cosets modulon.
– For any polynomialg(x) ∈ GF(q)[x] with g(0) 6= 0, ḡ(x) denotes the reciprocal ofg(x).
– For a cyclic codeC of lengthn over GF(q) with generator polynomialg(x), C c denotes

its complement code that is generated byh(x) := (xn−1)/g(x), andC⊥ denotes its dual
code with generator polynomial̄h(x),

2.2 Planar and APN polynomials

A function f : GF(qm)→ GF(qm) is calledalmost perfect nonlinear (APN)if

max
a∈GF(qm)∗

max
b∈GF(qm)

|{x∈ GF(qm) : f (x+a)− f (x) = b}|= 2,

and is referred to asperfect nonlinear or planarif

max
a∈GF(qm)∗

max
b∈GF(qm)

|{x∈ GF(qm) : f (x+a)− f (x) = b}|= 1.

There is no perfect nonlinear (planar) function on GF(qm) for evenq. However, there
are APN functions on GF(2m). Both planar and APN functions over GF(qm) for oddq exist.
Some planar and APN monomials will be employed to construct cyclic codes in subsequent
sections.

2.3 Theq-cyclotomic cosets modulon

Let gcd(n,q) = 1. Theq-cyclotomic coset containingj modulon is defined by

Cj = { j,q j,q2 j, · · · ,qℓ j−1 j} modn⊂ Zn

whereℓ j is the smallest positive integer such thatqℓ j j ≡ j (mod n), and is called the size of
Cj . It is known thatℓ j dividesm. The smallest integer inCj is called thecoset leaderof Cj .
Let Γ denote the set of all coset leaders. By definition, we have

⋃

j∈Γ
Cj = Zn.

It is well known that∏ j∈Ci
(x−α j) is an irreducible polynomial of degreeℓi over GF(q)

and is the minimal polynomial ofαi over GF(q). Furthermore, the canonical factorization
of xn−1 over GF(q) is given by

xn−1= ∏
i∈Γ

∏
j∈Ci

(x−α j).
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2.4 The linear span and minimal polynomial of sequences

Let sL = s0s1 · · ·sL−1 be a sequence over GF(q). The linear span(also calledlinear com-
plexity) of sL is defined to be the smallest positive integerℓ such that there are constants
c0 = 1,c1, · · · ,cℓ ∈ GF(q) satisfying

−c0si = c1si−1+c2si−2+ · · ·+cl si−ℓ for all ℓ≤ i < L.

In engineering terms, such a polynomialc(x) = c0+c1x+ · · ·+cl xl is called thefeedback
polynomialof a shortest linear feedback shift register (LFSR) that generatessL. Such an
integer always exists for finite sequencessL. WhenL is ∞, a sequences∞ is called a semi-
infinite sequence. If there is no such an integer for a semi-infinite sequences∞, its linear span
is defined to be∞. The linear span of the zero sequence is defined to be zero. Forultimately
periodic semi-infinite sequences such anℓ always exists.

Let s∞ be a sequence of periodL over GF(q). Any feedback polynomial ofs∞ is called a
characteristic polynomial. The characteristic polynomial with the smallest degree iscalled
theminimal polynomialof the periodic sequences∞. Since we require that the constant term
of any characteristic polynomial be 1, the minimal polynomial of any periodic sequences∞

must be unique. In addition, any characteristic polynomialmust be a multiple of the minimal
polynomial.

For periodic sequences, there are two ways to determine their linear span and minimal
polynomials. One of them is given in (1) (see [14, Theorem 5.3] for a proof). The other one
is described in [1]

3 Cyclic codes from combinatorial sequences

3.1 The classical cyclic codeCGF(q)(D) of a subsetD ∈ Zn

Let n be a positive integer, and letD be a subset ofZn. DefineBi = D+ i for all i ∈ Zn.
Then the pair(Zn,B) is called anincidence structure, whereB = {B0,B1, · · · ,Bn−1}. The
incidence matrix MD = (i, j) of this incidence structure is ann×n matrix, wheremi j = 1 if
j ∈Bi andmi j = 0 otherwise. By definition,MD = (i, j) is a binary matrix. WhenMD = (i, j)
is viewed as a matrix over GF(q), its row vectors span a cyclic code of lengthn over GF(q),
which is denoted byCGF(q)(D) and called theclassical codeof D. It is easily seen that the
generator polynomial ofCGF(q)(D) is given by

gcd

(

xn−1, ∑
i∈D

xi

)

, (2)

where the greatest common divisor is computed over GF(q).
WhenD has certain combinatorial structures, the cyclic codeCGF(q)(D) has been well

studied in the literature ([2], [11]). This code is closely related to the code dealt with in the
next section.

3.2 The cyclic code of the characteristic sequence of a subset D ∈ Zn

Let D be a subset ofZn. Thecharacteristic sequence s(D)∞ of D is given by

s(D)i =

{

1 if i modn∈ D
0 otherwise.
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The binary sequences(D)∞ can be viewed as a sequence of periodn over any field GF(q),
and can be employed to construct the codeCs(D) over GF(q). For any given pair ofn andq
with gcd(q,n) = 1, the subsetD must be chosen properly, in order to construct a cyclic code
Cs(D) with desirable parameters. Intuitively, a good choice may be to select a subsetD of Zn

with certain combinatorial structures. It follows from thediscussions in Section 3.1 that

Cs(D) = CGF(q)(D)c. (3)

Hence, in the case that the sequences∞ over GF(q) has only entries 0 and 1, the sequence
codeCs(D) is the complement code of the classical code of its support set. This is a collection
between the classical construction of cyclic codes with incidence structures and the sequence
construction of this paper in the special case. However, thetwo approaches do not include
each other.

Let D be aκ-subset ofZn. The setD is an(n,κ,λ) difference setin (Zn,+) if the multiset

{x−y|x,y∈ D}

contains every nonzero element ofZn exactlyλ times.
Let D be aκ-subset ofZn. The setD is an (n,κ,λ, t) almost difference set (ADS)in

(Zn,+) if the multiset
{x−y|x,y∈ D}

containst nonzero elements ofZn exactlyλ times each and the remainingn−1− t nonzero
elementsλ+1 times each.

Example 1The Singer difference set in(Zn,+) is given byD = logα{x∈ GF(2m) : Tr(x) =
1} ⊂ Zn, and has parameters(2m− 1,2m−1,2m−2), whereα is generator of GF(2m)∗ and
n= 2m−1.

Its characteristic sequence(st)
∞
t=0, wherest = Tr(αt) for any t ≥ 0, amaximum-length

sequenceof period 2m − 1. The minimal polynomial of the Singer sequence is equal to
the minimal polynomialmα−1(x) of α−1 over GF(2), and its linear span ism. The cyclic
codeCs(D) defined by the characteristic sequence of the Singer sequence is equivalent to
the Hamming code with parameters[2m− 1,2m− 1−m,3] and has generator polynomial
mα−1(x). The code isoptimal (perfect).

A proof of the following results can be found in [11][p. 193].

Example 2Let q= ps be a prime power, wherep is a prime, ands is a positive integer, and
let m≥ 3 be a positive integer. Letα be a generator of GF(qm)∗. Putn= (qm−1)/(q−1).
Recall that

D = {0≤ i < n : Trqm/q(αi) = 0} ⊂ Zn

is the Singer difference set in(Zn,+) with parameters
(

qm−1
q−1

,
qm−1−1

q−1
,
qm−2−1

q−1

)

.

Let s(D)∞ be the characteristic sequence ofD. Then the cyclic codeC c
s(D) has parameters

[

qm−1
q−1

,

(

p+m−2
m−1

)s

+1,
qm−1−1

q−1

]

. (4)
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Although the parameters ofC c
s(D) are known, the following problem is still open.

Open Problem 1 Determine the minimum distance of the codeCs(D) from the characteristic
sequence of the Singer difference set D.

There are many families of difference sets and almost difference setsD in (Zn,+). In
many cases, the dimension and generator polynomial of the classical codeCGF(q)(D) or its
complementCGF(q)(D)c (hence,CGF(q)(D)⊥) are known. However, their minimum distances
are open in general. Because of the relation in (3), the dimension and generator polynomial
of the sequence codeCs(D) are known in many cases, but its minimum distance is known only
in some special cases. As this is a huge topic with a lot of results, it would be infeasible to
survey the developments here. Thus, we refer the reader to the monograph [11] for detailed
information.

Cyclotomic classes were employed to define binary sequences, which can be viewed as
sequences over GF(q) for any prime powerq. Such sequences give cyclic codesCs(D) over
GF(q). The reader is referred to [8,10,11] for detailed information.

4 Cyclic codes from a construction of sequences from polynomials over GF(qm)

Given a polynomialf (x) on GF(qm), we define its associated sequences∞ by

si = Tr( f (αi +1)) (5)

for all i ≥ 0, whereα is a generator of GF(qm)∗ and Tr(x) denotes the trace function from
GF(qm) to GF(q). The codeCs defined by the sequences∞ in (5) is called thecode from the
polynomial f(x) for simplicity.

It was demonstrated in [10,16,23] that the codeCs may have interesting parameters if
the polynomialf is properly chosen. The objective of this section is to survey cyclic codes
Cs defined by special polynomialsf over GF(qm).

4.1 Cyclic codes from special monomials

The following is a list of monomials over GF(qm) with good nonlinearity (see [11, Section
1.7] for definition and details).

– f (x) = xqm−2 over GF(qm) (APN).
– f (x) = xqk+1 over GF(qm), wherem/gcd(m,k) andq are odd (planar).
– f (x) = x(q

h−1)/(q−1) over GF(qm).
– f (x) = x(3

h+1)/2 over GF(3m) (planar when gcd(h,m) = 1).
– f (x) = x2t+3 over GF(2m) (APN).
– f (x) = xe over GF(2m), e= 2(m−1)/2+2(m−1)/4−1 andm≡ 1 (mod 4) (APN).

When they are plugged into (5), sequences over GF(q) with certain properties are obtained.
The corresponding sequence codes have interesting parameters. The objective of this section
is to introduce the parameters of these cyclic codes.
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4.1.1 Binary cyclic codes from f(x) = x2t+3

The monomialf (x) = x2t+3 is APN over GF(22t+1). Both the sequence in (5) defined by this
monomial and the codeCs are interesting.

Theorem 1 [16] Let m= 2t + 1 ≥ 7. Let s∞ be the sequence of (5), where f(x) = x2t+3.
Then the linear spanLs of s∞ is equal to5m+1 and the minimal polynomialMs(x) of s∞ is
given by

Ms(x) = (x−1)mα−1(x)mα−3(x)mα−(2t+1)(x)mα−(2t+2)(x)mα−(2t+3)(x). (6)

The binary codeCs has parameters[2m−1,2m−2−5m,d] and generator polynomialMs(x)
of (6), where d≥ 8.

The codeCs in Theorem 1 could be optimal in some cases [16]. It would be interesting
to settle the following problem.

Open Problem 2 Determine the minimum distance of the codeCs in Theorem 1.

4.1.2 Binary cyclic codes from f(x) = x2h−1

Consider the monomialf (x) = x2h−1 over GF(2m), whereh is a positive integer with 1≤
h≤ ⌈m

2 ⌉. As will be demonstrated below, it gives a binary sequence and binary code with
special parameters.

Theorem 2 [16] Let s∞ be the sequence of (5), where f(x) = x2h−1, 2≤ h≤ ⌈m
2 ⌉. Then the

linear spanLs of s∞ is given by

Ls =

{

m(2h+(−1)h−1)
3 , if m is even

m(2h+(−1)h−1)+3
3 , if m is odd.

(7)

The minimal polynomial

Ms(x) = (x−1)N2(m) ∏
1≤2 j+1≤2h−1

κ(h)2 j+1=1

mα−(2 j+1)(x), (8)

N2(i) = 0 if i ≡ 0 (mod 2) andN2(i) = 1 otherwise.
Let h≥ 2. Then the binary codeCs has parameters[2m−1,2m−1−Ls,d] and generator

polynomialMs(x), where

d ≥

{

2h−2+2 if m is odd and h> 2
2h−2+1.

The codeCs in Theorem 2 could be optimal in some cases [16]. The lower bounds ond
given in Theorem 2 are quite tight. Nevertheless, it would benice if the following problem
could be solved.

Open Problem 3 Determine the minimum distance of the codeCs in Theorem 2.
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4.1.3 Binary cyclic codes from f(x) = xe, e= 2(m−1)/2+2(m−1)/4−1 and m≡ 1 (mod 4)

Let f (x) = xe, wheree= 2(m−1)/2+2(m−1)/4−1 andm≡ 1 (mod 4). It is known thatf (x)
is a permutation of GF(2m) and is APN.

Let t be a positive integer. We defineT = 2t −1. For any odda∈ {1,2,3, · · · ,T}, define

ε(t)a =

{

1, if a= 2h−1,
⌈

log2
T
a

⌉

mod 2, if 1 ≤ a< 2h−1

and

κ(t)
a = ε(t)a mod 2. (9)

Properties of the binary sequence and binary code defined byf (x) = xe are documented
in the following theorem.

Theorem 3 [16] Let m≥ 9 be odd. Let s∞ be the sequence of (5). Then the linear spanLs

of s∞ is given by

Ls =







m(2(m+7)/4+(−1)(m−5)/4)+3

3 , if m≡ 1 (mod 8),
m(2(m+7)/4+(−1)(m−5)/4−6)+3

3 , if m≡ 5 (mod 8).
(10)

The minimal polynomial

Ms(x) = (x−1)
2

m−1
4 −1

∏
i=0

m
α−i−2

m−1
2
(x) ∏

1≤2 j+1≤2
m−1

4 −1

κ((m−1)/4)
2 j+1 =1

mα−2 j−1(x)

if m≡ 1 (mod 8); and

Ms(x) = (x−1)
2

m−1
4 −1

∏
i=1

m
α−i−2

m−1
2
(x) ∏

3≤2 j+1≤2
m−1

4 −1

κ((m−1)/4)
2 j+1 =1

mα−2 j−1(x)

if m≡ 5 (mod 8), whereκ(h)
2 j+1 was defined in (9).

The binary codeCs has parameters[2m−1,2m−1−Ls,d] and generator polynomial
Ms(x), and the minimum weight d has the following bounds:

d ≥

{

2(m−1)/4+2 if m≡ 1 (mod 8),
2(m−1)/4 if m≡ 5 (mod 8).

(11)

The codeCs in Theorem 3 could be optimal in some cases [16]. The lower bounds ond
given in Theorem 2 are reasonably good. It would be interesting to work on the following
problem.

Open Problem 4 Determine the minimum distance of the codeCs in Theorem 3 or improve
the lower bounds in (11).
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4.1.4 Binary cyclic codes from f(x) = x22h−2h+1, wheregcd(m,h) = 1

Define f (x) = xe, wheree= 22h−2h+1 and gcd(m,h) = 1. It is known thatf is APN under
these conditions. In this section, we restricth to the following range:

1≤ h≤















m−1
4 if m≡ 1 (mod 4),

m−3
4 if m≡ 3 (mod 4),

m−4
4 if m≡ 0 (mod 4),

m−2
4 if m≡ 2 (mod 4).

(12)

Some parameters of the binary sequence and the code defined byf (x) = xe are given in
the following theorem.

Theorem 4 [16] Let h satisfy the conditions of (12). Let s∞ be the sequence of (5). Then the
linear spanLs of s∞ is given by

Ls =







m(2(h+2+(−1)h−1)+3

3 if h is even
m(2h+2+(−1)h−1−6)+3

3 if h is odd.
(13)

The minimal polynomial

Ms(x) = (x−1)
2h−1

∏
i=0

mα−i−2m−h(x) ∏
1≤2 j+1≤2h−1

κh
2 j+1=1

mα−2 j−1(x)

if h is even; and

Ms(x) = (x−1)
2h−1

∏
i=1

mα−i−2m−h(x) ∏
3≤2 j+1≤2h−1

κh
2 j+1=1

mα−2 j−1(x)

if h is odd, whereκ(h)
2 j+1 was defined in (9).

The codeCs has parameters[2m−1,2m−1−Ls,d] and generator polynomialMs(x),
and the minimum weight d has the following bounds:

d ≥

{

2h+2 if h is even
2h if h is odd.

(14)

The codeCs in Theorem 4 could be optimal in some cases [16]. It would be interesting
to attack the following two problems.

Open Problem 5 Determine the minimum distance of the codeCs in Theorem 4.

Open Problem 6 Determine the dimension and the minimum weight of the codeCs of this
section when h satisfies















m−1
2 ≥ h> m−1

4 if m≡ 1 (mod 4),
m−3

2 ≥ h> m−3
4 if m≡ 3 (mod 4),

m−4
2 ≥ h> m−4

4 if m≡ 0 (mod 4),
m−2

2 ≥ h> m−2
4 if m≡ 2 (mod 4).

(15)
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4.1.5 Binary cyclic codes from f(x) = x2m−2 overGF(2m)

Let ρi denote the total number of even integers in the 2-cyclotomiccosetCi modulo 2m−1.
We then define

νi =
mρi

ℓi
mod 2 (16)

for eachi ∈ Γ, whereℓi = |Ci | andΓ denotes the set of coset leaders modulon= 2m−1.
It is known that f (x) = x2m−2 over GF(2m) is APN. For the binary sequence and code

defined by this monomial, we have the following.

Theorem 5 [9] Let s∞ be the sequence of (5), where f(x) = x2m−2. Then the linear spanLs

of s∞ is equal to(n+1)/2 and the minimal polynomialMs(x) of s∞ is given by

Ms(x) = ∏
j∈Γ,ν j=1

mα− j (x). (17)

The binary codeCs has parameters[2m − 1,2m−1 − 1,d] and generator polynomial
Ms(x). If m is odd, the minimum distance d ofCs is even and satisfies d2−d+1≥ n, and the
dual codeC⊥

s has parameters[2m−1,2m−1,d⊥], where d⊥ satisfies that(d⊥)2−d⊥+1≥ n.

When f (x) = xqm−2 andq> 2, the dimension of the codeCs over GF(q) was settled in
[23]. But no lower bound on the minimum distance ofCs is developed.

4.1.6 Cyclic codes from f(x) = xqκ+1, where m/gcd(m,κ) and q are odd

Let f (x) = xqκ+1, wherem/gcd(m,κ) andq are odd. It is known thatf is planar. Properties
of the sequence and code defined by this monomial are described below.

Theorem 6 [9] Let m be odd. Let s∞ be the sequence of (5), where f(x) = xqκ+1. Then the
linear spanLs of s∞ is equal to2m+Np(m) and the minimal polynomialMs(x) of s∞ is
given by

Ms(x) = (x−1)Np(m)mα−1(x)mα−(pκ+1)(x), (18)

whereNp(i) = 0 if i ≡ 0 (mod p) andNp(i) = 1 otherwise.
The codeCs has parameters[n,n− 2m−Np(m),d] and generator polynomialMs(x),

where















d = 4 if q = 3 and m≡ 0 (mod p),
4≤ d ≤ 5 if q = 3 and m6≡ 0 (mod p),
d = 3 if q > 3 and m≡ 0 (mod p),
3≤ d ≤ 4 if q > 3 and m6≡ 0 (mod p).

Extending the work of [25], one can determine the weight distribution of C⊥
s . With the

MacWilliams identity, one can settle the minimum distance of the codeCs in Theorem 6.
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4.1.7 Cyclic codes from f(x) = x(q
h−1)/(q−1)

Let h be a positive integer satistying the following condition:

1≤ h≤

{

(m−1)/2 if m is odd and
m/2 if m is even.

(19)

Let J ≥ t ≥ 2, and letN(J, t) denote the total number of vectors(i1, i2, · · · , it−1) with
1≤ i1 < i2 < · · ·< it−1 < J. By definition, we have the following recursive formula:

N(J, t) =
J−1

∑
j=t−1

N( j, t −1). (20)

It is easily seen that

N(J,2) = J−1 for all J ≥ 2 (21)

and

N(J,3) =
(J−1)(J−2)

2
for all J ≥ 3. (22)

It then follows from (20), (21) and (22) that

N(J,4) =
J−1

∑
j=3

N( j,3) =
J−1

∑
j=3

(J−1)(J−2)
2

=
J3−6J2+11J−6

6
. (23)

By definition, we have

N(t, t) = 1 for all t ≥ 2. (24)

For convenience, we defineN(J,1) = 1 for all J ≥ 1.

Theorem 7 Let h satisfy the condition of (19). Let s∞ be the sequence of (5), where f(x) =
x(q

h−1)/(q−1). Then the linear spanLs and minimal polynomialMs(x) of s∞ are given by

Ls =

(

Np(h)+
h−1

∑
t=1

h−1

∑
u=1

Np(h−u)N(u, t)

)

m+Np(m)

and

Ms(x) = (x−1)Np(m)mα−1(x)Np(h) ∏
1≤u≤h−1
Np(h−u)=1

mα−(q0+qu)(x)×

h−1

∏
t=2

∏
t≤u≤h−1

Np(h−u)=1

∏
1≤i1<···<it−1<u

m
α−(q0+∑t−1

j=1q
i j +qu)

(x).

The codeCs has parameters[n,n−Ls,d] and generator polynomialMs(x).

Open Problem 7 Determine the minimum distance of the codeCs in Theorem 7 or develop
a tight lower bound on it.

As a corollary of Theorem 7, we have the following.
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Corollary 1 Let h= 3. The codeCs of Theorem 7 has parameters[n,n−Ls,d] and gener-
ator polynomialMs(x) given by

Ms(x) = (x−1)Np(m)mα−1(x)mα−1−q(x)mα−1−q2(x)mα−1−q−q2(x)

if p 6= 3, and

Ms(x) = (x−1)Np(m)mα−1−q(x)mα−1−q2(x)mα−1−q−q2(x)

if p = 3, where

Ls =

{

4m+Np(m) if p 6= 3,
3m+Np(m) if p = 3.

(25)

In addition,






3≤ d ≤ 8 if p = 3 andNp(m) = 1,
3≤ d ≤ 6 if p = 3 andNp(m) = 0,
3≤ d ≤ 8 if p > 3.

Open Problem 8 For the codeCs of Corollary 1, do the following lower bounds hold?

d ≥















5 when p= 3 andNp(m) = 1,
4 when p= 3 andNp(m) = 0,
6 when p> 3 andNp(m) = 1,
5 when p> 3 andNp(m) = 0.

4.1.8 Cyclic codes from f(x) = x(3
h+1)/2

Let h be a positive integer satistying the following conditions:














h is odd,
gcd(m,h) = 1,

3≤ h≤

{

(m−1)/2 if m is odd and
m/2 if m is even.

(26)

Theorem 8 Let h satisfy the third condition of (26). Let s∞ be the sequence of (5), where
f (x) = x(3

h+1)/2. Then the linear spanLs and minimal polynomialMs(x) of s∞ are given by

Ls = N3(m)+

(

h

∑
i=0

N3(h− i +1)

)

m+

(

h

∑
t=2

N(h, t)+
h−1

∑
t=2

h−1

∑
it=t

N3(h− it +1)N(it , t)

)

m

and

Ms(x) = (x−1)N3(m)mα−1(x)N3(h+1)mα−2(x)
h−1

∏
t=1

∏
1≤i1<···<it≤h−1

m
α−(2+∑t

j=13
i j )
(x)×

∏
1≤u≤h−1

N3(h−u+1)=1

mα−(1+3u)(x)
h−1

∏
t=2

∏
t≤it≤h−1

N3(h−it+1)=1

∏
1≤i1<···<it−1<it

m
α−(1+∑t

j=1 3
i j )
(x),

whereN3( j) andN( j, t) were defined in Sections 2.1 and 4.1.7 respectively.
Furthermore, the codeCs has parameters[n,n−Ls,d] and generator polynomialMs(x).
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As shown in Theorem 8, the linear span and the minimal polynomial of the sequence
s∞ has a complex formula. It looks difficult to discover furtherproperties of the code in
Theorem 8.

Open Problem 9 Determine the minimum distance of the codeCs in Theorem 8 or develop
a tight lower bound on it.

As a corollary of Theorem 8, we have the following.

Corollary 2 Let h= 3. The codeCs of Theorem 8 has parameters[n,n−Ls,d] and the
generator polynomialMs(x) given by

Ms(x) = (x−1)N3(m)mα−1(x)mα−2(x)mα−5(x)mα−10(x)mα−11(x)mα−13(x)mα−14(x),

whereLs = 7m+N3(m). In addition,
{

5≤ d ≤ 16 if N3(m) = 1,
4≤ d ≤ 16 if N3(m) = 0.

Open Problem 10 For the codeCs of Corollary 2, do the following lower bounds hold?

d ≥

{

9 whenNp(m) = 1,
8 whenNp(m) = 0.

4.2 Cyclic codes from Dickson polynomials

In this section, we survey known results on cyclic codes fromDickson polynomials over
finite fields. All the results presented in this subsection come from [12].

4.2.1 Dickson polynomials overGF(qm)

In 1896, Dickson introduced the following family of polynomials over GF(qm) [7]:

Dh(x,a) =
⌊ h

2 ⌋

∑
i=0

h
h− i

(

h− i
i

)

(−a)ixh−2i , (27)

wherea∈ GF(qm) andh≥ 0 is called theorder of the polynomial. This family is referred
to as theDickson polynomials of the first kind.

Dickson polynomials of the second kind over GF(qm) are defined by

Eh(x,a) =
⌊ h

2 ⌋

∑
i=0

(

h
h− i

)

(−a)ixh−2i , (28)

wherea∈ GF(qm) andh≥ 0 is called theorder of the polynomial.
Dickson polynomials are an interesting topic of mathematics and engineering, and have

many applications. For example, the Dickson polynomialsD5(x,a) = x5 − ux− u2x over
GF(3m) are employed to construct a family of planar functions [6,15], and those planar
functions give two families of commutative presemifields, planes, several classes of linear
codes [3,25], and two families of skew Hadamard difference sets [15]. The reader is referred
to [21] for detailed information about Dickson polynomials. In subsequent subsections, we
survey cyclic codes derived from Dickson polynomials.
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4.2.2 Cyclic codes from the Dickson polynomial Dpu(x,a)

Sinceq is a power ofp, it is known thatDhp(x,a) = Dh(x,a)p [21, Lemma 2.6 ]. It then
follows thatDpu(x,a) = xpu

for all a∈ GF(qm).
The codeCs over GF(q) defined by the Dickson polynomialf (x) = Dpu(x,a) = xpu

over
GF(qm) has the following parameters.

Theorem 9 The codeCs defined by the Dickson polynomial Dpu(x,a) = xpu
has parameters

[n,n−m−δ(1),d] and generator polynomialMs(x) = (x−1)δ(1)mα−pu (x), where

d =















4 if q = 2 andδ(1) = 1,
3 if q = 2 andδ(1) = 0,
3 if q > 2 andδ(1) = 1,
2 if q > 2 andδ(1) = 0,

and the functionδ(x) and the polynomial mα j (x) were defined in Section 2.1.

Whenq= 2, the code of Theorem 9 is equivalent to the binary Hamming weight or its
even-weight subcode, and is thus optimal. The code is eitheroptimal or almost optimal with
respect to the Sphere Packing Bound.

4.2.3 Cyclic codes from D2(x,a) = x2−2a

In this section we consider the codeCs defined byf (x) = D2(x,a) = x2−2a over GF(qm).
Whenp= 2, this code was treated in Section 4.2.2. Whenp> 2, the following theorem is a
variant of Theorem 5.2 in [9], but has much stronger conclusions on the minimum distance
of the code.

Theorem 10 Let p> 2 and m≥ 3. The codeCs defined by f(x) = D2(x,a) = x2−2a has
parameters[n,n−2m−δ(1−2a),d] and generator polynomial

Ms(x) = (x−1)δ(1−2a)mα−1(x)mα−2(x),

where

d =















4 if q = 3 andδ(1−2a) = 0,
5 if q = 3 andδ(1−2a) = 1,
3 if q > 3 andδ(1−2a) = 0,
4 if q > 3 andδ(1−2a) = 1,

and the functionδ(x) and the polynomialMα j (x) were defined in Section 2.1.

The code of Theorem 10 is either optimal or almost optimal forall m≥ 2.

4.2.4 Cyclic codes from D3(x,a) = x3−3ax

In this section we treat the codeCs defined by the Dickson polynomialD3(x,a) = x3−3ax.
We need to distinguish among the three cases:p= 2, p= 3 andp≥ 5. The case thatp= 3
was covered in Section 4.2.2. So we need to consider only the two remaining cases.

We first handle the caseq= p= 2 and state the following lemma.
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Lemma 1 Let q= p= 2. Let s∞ be the sequence of (5), where f(x) = D3(x,a) = x3−3ax=
x3+ax. Then the minimal polynomialMs(x) of s∞ is given by

Ms(x) =

{

(x−1)δ(1)mα−3(x) if a = 0,
(x−1)δ(1+a)mα−1(x)mα−3(x) if a 6= 0

where mα− j (x) and the functionδ(x) were defined in Section 2.1, and the linear spanLs of
s∞ is given by

Ls =

{

δ(1)+m if a= 0,
δ(1+a)+2m if a 6= 0.

The following theorem gives information on the codeCs.

Theorem 11 Let q= p= 2 and let m≥ 4. Then the binary codeCs defined by the sequence
of Lemma 1 has parameters[n,n−Ls,d] and generator polynomialMs(x), whereMs(x)
andLs are given in Lemma 1, and

d =















2 if a = 0 andδ(1) = 0,
4 if a = 0 andδ(1) = 1,
5 if a 6= 0 andδ(1+a) = 0,
6 if a 6= 0 andδ(1+a) = 1.

Remark 1Whena= 0 andδ(1) = 1, the code is equivalent to the even-weight subcode of
the Hamming code. We are mainly interested in the case thata 6= 0. Whena= 1, the codeCs

is a double-error correcting binary BCH code or its even-like subcode. Theorem 11 shows
that well-known classes of cyclic codes can be constructed with Dickson polynomials of
order 3. The code is either optimal or almost optimal.

Now we consider the caseq= pt , wherep≥ 5 or p= 2 andt ≥ 2.

Lemma 2 Let q= pt , where p≥ 5 or p= 2 and t≥ 2. Let s∞ be the sequence of (5), where
f (x) = D3(x,a) = x3−3ax. Then the minimal polynomialMs(x) of s∞ is given by

Ms(x) =

{

(x−1)δ(−2)mα−3(x)mα−2(x) if a = 1,
(x−1)δ(1−3a)mα−3(x)mα−2(x)mα−1(x) if a 6= 1

where mα− j (x) and the functionδ(x) were defined in Section 2.1, and the linear spanLs of
s∞ is given by

Ls =

{

δ(−2)+2m if a= 1,
δ(1+a)+3m if a 6= 1.

The following theorem provides information on the codeCs.

Theorem 12 Let q= pt , where p≥ 5 or p= 2 and t≥ 2. Then the codeCs defined by the
sequence of Lemma 2 has parameters[n,n−Ls,d] and generator polynomialMs(x), where
Ms(x) andLs are given in Lemma 2, and























d ≥ 3 if a = 1,
d ≥ 4 if a 6= 1 andδ(1−3a) = 0,
d ≥ 5 if a 6= 1 andδ(1−3a) = 1,
d ≥ 5 if a 6= 1 andδ(1−3a) = 0 and q= 4,
d ≥ 6 if a 6= 1 andδ(1−3a) = 1 and q= 4.
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Remark 2The codeCs of Theorem 12 is either a BCH code or the even-like subcode of a
BCH code. One can similarly show that the code is either optimal or almost optimal.

Whenq = 4, a 6= 1, δ(1−3a) = 1, andm≥ 3, the Sphere Packing Bound shows that
d = 6. But the minimum distance is still open in other cases.

Open Problem 11 Determine the minimum distance d for the codeCs of Theorem 12.

4.2.5 Cyclic codes from D4(x,a) = x4−4ax2+2a2

In this section we deal with the codeCs defined by the Dickson polynomialD4(x,a) =
x4−4ax2+2a2. We have to distinguish among the three cases:p= 2, p= 3 andp≥ 5. The
casep = 2 was covered in Section 4.2.2. So we need to consider only thetwo remaining
cases.

We first take care of the casq= p= 3 and have the following lemma.

Lemma 3 Let q= p= 3 and m≥ 3. Let s∞ be the sequence of (5), where f(x) = D4(x,a) =
x4−4ax2+2a2. Then the minimal polynomialMs(x) of s∞ is given by

Ms(x) =







(x−1)δ(1)mα−4(x)mα−1(x) if a = 0,
(x−1)δ(1)mα−4(x)mα−2(x) if a = 1,
(x−1)δ(1−a−a2)mα−4(x)mα−2(x)mα−1(x) otherwise,

where mα− j (x) and the functionδ(x) were defined in Section 2.1, and the linear spanLs of
s∞ is given by

Ls =







δ(1)+2m if a= 0,
δ(1)+2m if a= 1,
δ(1−a−a2)+3m otherwise.

The following theorem gives information on the codeCs.

Theorem 13 Let q= p= 3 and m≥ 3. Then the codeCs defined by the sequence of Lemma
3 has parameters[n,n−Ls,d] and generator polynomialMs(x), whereMs(x) andLs are
given in Lemma 3, and























d = 2 if a = 1,
d = 3 if a = 0 m≡ 0 (mod 6),
d ≥ 4 if a = 0 m 6≡ 0 (mod 6),
d ≥ 5 if a2 6= a andδ(1−a−a2) = 0,
d = 6 if a2 6= a andδ(1−a−a2) = 1.

Remark 3Whena= 1, the code of Theorem 13 is neither optimal nor almost optimal. The
code is either optimal or almost optimal in all other cases.

Open Problem 12 Determine the minimum distance d for the codeCs of Theorem 13.

Now we consider the caseq= pt , wherep≥ 5 or p= 3 andt ≥ 2.
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Lemma 4 Let m≥ 2 and q= pt , where p≥ 5 or p= 3 and t≥ 2. Let s∞ be the sequence
of (5), where f(x) = D4(x,a) = x4−4ax2+2a2. Then the minimal polynomialMs(x) of s∞

is given by

Ms(x) =







(x−1)δ(1)mα−4(x)mα−3(x)mα−1(x) if a = 3
2,

(x−1)δ(1)mα−4(x)mα−3(x)mα−2(x) if a = 1
2,

(x−1)δ(1−4a+2a2) ∏4
i=1mα−i (x) if a 6∈ { 3

2 ,
1
2},

where mα− j (x) and the functionδ(x) were defined in Section 2.1, and the linear spanLs of
s∞ is given by

Ls =

{

δ(1)+3m if a∈ { 3
2,

1
2},

δ(1−4a+2a2)+4m otherwise.

The following theorem delivers to us information on the codeCs.

Theorem 14 Let m≥ 2 and q= pt , where p≥ 5 or p = 3 and t≥ 2. Then the codeCs

defined by the sequence of Lemma 4 has parameters[n,n−Ls,d] and generator polynomial
Ms(x), whereMs(x) andLs are given in Lemma 4, and















d ≥ 3 if a = 3
2,

d ≥ 4 if a = 1
2,

d ≥ 5 if a 6∈ { 3
2 ,

1
2} andδ(1−4a+a2) = 0,

d = 6 if a 6∈ { 3
2 ,

1
2} andδ(1−4a+a2) = 1.

Remark 4Except the cases thata∈ { 3
2,

1
2}, the codeCs of Theorem 14 is either optimal or

almost optimal.

Open Problem 13 Determine the minimum distance d for the codeCs of Theorem 14.

4.2.6 Cyclic codes from D5(x,a) = x5−5ax3+5a2x

In this section we deal with the codeCs defined by the Dickson polynomialD5(x,a) =
x5 −5ax3 +5a2x. We have to distinguish among the three cases:p= 2, p = 3 andp ≥ 7.
The casep = 5 was covered in Section 4.2.2. So we need to consider only theremaining
cases.

We first consider the casq= p= 2 and have the following lemma.

Lemma 5 Let q= p= 2 and m≥ 5. Let s∞ be the sequence of (5), where f(x) = D5(x,a) =
x5−5ax3+5a2x. Then the minimal polynomialMs(x) of s∞ is given by

Ms(x) =







(x−1)δ(1)mα−5(x) if a = 0,
(x−1)δ(1)mα−5(x)mα−3(x) if 1+a+a3 = 0,
(x−1)δ(1) ∏2

i=0 mα−(2i+1)(x) if a+a2+a4 6= 0

where mα− j (x) and the functionδ(x) were defined in Section 2.1, and the linear spanLs of
s∞ is given by

Ls =







δ(1)+m if a= 0,
δ(1)+2m if 1+a+a3 = 0,
δ(1)+3m if a+a2+a4 6= 0.
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The following theorem describes parameters of the codeCs.

Theorem 15 Let q= p= 2 and m≥ 5. Then the codeCs defined by the sequence of Lemma
5 has parameters[n,n−Ls,d] and generator polynomialMs(x), whereMs(x) andLs are
given in Lemma 5, and







































d = 2 if a = 0 andδ(1) = 0 and gcd(5,n) = 5,
d = 3 if a = 0 andδ(1) = 0 and gcd(5,n) = 1,
d = 4 if a = 0 andδ(1) = 1,
d ≥ 3 if 1+a+a3 = 0 andδ(1) = 0,
d ≥ 4 if 1+a+a3 = 0 andδ(1) = 1,
d ≥ 7 if a+a2+a4 6= 0 andδ(1) = 0,
d = 8 if a+a2+a4 6= 0 andδ(1) = 1.

Remark 5The code of Theorem 15 is either optimal or almost optimal. The code is not a
BCH code when 1+a+a3 = 0, and a BCH code in the remaining cases.

Open Problem 14 Determine the minimum distance d for the codeCs of Theorem 15 for
the three open cases.

We now consider the cas(p,q) = (2,4) and have the following lemma.

Lemma 6 Let (p,q) = (2,4) and m≥ 3. Let s∞ be the sequence of (5), where f(x) =
D5(x,a) = x5−5ax3+5a2x. Then the minimal polynomialMs(x) of s∞ is given by

Ms(x) =







(x−1)δ(1)mα−5(x) if a = 0,
(x−1)δ(1)mα−5(x)mα−3(x)mα−2(x) if a = 1,
(x−1)δ(1+a+a2)mα−5(x)mα−3(x)mα−2(x)mα−1(x) if a+a2 6= 0

where mα− j (x) and the functionδ(x) were defined in Section 2.1, and the linear spanLs of
s∞ is given by

Ls =







δ(1)+m if a= 0,
δ(1)+3m if a= 1,
δ(1)+4m if a+a2 6= 0.

The following theorem supplies information on the codeCs.

Theorem 16 Let (p,q) = (2,4) and m≥ 3. Then the codeCs defined by the sequence of
Lemma 6 has parameters[n,n−Ls,d] and generator polynomialMs(x), whereMs(x) and
Ls are given in Lemma 6, and























d = 2 if a = 0 andδ(1) = 0 and gcd(5,n) = 5,
d = 3 if a = 0 and gcd(5,n) = 1,
d ≥ 3 if a = 1,
d ≥ 6 if a+a2 6= 0 andδ(1) = 0,
d ≥ 7 if a+a2 6= 0 andδ(1) = 1.

Examples of the code of Theorem 16 are documented in arXiv:1206.4370, and many of
them are optimal.

Open Problem 15 Determine the minimum distance d of the codeCs in Theorem 16.

We now consider the case(p,q) = (2,2t), wheret ≥ 3, and state the following lemma.

http://arxiv.org/abs/1206.4370
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Lemma 7 Let (p,q) = (2,2t) and m≥ 3, where t≥ 3. Let s∞ be the sequence of (5), where
f (x) = D5(x,a) = x5−5ax3+5a2x. Then the minimal polynomialMs(x) of s∞ is given by

Ms(x) =







(x−1)δ(1)mα−5(x)mα−4(x)mα−1(x) if a = 0,
∏5

i=2 mα−i (x) if 1+a+a2 = 0,
(x−1)δ(1+a+a2) ∏5

i=1mα−i (x) if a+a2+a3 6= 0,

where mα− j (x) and the functionδ(x) were defined in Section 2.1, and the linear spanLs of
s∞ is given by

Ls =







δ(1)+3m if a= 0,
δ(1)+4m if 1+a+a2 = 0,
δ(1)+5m if a+a2+a3 6= 0.

The following theorem provides information on the codeCs.

Theorem 17 Let (p,q) = (2,2t), where t≥ 3. Then the codeCs defined by the sequence of
Lemma 7 has parameters[n,n−Ls,d] and generator polynomialMs(x), whereMs(x) and
Ls are given in Lemma 7, and























d ≥ 3 if a = 0 andδ(1) = 0,
d ≥ 4 if a = 0 andδ(1) = 1,
d ≥ 5 if 1+a+a2 = 0,
d ≥ 6 if a+a2+a3 6= 0 andδ(1) = 0,
d ≥ 7 if a+a2+a3 6= 0 andδ(1) = 1.

Open Problem 16 Determine the minimum distance d of the codeCs in Theorem 17.

Examples of the code of Theorem 17 can be found in arXiv:1206.4370, and many of
them are optimal. The code of Theorem 17 is not a BCH code whena= 0, and a BCH code
otherwise.

We now consider the caseq= p= 3 and state the following lemma and theorem.

Lemma 8 Let q= p= 3 and m≥ 3. Let s∞ be the sequence of (5), where f(x) = D5(x,a) =
x5−5ax3+5a2x. Then the minimal polynomialMs(x) of s∞ is given by

Ms(x) =

{

(x−1)δ(1+a+2a2)mα−5(x)mα−4(x)mα−2(x) if a−a6 = 0,
(x−1)δ(1+a+2a2) ∏5

i=2 mα−i (x) if a−a6 6= 0,

where mα− j (x) and the functionδ(x) were defined in Section 2.1, and the linear spanLs of
s∞ is given by

Ls =

{

δ(1+a+2a2)+3m if a−a6 = 0,
δ(1+a+2a2)+4m if a−a6 6= 0.

The following theorem gives information on the codeCs.

Theorem 18 Let q= p= 3 and m≥ 3. Then the codeCs defined by the sequence of Lemma
8 has parameters[n,n−Ls,d] and generator polynomialMs(x), whereMs(x) andLs are
given in Lemma 8, and







d ≥ 4 if a−a6 = 0,
d ≥ 7 if a−a6 6= 0 andδ(1+a+2a2) = 0,
d ≥ 8 if a−a6 6= 0 andδ(1+a+2a2) = 1.
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Open Problem 17 Determine the minimum distance d of the codeCs in Theorem 18 (our
experimental data indicates that the lower bounds are the specific values of d).

Examples of the code of Theorem 18 are described in arXiv:1206.4370, and some of
them are optimal.

We now consider the case(p,q) = (3,3t), wheret ≥ 3, and state the following lemma
and theorem.

Lemma 9 Let (p,q) = (3,3t) and m≥ 2, where t≥ 2. Let s∞ be the sequence of (5), where
f (x) = D5(x,a) = x5−5ax3+5a2x. Then the minimal polynomialMs(x) of s∞ is given by

Ms(x) =







(x−1)δ(1)mα−5(x)mα−4(x)mα−2(x)mα−1(x) if 1+a= 0,
(x−1)δ(a−1)mα−5(x)mα−4(x)mα−3(x)mα−2(x) if 1+a2 = 0,
(x−1)δ(1+a+2a2) ∏5

i=1mα−i (x) if (a+1)(a2+1) 6= 0,

where mα− j (x) and the functionδ(x) were defined in Section 2.1, and the linear spanLs of
s∞ is given by

Ls =







δ(1)+4m if a+1= 0,
δ(a−1)+4m if a2+1= 0,
δ(1+a+2a2)+5m if (a+1)(a2+1) 6= 0.

The following theorem supplies information on the codeCs.

Theorem 19 Let (p,q) = (3,3t) and m≥ 2, where t≥ 2. Then the codeCs defined by the
sequence of Lemma 7 has parameters[n,n−Ls,d] and generator polynomialMs(x), where
Ms(x) andLs are given in Lemma 9, and































d ≥ 3 if a =−1 andδ(1) = 0,
d ≥ 4 if a =−1 andδ(1) = 1,
d ≥ 5 if a2 =−1 andδ(a−1) = 0,
d ≥ 6 if a2 =−1 andδ(a−1) = 1,
d ≥ 6 if (a+1)(a2+1) 6= 0 andδ(1+a+2a2) = 0,
d ≥ 7 if (a+1)(a2+1) 6= 0 andδ(1+a+2a2) = 1.

Open Problem 18 Determine the minimum distance d of the codeCs in Theorem 19.

Examples of the code of Theorem 19 are available in arXiv:1206.4370, and some of
them are optimal. The code is a BCH code, except in the case that a=−1.

We finally consider the casep≥ 7, and present the following lemma and theorem.

Lemma 10 Let p≥ 7 and m≥ 2. Let s∞ be the sequence of (5), where f(x) = D5(x,a) =
x5−5ax3+5a2x. Then the minimal polynomialMs(x) of s∞ is given by

Ms(x) =















(x−1)δ(1−5a+5a2)mα−5(x)mα−4(x)mα−2(x)mα−1(x) if a = 2,
(x−1)δ(1−5a+5a2)mα−5(x)mα−4(x)mα−3(x)mα−1(x) if a = 2

3 ,

(x−1)δ(1−5a+5a2)mα−5(x)mα−4(x)mα−3(x)mα−2(x) if a2−3a+1= 0,
(x−1)δ(1−5a+5a2) ∏5

i=1 mα−i (x) if (a2−3a+1)(a−2)(3a−2) 6= 0,

where mα− j (x) and the functionδ(x) were defined in Section 2.1, and the linear spanLs of
s∞ is given by

Ls =

{

δ(1−5a+5a2)+4m, if (a2−3a+1)(a−2)(3a−2) = 0,
δ(1−5a+5a2)+5m, otherwise.
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The following theorem provides information on the codeCs.

Theorem 20 Let p≥ 7 and m≥ 2. Then the codeCs defined by the sequence of Lemma
10 has parameters[n,n−Ls,d] and generator polynomialMs(x), whereMs(x) andLs are
given in Lemma 10, and















































d ≥ 3 if a = 2 andδ(1−5a+5a2) = 0,
d ≥ 4 if a = 2 andδ(1−5a+5a2) = 1,
d ≥ 4 if a = 2

3 andδ(1−5a+5a2) = 0,
d ≥ 5 if a = 2

3 andδ(1−5a+5a2) = 1,
d ≥ 5 if 1−3a+a2 = 0 andδ(1−5a+5a2) = 0,
d ≥ 6 if 1−3a+a2 = 0 andδ(1−5a+5a2) = 1,
d ≥ 6 if (a2−3a+1)(a−2)(3a−2) 6= 0 andδ(1−5a+5a2) = 0,
d ≥ 7 if (a2−3a+1)(a−2)(3a−2) 6= 0 andδ(1−5a+5a2) = 1.

Open Problem 19 Determine the minimum distance d of the codeCs in Theorem 20.

Examples of the code of Theorem 20 can be found in arXiv:1206.4370, and some of
them are optimal. The code is a BCH code, except in the casesa∈ {2,2/3}.

4.2.7 Cyclic codes from other Di(x,a) for i ≥ 6

Parameters of cyclic codes fromDi(x,a) for small i could be established in a similar way.
However, more cases are involved and the situation is getting more complicated wheni gets
bigger. Examples of the codeCs from D7(x,a) andD11(x,a) can be found in arXiv:1206.4370.

4.2.8 Cyclic codes from Dickson polynomials of the second kind

Results on cyclic codes from Dickson polynomials of the second kind can be developed in
a similar way. Experimental data indicates that the codes from the Dickson polynomials of
the first kind are in general better than those from the Dickson polynomials of the second
kind, though some cyclic codes from Dickson polynomials of the second kind could also be
optimal or almost optimal.

4.2.9 Comments on the cyclic codes from Dickson polynomials

It is really amazing that in most cases the cyclic codes derived from the Dickson polynomials
of small degrees within the framework of this paper are optimal or almost optimal (see
arXiv:1206.4370 for examples of optimal codes).

We had to treat Dickson polynomials of small degrees case by case over finite fields
with different characteristics as we do not see a way of treating them in a single strike. The
generator polynomial and the dimension of the codes depend heavily on the degree of the
Dickson polynomials and the characteristic of the base field.

5 Concluding remarks

Recall that every cyclic code over a finite field can be expressed asCs for some sequence
s∞. This approach can produce all cyclic codes over finite fields, including BCH codes. It is
thus no surprise that some of the codes from Dickson polynomials are in fact BCH codes.

http://arxiv.org/abs/1206.4370
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Since it is a fundamental approach, it produces both good andbad cyclic codes. It is open
what sequences over a finite field give cyclic codes with optimal parameters.

Though a considerable amount of progress on this approach ofconstructing cyclic codes
with sequences has been made, a lot of investigation should be further done, as there is a
huge number of constructions of sequences in the literature. The reader is cordially invited
to join the journey in this direction.

Acknowledgements The author thanks Dr. Pascale Charpin for helpful discussions on cyclic codes in the
past years, and Prof. Zhengchun Zhou for collaboration on this topic.
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