arXiv:1611.06487v1 [cs.IT] 20 Nov 2016

Noname manuscript No.
(will be inserted by the editor)

A Sequence Construction of Cyclic Codes over Finite Fields

Cunsheng Ding

Received: date / Accepted: date

Abstract Due to their efficient encoding and decoding algorithms|icyandes, a subclass
of linear codes, have applications in communication systesonsumer electronics, and
data storage systems. There are several approaches touctingtall cyclic codes over

finite fields, including the generator matrix approach, teaagator polynomial approach,
and the generating idempotent approach. Another one isweseg approach, which has
been intensively investigated in the past decade. The tgeaf this paper is to survey the
progress in this direction in the past decade. Many openg@mbare also presented in this
paper.
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1 Introduction

Let g be a power of a prim@. An [n,k,d] code over GFq) is ak-dimensional subspace of
GF(g)" with minimum (Hamming) nonzero weiglt Let A; denote the number of code-
words with Hamming weighitin a linear code” of lengthn. Theweight enumeratoof C
is defined by

1+AZ+ A+ -+ A

Theweight distributionof C is the sequencél, Ay, ..., An).

An [n.k,d] code over GFy) is calledoptimal if there is no[n,k,d + 1] or [n,k+ 1,d]
code over GFq). The optimality of a cyclic code may be proved by a bound oedircodes
or by an exhaustive computer search on all linear codes olvgy)Gvith fixed lengthn and
fixed dimensiork or fixed lengthn and fixed minimum distance. An [n,k,d] code is said
to bealmost optimaif a linear code with parametefs,k+ 1,d] or [n,k,d + 1] is optimal.

A vector(co, 1, ,C_1) € GF(Q)" is said to beeven-likef T3 ¢c; = 0, and isodd-like
otherwise. Theeven-like subcodef a linear code consists of all the even-like codewords of
this linear code.
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An [n,K] code is calleatyclicif (co,C1,---,Cn_1) € Cimplies(cy_1,Co,C1, -+ ,Cr_2) € C.
Let gcdn,g) = 1. By identifying a vectofcy, cy, -+ ,C,_1) € GF(Q)" with

Co+ C1X+Cox + -+ Cr_1X" T € GF(Q)[X] /(X" - 1),

a code( of lengthn over GRQq) corresponds to a subset of @{x|/(x" — 1). The linear
code C is cyclic if and only if the corresponding subset in @Hx]/(x"— 1) is an ideal

of the ring GKq)[x]/(x" —1). It is well known that every ideal of Glg)[x]/(X"— 1) is
principal. LetC = (g(x)) be a cyclic code, whergis monic and has the least degree. Then
g(x) is called thegenerator polynomiaandh(x) = (X" — 1) /g(x) is referred to as theheck
polynomial ofC. Thedual code denoted by, of ¢ has generator polynomia(x), which

is the reciprocal of(x). The complement codelenoted byC®, is generated by(x). It is
known thatC* and C® have the same weight distribution.

The error correcting capability of cyclic codes may not bgasd as some other linear
codes in general. However, cyclic codes have wide appticatin storage and communica-
tion systems because they have efficient encoding and degattjorithms([[H, 17, 22].

Cyclic codes have been studied for decades and a lot of m®ueEs been made (see,
for example,[[4.19] for information). The total number ofig codes over Gfg) and their
constructions are closely related to cyclotomic cosetsulwd, and thus many areas of
number theory. One way of constructing cyclic codes ovefdpith lengthn is to use the
generator polynomial

x"—1

gcd SX) 1) @

where
n-1
S = 3 s € GF)X

ands”® = ()2, is a sequence of periatover GKq). Throughout this paper, we call the
cyclic codecs with the generator polynomial dfl(1) tieede defined by the sequen&eand
the sequencs” thedefining sequencef the cyclic code’s.

It can be seen that every cyclic code of lengtbver GKq) can be expressed & for
some sequence of periodn over GKq). Because of this, this construction of cyclic codes
is said to bfundamental An impressive progress in the construction of cyclic codéh
this approach has been made in the past decade (see, forlex{8® 10, 11.16.23,24]).

The objective of this paper is to give a survey of recent dgwekent in this sequence
construction of cyclic codes over finite fields. In view thhisttopic is huge, we have to
do a selective survey. Our idea is that this survey paper Ememnts the monograph [11],
so that the two references together could give a well rouridestment of the sequence
construction of cyclic codes over finite fields. It is hopedttthis survey could stimulate
further investigation into this sequence approach.

2 Preliminaries

In this section, we present basic notation and resulisayiclotomic cosets modulg, planar
and almost perfect nonlinear functions, and sequencesvitidte employed in subsequent
sections.
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2.1 Some notation and symbols fixed throughout this paper

Throughout this paper, we adopt the following notation ssletherwise stated:

— pisaprime,is a positive power of, andmis a positive integer.

— Zn=1{0,1,--- ,n—1}, the ring of integers moduln.

— Ngy(x) is a function defined bjig(x) = 0 if x= 0 (mod g) andNg(x) = 1 otherwise.

— ais a generator of Gfg™)*, the multiplicative group of G).

— my(X) is the minimal polynomial o& € GF(q™) over GHq).

— Tr(x) is the trace function from G™) to GHq).

— d(x) is a function on GFq™) defined byd(x) = 0 if Tr(x) = 0 andd(x) = 1 otherwise.
Ci denotes thel-cyclotomic coset modula containingi.
I" is the set of all coset leaders of theyclotomic cosets modulo.
For any polynomiab(x) € GF(q)[x] with g(0) # 0, g(x) denotes the reciprocal ofx).
For a cyclic codeC of lengthn over GRq) with generator polynomiad(x), C¢ denotes
its complement code that is generatediby) := (x" —1)/g(x), andC* denotes its dual
code with generator polynomialx),

2.2 Planar and APN polynomials

A function f : GF(g™) — GF(g™) is calledalmost perfect nonlinear (APNf)

max max |{xe GF(q"): f(x+a)— f(x) =b}| =2,
aEGF(qf")*beGF(qm)H (g™ f(x+a) = f(x) = by

and is referred to ggerfect nonlinear or planaif

max max [{xe GFq"): f(x+a)—f(x)=h}|=1
aEGF(qf")*beGF(qm)H (g™ f(x+a) — f(x) = by

There is no perfect nonlinear (planar) function on(§% for eveng. However, there
are APN functions on GR™). Both planar and APN functions over Gf"") for odd g exist.
Some planar and APN monomials will be employed to constrydiccodes in subsequent
sections.

2.3 Theg-cyclotomic cosets modulo

Let gcdn,g) = 1. Theg-cyclotomic coset containingmodulon is defined by
Cj = {qujaqzja 7qéiilj} modn C Zp

where/; is the smallest positive integer such thétj = j (mod n), and is called the size of
C;. Itis known that/; dividesm. The smallest integer i@; is called thecoset leadeof C;.
Letl” denote the set of all coset leaders. By definition, we have

UJCj =Zn.
jer
Itis well known that[];cc, (x—a’) is an irreducible polynomial of degrégover GRq)

and is the minimal polynomial afi' over GRq). Furthermore, the canonical factorization
of X" — 1 over GKq) is given by

X" —1= Djl;[(xfaj).
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2.4 The linear span and minimal polynomial of sequences

Let 8- = ss;---5._1 be a sequence over Gf. Thelinear span(also calledinear com-
plexity) of s- is defined to be the smallest positive integesuch that there are constants
co=1,c,---,c, € GF(q) satisfying

—CoS =C1S-1+CS_2+---+as_forall ¢ <i<L.

In engineering terms, such a polynomizk) = co + c1x+ - --+ ¢ X' is called thefeedback
polynomialof a shortest linear feedback shift register (LFSR) thategatess-. Such an
integer always exists for finite sequensesWhenL is «, a sequence” is called a semi-
infinite sequence. If there is no such an integer for a sefiniia sequence”, its linear span
is defined to beo. The linear span of the zero sequence is defined to be zeraltiFoately
periodic semi-infinite sequences such/aaiways exists.

Lets” be a sequence of periddover GKq). Any feedback polynomial of” is called a
characteristic polynomialThe characteristic polynomial with the smallest degresalted
theminimal polynomiabf the periodic sequena®. Since we require that the constant term
of any characteristic polynomial be 1, the minimal polynahaf any periodic sequenc®
must be unique. In addition, any characteristic polynommiast be a multiple of the minimal
polynomial.

For periodic sequences, there are two ways to determinelifear span and minimal
polynomials. One of them is given ifl(1) (séel[14, Theoreni f813a proof). The other one
is described inJ1]

3 Cyclic codes from combinatorial sequences
3.1 The classical cyclic codésrq) (D) of a subseD € Z,

Let n be a positive integer, and |I& be a subset oZ,. DefineB; = D+ for all i € Zj.
Then the paif(Zn, B) is called anincidence structurewhere3 = {By, By, - ,Bn_1}. The
incidence matrix M = (i, j) of this incidence structure is anx n matrix, wherem; = 1 if

j € Biandm;j = 0 otherwise. By definitionVip = (i, j) is a binary matrix. WheMp = (i, j)

is viewed as a matrix over G§), its row vectors span a cyclic code of lengtbver GKq),
which is denoted bysrq (D) and called theelassical codeof D. It is easily seen that the
generator polynomial ofr(q) (D) is given by

ged (x” -1, Z) xi> , 2

where the greatest common divisor is computed ove&F

WhenD has certain combinatorial structures, the cyclic codgg) (D) has been well
studied in the literature[([2]. ]11]). This code is closefyated to the code dealt with in the
next section.

3.2 The cyclic code of the characteristic sequence of a $UbseZ,

Let D be a subset df,. Thecharacteristic sequencéB)> of D is given by

1 ifimodneD
s(D)i = {0 otherwise.



A Sequence Construction of Cyclic Codes over Finite Fields 5

The binary sequencg&D)* can be viewed as a sequence of penaaler any field GFq),
and can be employed to construct the cayg, over GKq). For any given pair of andq
with gcd(g, n) = 1, the subsed must be chosen properly, in order to construct a cyclic code
Csp) With desirable parameters. Intuitively, a good choice maydoselect a subsét of Z,
with certain combinatorial structures. It follows from tliscussions in Sectidn 3.1 that

Csp) = Cor(q)(D)". ®)

Hence, in the case that the sequest®ver GHq) has only entries 0 and 1, the sequence
codeCyp) is the complement code of the classical code of its suppbrThes is a collection
between the classical construction of cyclic codes witidieace structures and the sequence
construction of this paper in the special case. Howeverioeapproaches do not include
each other.

LetD be ak-subset ofZ,. The seD is an(n, k, A) difference sein (Zn, +) if the multiset

{x—ylx,ye D}

contains every nonzero elementZyf exactlyA times.
Let D be ak-subset ofZ,. The setD is an (n,k,A,t) almost difference set (AD$)
(Zn, +) if the multiset
{x=ylx,y <D}
containg nonzero elements &, exactlyA times each and the remaining- 1 —t nonzero
elements\ + 1 times each.

Example 1The Singer difference set {{Zy, +) is given byD = log,{x € GF(2™) : Tr(x) =
1} C Zn, and has paramete(@™ — 1,2™1 2™-2) wherea is generator of GR™)* and
n=2"-1.

Its characteristic sequen¢s);>,, wheres = Tr(a') for anyt > 0, amaximum-length
sequencedf period 2" — 1. The minimal polynomial of the Singer sequence is equal to
the minimal polynomiaim, 1(x) of a~! over GH2), and its linear span is. The cyclic
code Cyp) defined by the characteristic sequence of the Singer segusregjuivalent to
the Hamming code with parametg®” — 1,2™ — 1 —m,3] and has generator polynomial
My-1(X). The code ioptimal (perfect)

A proof of the following results can be found in[11][p. 193].

Example 2Letq = p® be a prime power, whengis a prime, andis a positive integer, and
let m > 3 be a positive integer. Let be a generator of Gg™)*. Putn= (q™—1)/(q—1).
Recall that

D={0<i<n:Trgyq(a)=0}CZ,
is the Singer difference set {Zn, +) with parameters

qm—l qul_l qmf2_1
-1’ g-1 " g-1 /°

Let s(D)* be the characteristic sequence®fThen the cyclic cod€S°<D) has parameters

qg"—1 /[p+m-2\° qgri-1
[q71,< o ) s T, @)
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Although the parameters @‘SC@ are known, the following problem is still open.

Open Problem 1 Determine the minimum distance of the cagg) from the characteristic
sequence of the Singer difference set D.

There are many families of difference sets and almost eiffee set® in (Zn,+). In
many cases, the dimension and generator polynomial of #ssiclhl code’srg) (D) or its
complementCsrg) (D)° (hence (g (D)) are known. However, their minimum distances
are open in general. Because of the relatiofiin (3), the difoarand generator polynomial
of the sequence codgp) are known in many cases, but its minimum distance is knowy onl
in some special cases. As this is a huge topic with a lot oftestiwould be infeasible to
survey the developments here. Thus, we refer the readee tmdimograph’[11] for detailed
information.

Cyclotomic classes were employed to define binary sequentesh can be viewed as
sequences over G§) for any prime power. Such sequences give cyclic codgg, over
GF(q). The reader is referred tol[8.,/10]11] for detailed informaati

4 Cyclic codes from a construction of sequences from polynoials over GF(™)

Given a polynomialf (x) on GHg™), we define its associated sequestédy
s =Tr(f(a'+1)) (5)

for all i > 0, wherea is a generator of G™)* and Ti(x) denotes the trace function from
GF(g™) to GHq). The code(; defined by the sequens in (@) is called thecode from the
polynomial f(x) for simplicity.

It was demonstrated in_[10,106,23] that the ca@enay have interesting parameters if
the polynomialf is properly chosen. The objective of this section is to sycselic codes
Cs defined by special polynomialsover GRg™).

4.1 Cyclic codes from special monomials

The following is a list of monomials over GE™) with good nonlinearity (se€[11, Section
1.7] for definition and details).

When they are plugged intbl(5), sequences ovefgBHith certain properties are obtained.
The corresponding sequence codes have interesting paramBte objective of this section
is to introduce the parameters of these cyclic codes.
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4.1.1 Binary cyclic codes from() = x* 3

The monomialf (x) = x? +3is APN over GF22+1). Both the sequence if(5) defined by this
monomial and the codg; are interesting.

Theorem 1 [16] Let m= 2t +1 > 7. Let & be the sequence dfl(5), wheréxf = x2+3.
Then the linear spafs of s° is equal to5m+ 1 and the minimal polynomiaVs(x) of s* is
given by

Mis(%) = (X = 1) M1 )My () My -t (X) My -4 (X) My -2 (X)- (6)

The binary cod& has parameterf2™ —1,2™— 2 —5m, d] and generator polynomid¥ls(x)
of (@), where d> 8.

The codeCs in TheorentL could be optimal in some cases [16]. It would berésting
to settle the following problem.

Open Problem 2 Determine the minimum distance of the c@@dén Theoreni L.

4.1.2 Binary cyclic codes from(%) = x2' 1

Consider the monomial (x) = x?'~* over GR2"), whereh is a positive integer with &
h < [2]. As will be demonstrated below, it gives a binary sequenckkanary code with
special parameters.

Theorem 2 [16] Let s be the sequence & (5), whergxf=x¥-1, 2<h < [9]. Then the
linear spanlLg of S* is given by

M2+ e
Ls—{ 3 , ifmis even

M43 it m s odd. ")

The minimal polynomial

Mi(x) = (x— 1) [T Meea(), (8)
1<2j4+1<2h-1
K(zl})+1:1
N,(i)=0ifi =0 (mod 2 andNy(i) = 1 otherwise.
Let h> 2. Then the binary codé; has parameter®2™—1,2™ — 1—ILg, d] and generator
polynomialMs(x), where

4> 2h-2 1 2if mis odd and h> 2
=12241.

The code(s in Theoreni2 could be optimal in some cases [16]. The lowentswnd
given in Theorenl]2 are quite tight. Nevertheless, it wouldhige if the following problem
could be solved.

Open Problem 3 Determine the minimum distance of the c@idén Theoreni P.
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4.1.3 Binary cyclic codes from(%) = x¢, e= 2(M-1/2 4 2(m-1)/4 _1 and m= 1 (mod 4

Let f(x) = x¢, wheree = 2M-1/2 4 2m-1)/4 _1 andm= 1 (mod 4. It is known thatf (x)
is a permutation of G2™) and is APN.
Lett be a positive integer. We defiffe= 2! — 1. For any odda € {1,2,3,---, T}, define

S(t) - 1, ifa=2"— 1,
a7 [log, L] mod2ifl<a<2'-1
and
kY = ¢l mod 2 ©)

Properties of the binary sequence and binary code definédX)y= x° are documented
in the following theorem.

Theorem 3 [16] Let m> 9 be odd. Let % be the sequence ¢fl(5). Then the linear span
of s” is given by

(m4-7)/4 _1\(m-5)/4 _
M CYTIR8)E it — 5 (mod 8.

(M+7)/4 _1\(m-5)/4
L { MMM e =1 (mod 8,
.

The minimal polynomial

24 -1
MS(X) = (X* l) II:L ma7i72m271 (X) I—lrTFl mq 2j I(X)
1§21’\1§2T 1
(m-1)/a)_,
2j+1
ifm=1 (mod 8; and
m-1
24 -1

YOI L

m
3<2j4+1<2 4 -1
((m-1)/4) _
K2] +1 =1

—i-2

Mg(x) = (x—1) I] m

ifm=5 (mod 8), wherngP+1 was defined if{9).
The binary code’; has parameter$2™ — 1,2™ — 1 — L, d] and generator polynomial

Ms(x), and the minimum weight d has the following bounds:

om-U/4  ifm=5 (mod 8. (11)

q {z<m—1>/4+2 ifm=1 (mod 8,
The code(s in TheoreniB could be optimal in some cases [16]. The lowentiswnd
given in Theoren]2 are reasonably good. It would be intergsth work on the following
problem.

Open Problem 4 Determine the minimum distance of the c@ién Theoreni B or improve
the lower bounds if{11).
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4.1.4 Binary cyclic codes from(%) = x2"2"+1, wheregcd(m, h) = 1

Define f(x) = x¢, wheree = 22" — 2" -1 and gcdm, h) = 1. It is known thatf is APN under
these conditions. In this section, we restti¢o the following range:

mlifm=1 (mod 4,
n3ifm=3 (mod 4
7 s
1ShSqmtitm=0 (mod 4, (12)
™2ifm=2 (mod 4

Some parameters of the binary sequence and the code defirféd)by x° are given in
the following theorem.

Theorem 4 [16] Let h satisfy the conditions df(L2). L&t be the sequence @fi(5). Then the
linear spanlLs of s is given by

m(2M 24 ()13
Lo— { —————-———ifhiseven

o Care (13)
M0 it s odd.

The minimal polynomial

Ms(X) = (x—=1) [] my-i-ann(X) |_| My-2i-1(X)
i= 1<2j+1<2h-1
ng =1

if his even; and

2h-1
Ms(X) = (x—1) r' My amn(X) [ Maz2(X)
1= 3g2rj]+1g2h71
K2+ 1=1

if h is odd, wherex}’, ; was defined ir{9).
The code(; has parameter§2™ — 1, 2™ — 1 — LLs,d] and generator polynomiaVls(x),
and the minimum weight d has the following bounds:

W er
dz{z +2ifhiseven (14)

2n if his odd.

The code(s in Theoren# could be optimal in some cases [16]. It would ber@sting
to attack the following two problems.

Open Problem 5 Determine the minimum distance of the c@@én Theoreni }.

Open Problem 6 Determine the dimension and the minimum weight of the ¢@aé this
section when h satisfies

ml>h>mlifm=1 (mod 4,
"3 >h>m3ifm=3 (mod 4, (15)
"4 >h>M2ifm=0 (mod 4,
m2>h>M2ifm=2 (mod 4.
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4.1.5 Binary cyclic codes from(£) = x>"~2 over GF(2™)

Let p; denote the total number of even integers in the 2-cyclotamogetC; modulo 2" — 1.
We then define

Vi = % mod 2 (16)

for eachi € I', where(; = |G;| andl” denotes the set of coset leaders modwe 2™ — 1.
It is known thatf (x) = x*"~2 over GR2™) is APN. For the binary sequence and code
defined by this monomial, we have the following.

Theorem 5 [9] Let s be the sequence &l (5), wheréf = x*"~2. Then the linear spafs
of s is equal to(n+ 1) /2 and the minimal polynomidls(x) of s* is given by

Mi(X) = [(X). 17
(x) jJ:ljﬂw (x) 17)

The binary codeCs has parameterg2™ — 1,2™1 — 1 d] and generator polynomial
Ms(x). If mis odd, the minimum distance d@fis even and satisfie¢e-d+ 1> n, and the
dual codec; has parameterf2™ —1,2™ d‘], where d- satisfies thatd*)?> —d* +1 > n.

When f(x) = x9"-2 andq > 2, the dimension of the codg over GHq) was settled in
[23]. But no lower bound on the minimum distance@fis developed.

4.1.6 Cyclic codes from(k) = x¥*1, where mi gecdm, k) and g are odd

Let f(x) = x4+, wherem/ gcdm, k) andq are odd. It is known that is planar. Properties
of the sequence and code defined by this monomial are deddrébew.

Theorem 6 [9] Let m be odd. Let® be the sequence dfl(5), wheréxf = x4+, Then the
linear spanLs of s® is equal to2m+ Np(m) and the minimal polynomidls(x) of s° is
given by

Mis(X) = (x— 1)NM™ my 1 (X) My -0 (X), (18)

whereNp(i) = 0ifi =0 (mod p) andNp(i) = 1 otherwise.
The code(Cs has parametergn, n — 2m— Ny(m),d] and generator polynomiahs(x),
where

d=4 ifg=3and m=0 (mod p),
4<d<5ifg=3andm#Z0 (mod p),
d=3 ifg>3and m=0 (mod p),
3<d<4 ifg>3andmZ0 (mod p).

Extending the work of [25], one can determine the weightrittistion of C;-. With the
MacWilliams identity, one can settle the minimum distantthe codec, in Theoreni 6.
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4.1.7 Cyclic codes from(k) = x(d"~1/(@-1)

Let h be a positive integer satistying the following condition:

< { (m—1)/2if mis odd and (19)

1shs m/2 if mis even.

LetJ >t > 2, and letN(J,t) denote the total number of vectofis, i, --,i;_1) with
1<i;<iz<---<it_1 < J. By definition, we have the following recursive formula:

J-1
N(J,t) = z N(j,t—1). (20)
j=1
It is easily seen that
N(J,2)=J—1foralldJ>2 (21)
and
N3 = BZYO=2 g3 22)
It then follows from [20),[(21) and(22) that
=t 1I-1J-2) JFP-6)2+113-6
N(J,4) =Y N(j,3) = = . (23)
2, 22 5
By definition, we have
N(t,t) =1forallt > 2. (24)

For convenience, we defif&J,1) = 1 for allJ > 1.

Theorem 7 Let h satisfy the condition dE(19). L&t e the sequence &l (5), whergxf =
x(@'-1/(a-1) Then the linear spaks and minimal polynomials(x) of s* are given by

Ls= (Np(h)+hzlhlep(hu)N(u,t)> m+ Ny(m)
t=1u=1

and

Ms(x) = (x= )™ ™m0 ] My . (X)
1<u<h-1
Np(h-u)=1

h-1

rl I_l I—l m 7<q°+z',11qij+q“)(x)‘
t=2 t<ush-1 1<jj<--<iii<u O =
Np(h-uw=1""

The code(; has parameterfn, n— Ls, d] and generator polynomia¥s(x).

Open Problem 7 Determine the minimum distance of the c@dén Theorenil? or develop
a tight lower bound on it.

As a corollary of Theorerll 7, we have the following.
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Corollary 1 Let h= 3. The code(s of Theoreni]7 has parametdirs n — s, d] and gener-
ator polynomialMs(x) given by

M(X) = (X— l)Np(m) My (X)My-1-a(X) My-1-¢2 (%) My-1-0-a2 (x)

if p# 3, and
Mis(x) = (x—1)"™my 14 ()M, 1@ ()M, 1 4 (%)
if p= 3, where
Ls= { 3m-+ Ny(m) if p = 3. (25)
In addition,

3<d<8if p=3andNy(m) =1,
3<d<6if p=3andNy(m) =0,
3<d<8ifp>3.

Open Problem 8 For the code(; of Corollary[d, do the following lower bounds hold?

5 when p=3andN,(m) =
4 when p=3andNy(m) =
ol
ol

— ) 6 when p>3andNy(m) =
5 when p>3andN,(m) =

1
0
1
0
4.1.8 Cyclic codes from(k) = x(3'+1)/2

Let h be a positive integer satistying the following conditions:

his odd,

gedm h) =1,

5 { (m=1)/2if mis odd and (26)
—  — | m/2if mis even.

Theorem 8 Let h satisfy the third condition df (P6). Let e the sequence dfl(5), where
f(x) = x@"+1/2, Then the linear spah.s and minimal polynomials(x) of $° are given by

]LS—N3 (;Na —|+1)> m+ (ZN h t +thh 1N3 —|t+l)N(|t )) m

and

h-1
Mg(x) = (x— 1) my 2 ()N D my 5 (x) I_l [ m 7(2+25:13ij)(x) X

=l1<i;<<ig<h—1 @
My i3 ( |1 I‘! LI 41 (%,
1<u<h-1 l<l1< 1 1<ig<- <|l 1<it a
N3z(h—u+1)=1 3(h—it+1)=1

whereN3(j) andN(j,t) were defined in Sectiofs?.1 dnd 411.7 respectively.
Furthermore, the codes has parameterin, n—Ls, d] and generator polynomid¥s(x).
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As shown in Theorerl8, the linear span and the minimal polyabaf the sequence
s” has a complex formula. It looks difficult to discover furth@operties of the code in
Theoreni 8.

Open Problem 9 Determine the minimum distance of the c@dén TheoreniB or develop
a tight lower bound on it.

As a corollary of Theorerl8, we have the following.

Corollary 2 Let h= 3. The code(; of TheoreniB has parametefs,n — L, d] and the
generator polynomialMs(x) given by

Mis(x) = (x— 1) m-s (X) M2 (X) M5 () My 20 (X) Meg-22.(X) My 23 (X) M-14(X),
wherelLs = 7m+ N3(m). In addition,

5<d < 16if Ny(m) = 1,
4<d<16if N3(m) =0,

Open Problem 10 For the code(; of Corollary[2, do the following lower bounds hold?

q> 9 whenNp(m) =1,
~ | 8 whenNy(m) =0.

4.2 Cyclic codes from Dickson polynomials

In this section, we survey known results on cyclic codes fidickson polynomials over
finite fields. All the results presented in this subsectiomedrom [12].

4.2.1 Dickson polynomials ov&Fq™)

In 1896, Dickson introduced the following family of polynéais over GEg™) [[7]:

1) i ) .
outea) = 5 o (M) a2, @7)

wherea € GF(g™) andh > 0 is called theorder of the polynomial. This family is referred
to as theDickson polynomials of the first kind
Dickson polynomials of the second kind over @) are defined by

En(xa) = i () (-, 8)

wherea € GF(q™) andh > 0 is called theorder of the polynomial.

Dickson polynomials are an interesting topic of mathensadicd engineering, and have
many applications. For example, the Dickson polynomiégx,a) = x° — ux— u?x over
GF(3™) are employed to construct a family of planar functions [¢, Bed those planar
functions give two families of commutative presemifieldgnes, several classes of linear
codes|[[&,25], and two families of skew Hadamard differerate E.5]. The reader is referred
to [21]] for detailed information about Dickson polynomialls subsequent subsections, we
survey cyclic codes derived from Dickson polynomials.
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4.2.2 Cyclic codes from the Dickson polynomigl X, a)

Sinceq is a power ofp, it is known thatDpp(x,a) = Dn(x,a)? [21, Lemma 2.6 ]. It then
follows thatD . (x,a) = x** for all a € GF(q™).

The codeCs over GHq) defined by the Dickson polynomidx) = Dy (x,a) = x*" over
GF(g™) has the following parameters.

Theorem 9 The codeCs defined by the Dickson polynomialDx, a) = x** has parameters
[n,n—m—5(1),d] and generator polynomials(x) = (x— 1)°Ym,_x (x), where

4ifg=2andd(1) =1
3ifg=2andd(1) =0,
3ifg>2andd(1l) =1
2ifg>2andd(1) =0

and the functiord(x) and the polynomial g (x) were defined in Sectién 2.1.

Whenq = 2, the code of Theorefd 9 is equivalent to the binary Hamminighteor its
even-weight subcode, and is thus optimal. The code is aifhténal or almost optimal with
respect to the Sphere Packing Bound.

4.2.3 Cyclic codes from fix,a) = x*> — 2a

In this section we consider the codedefined byf (x) = Da(x,a) = x> — 2a over GRg™).
Whenp = 2, this code was treated in Sectlon 412.2. When 2, the following theorem is a
variant of Theorem 5.2 in]9], but has much stronger conohsion the minimum distance
of the code.

Theorem 10 Let p> 2 and m> 3. The codeCs defined by x) = Dy(x,a) = x* — 2a has
parametergn,n—2m—9(1— 2a),d] and generator polynomial

Ms(x) = (x— 1) 2 my 1 (x)mg-2(x),

where
4 ifqg=3andd(1—2a) =0,
d— 5 ifg=3andd(1—2a) =1,
) 3 ifg>3andd(1-2a) =0,
4 ifg>3andd(l—-2a) =1,

and the functio®d(x) and the polynomialy; (X) were defined in Sectign2.1.

The code of Theorei 10 is either optimal or almost optimakfbm > 2.

4.2.4 Cyclic codes from §Ix,a) = x3 — 3ax

In this section we treat the codg defined by the Dickson polynomi&liz(x, a) = x® — 3ax.
We need to distinguish among the three capes:2, p=3 andp > 5. The case thgp =3
was covered in Sectidn 4.2.2. So we need to consider onlywhegmaining cases.

We first handle the casp= p = 2 and state the following lemma.
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Lemmal Letgq= p=2. Let < be the sequence @ (5), wheréxf = D3(x,a) = x° — 3ax=
x3 +ax. Then the minimal polynomidis(x) of $* is given by

o (x= 1)5(l)mq s(X) ifa=0,
Ms(x) = { (x—1)3+m, 1 (X)my s(x) ifa#0

where m3-;(x) and the functiord(x) were defined in Sectién 2.1, and the linear sparof
s” is given by

Lo— o(1)+m ifa=0,
ST 13(l+a)+2mifa#£0.

The following theorem gives information on the code

Theorem 11 Let g= p= 2 and let m> 4. Then the binary codg€; defined by the sequence
of Lemmd]l has parametefs,n— Lg,d] and generator polynomiaMs(x), whereMs(x)
andLs are given in Lemmi 1, and

(1) =
g =
5if a7é Oandd(1+
6ifa#0andd(1+
Remark 1Whena = 0 andd(1) = 1, the code is equivalent to the even-weight subcode of
the Hamming code. We are mainly interested in the casat#dd. Whena = 1, the code’s
is a double-error correcting binary BCH code or its ever-kkbcode. Theorem]11 shows
that well-known classes of cyclic codes can be constructiédl Rickson polynomials of
order 3. The code is either optimal or almost optimal.

Now we consider the casg= p', wherep > 5 or p= 2 andt > 2.

Lemma 2 Letq= p!, where p>5o0r p=2andt> 2. Let $° be the sequence @fl(5), where
f(x) = D3(x,a) = x3 — 3ax. Then the minimal polynomidlis(x) of $” is given by

(- 1Py s (9mg (9 fa=1
M50 = { e~ Dt Qom0 a1

where m3-;(x) and the functiord(x) were defined in Sectién 2.1, and the linear sparof
s” is given by

L _J3=2)+am ifa=1
ST 18(1+a)+3mifa# L

The following theorem provides information on the cade

Theorem 12 Let q= p', where p>5or p= 2 and t> 2. Then the code; defined by the
sequence of Lemrh& 2 has paramefars — LLs, d] and generator polynomid¥ls(x), where
Ms(x) andLg are given in Lemm@l2, and

d>3ifa=1,
d>4ifa#landd(1—3a) =0,
d>5ifa#landd(l—3a) =1,
d>5ifa#1landd(1—3a) =0and q= 4,
d>6ifa#landd(l—3a)=1and q=4
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Remark 2The code(s of Theoren{ IR is either a BCH code or the even-like subcode of a
BCH code. One can similarly show that the code is either agtonalmost optimal.

Wheng=4,a+#1,8(1—3a) =1, andm > 3, the Sphere Packing Bound shows that
d = 6. But the minimum distance is still open in other cases.

Open Problem 11 Determine the minimum distance d for the caij®f Theoreni 112.

4.2.5 Cyclic codes from fix,a) = x* — 4ax? + 2a?

In this section we deal with the cod& defined by the Dickson polynomidd,(x,a) =
x4 — 4ax + 2a2. We have to distinguish among the three cages:2, p= 3 andp > 5. The
casep = 2 was covered in Sectidn 4.2.2. So we need to consider onlywiheemaining
cases.

We first take care of the cag= p = 3 and have the following lemma.
Lemma 3 Let g= p=3and m> 3. Let $’ be the sequence @ (5), wherexf = D4(x, a) =
x* — 4ax? + 2a%. Then the minimal polynomialls(x) of s* is given by

)My
(x— 1)U, «(xm () ifa =1,
(x—1)%1-a-2)m , (x)my2(X)My -1 (X) otherwise,

(x—1)3Vmg o (x (x)ifa=0,
M(x) = { f

where ng-j(x) and the functiord(x) were defined in Sectidn 2.1, and the linear sjparof
s” is given by

o(1)+2m ifa=0,
Lo—{ 3(1)+2m fa=1,
3(1—a—a?) +3m otherwise.

The following theorem gives information on the code

Theorem 13 Let g= p= 3 and m> 3. Then the cod&; defined by the sequence of Lemma
[@ has parameterfn,n — ILg,d] and generator polynomidWls(x), whereMs(x) and LLs are
given in Lemm@l3, and

d=2ifa=1,

d=3ifa=0m=0 (mod 6),
d>4ifa=0m#0 (mod 6),
d>5ifa’?#£aandd(1—a—a’) =0,
d=6ifa’?#£aandd(l—a—a?) = 1.

Remark 3Whena = 1, the code of Theorem L3 is neither optimal nor almost ogtiftze
code is either optimal or almost optimal in all other cases.

Open Problem 12 Determine the minimum distance d for the caij@f Theoreni 113.

Now we consider the casg= p', wherep > 5 or p= 3 andt > 2.
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Lemma4 Let m> 2 and q= p!, where p>5or p=3andt> 2. Let $ be the sequence
of 8), where fx) = D4(x,a) = x* — 4ax2 + 2a2. Then the minimal polynomials(x) of s°
is given by

M(x) = { (x—1)50my -« (0my = ()my=(x) ifa= 1,

(x—1)3-4+2) b mo-(x) ifa g {3, 3},

{ (x—=1)20my -« (X)my s ()my1(x) if a = 3,
1

where m3-;(x) and the functiord(x) were defined in Sectién 2.1, and the linear sparof
s” is given by

L. [3(1)+3m ifae{3,3},
$7 | 8(1—4a+ 2a%) +4m otherwise.

The following theorem delivers to us information on the code

Theorem 14 Let m> 2 and q= p', where p> 5 or p= 3 and t> 2. Then the code’s
defined by the sequence of Lenftha 4 has parameters- s, d] and generator polynomial
Ms(x), whereM;(x) andLLs are given in Lemm@l4, and

d>3ifa= %,
d>4ifa=3,
d>5ifa¢g {g, %} andd(1—4a+a?) =0,
d=6ifa¢{3,5} andd(1—-4a+a?) =1.
Remark 4Except the cases thate {2, 1}, the code(; of Theoreni Il is either optimal or

almost optimal.

Open Problem 13 Determine the minimum distance d for the caij@®f Theoreni 14.

4.2.6 Cyclic codes from §¥x, a) = x° — 5axC + 5a?x

In this section we deal with the codg defined by the Dickson polynomids(x,a) =
x> — 5ax® + 5a’x. We have to distinguish among the three cages:2, p=3 andp > 7.
The casep = 5 was covered in Sectidn 4.2.2. So we need to consider onlgethaining
cases.

We first consider the cag= p = 2 and have the following lemma.

Lemma5 Letq= p=2and m> 5. Let & be the sequence @ (5), whergxf = Ds(x,a) =
x> — 5ax® + 5a?x. Then the minimal polynomialls(x) of s is given by

(x—1)3Ym, s(x) ifa=0,
Mg(X) = { (x—1)3Wmy s(x)my s(x) if 1+a+as =0,

(Xf 1)6<1) ﬂi2:0 My—ai+1) (X) if a+ a2 —+ a4 7é 0

where m3-;(x) and the functiord(x) were defined in Sectién 2.1, and the linear sparof
s” is given by

5(1)+2m ifl+a+ad=0,

5(1)+m ifa=0,
Ls=
&(1)+3m ifat+a®+a*£0.
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The following theorem describes parameters of the qade

Theorem 15 Let g= p= 2 and m> 5. Then the cod&; defined by the sequence of Lemma
has parameterin,n —Ls,d] and generator polynomiabls(x), whereMs(x) and LLs are
given in LemmaAl5, and

d=2ifa=0andd(1) =0andgcd5,n) =5,
d=3ifa=0andd(1) =0andgcd5,n) =1,
d=4ifa=0andd(1) =1,

d>3if 1+a+a®=0and3(1) =0,
d>4if1+a+a®=0andd(1) = 1,
d>7ifat+a?+a*#0andd(1) =0,
d=8ifa+a’+a*#0andd(1) =1

Remark 5The code of Theoreiln 15 is either optimal or almost optimak €hde is not a
BCH code when % a+a® = 0, and a BCH code in the remaining cases.

Open Problem 14 Determine the minimum distance d for the ca@eof Theoreni 15 for
the three open cases.

We now consider the cdp,q) = (2,4) and have the following lemma.

Lemma 6 Let (p,q) = (2,4) and m> 3. Let $° be the sequence dfl(5), wheréxf =
Ds(x,a) = x> — 5ax® 4 5a2x. Then the minimal polynomialls(x) of s* is given by

(x—1)3Wmy s(x) ifa=0,
Me(X) = { (x—1)3Wmy s(X)my-3(X)My-2(X) ifa=1,
(x— 1P my s (x)my s ()M 2()My 1 (X) if a+a? #0

where m3-;(x) and the functiord(x) were defined in Sectién 2.1, and the linear sparof
s” is given by

Ls=<¢ 0(1)+3m ifa=1,

5(1)+m ifa=0,
8(1)+4m ifa+a?#0.

The following theorem supplies information on the cade

Theorem 16 Let (p,q) = (2,4) and m> 3. Then the cod& defined by the sequence of
Lemmd® has parameteps,n— Lg,d] and generator polynomidVis(x), whereMs(x) and
Ls are given in Lemm@al6, and

d=2ifa=0andd(1) =0andgcd5,n) =5,

d=3ifa=0andgcd5,n) =1,

d>3ifa=1,

d>6ifat+a®+#0andd(1) =0,

d>7ifa+a?#0andd(1) = 1.

Examples of the code of Theorém] 16 are documented in arXd6.4370, and many of
them are optimal.

Open Problem 15 Determine the minimum distance d of the cafén Theorenfi 16.

We now consider the ca$e, q) = (2,2'), wheret > 3, and state the following lemma.
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Lemma 7 Let(p,q) = (2,2') and m> 3, where t> 3. Let $° be the sequence @i (5), where
f(x) = Ds(x,a) = x° — 5ax® + 5a?x. Then the minimal polynomialls(x) of s* is given by

M Me i (X) if 14+a+a?=0,

(x—1)°Pmys (X)mg-«(x)my-1(x) ifa=0,
Mi(x) =
(x—1)30+at@) M5 my i (x) ifat+a?+ad+#0,

where m3-;(x) and the functiord(x) were defined in Sectién 2.1, and the linear sparof
s” is given by

3(1)+4m if1+a+a?=0,

o(1)+3m ifa=0,
Le=
5(1)+5m ifa+a?+ad#0.

The following theorem provides information on the cade

Theorem 17 Let(p,q) = (2,2'), where t> 3. Then the cod& defined by the sequence of
Lemmd¥ has parameteps,n— Lg,d] and generator polynomia¥ls(x), whereMg(x) and
Ls are given in Lemm@al 7, and

d>3ifa=0andd(1) =0,
d>4ifa=0andd(1) =1,

d>5if l+a+a?=0,
d>6ifat+a?+a3#0andd(1) =0,
d>7ifat+a?+a’#0andd(1) =1.

Open Problem 16 Determine the minimum distance d of the cagén Theoreni 117.

Examples of the code of Theordml 17 can be found in arXiv:¥Z¥), and many of
them are optimal. The code of TheorEn) 17 is not a BCH code ke, and a BCH code
otherwise.

We now consider the casg= p = 3 and state the following lemma and theorem.

Lemma 8 Let g= p=3and m> 3. Let $° be the sequence @ (5), wherexf = Ds(x, a) =
x° — 5ax® + 5a?x. Then the minimal polynomialls(x) of s° is given by

Mq(x) = (x— 1)5<1+f=1+26i)mcx s(X)My-+(X)My 2(x) ifa—a® =0,
(x—1)2H220 10, mgi(x) ifa—a®#0,

where ng-j(x) and the functiord(x) were defined in Sectidn 2.1, and the linear sparof
s” is given by

L_ 3(1+a+2a?)+3m ifa—a®=0,
ST 8(1+a+2a%) +4m ifa—af #0.

The following theorem gives information on the code

Theorem 18 Let g= p= 3 and m> 3. Then the cod&; defined by the sequence of Lemma
[8 has parameterfn,n — L, d] and generator polynomidWls(x), whereMs(x) and ILs are
given in Lemm@l8, and

{d>4ifa—a6=0,

d>7ifa—a%#0andd(1+a+2a?) =0,
d>8ifa—a®#0andd(1+a+2a2) =1
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Open Problem 17 Determine the minimum distance d of the c@@én Theoreni_I8 (our
experimental data indicates that the lower bounds are tleeigip values of d).

Examples of the code of Theordml 18 are described in arXiGH#370, and some of
them are optimal.

We now consider the cag@,q) = (3,3"), wheret > 3, and state the following lemma
and theorem.

Lemma9 Let(p,q) = (3,3') and m> 2, where t> 2. Let $° be the sequence &fi (5), where
f(x) = Ds(x,a) = x° — 5ax® + 5a?x. Then the minimal polynomialls(x) of s* is given by

x: 1)%@ D my s (X)My -4 (X)My s (X)My 2(X) if 1+a2 =0,
— 1A 8 mg (x) if (a+1)(@2+1) £0,

where ng-j(x) and the functiord(x) were defined in Sectidn 2.1, and the linear sjparof
s” is given by

(x— 1PWm, s()my (Mg (M 1()  if 1+a—0,
|
X

o(1) +4m ifa+1=0,
Ls=<{ &(a—1)+4m ife?+1=0,
8(1+a+2a2)+5m if (a+1)(a®+1) #0.

The following theorem supplies information on the cade

Theorem 19 Let (p,q) = (3,3') and m> 2, where t> 2. Then the cod& defined by the
sequence of Lemri& 7 has paramefars — LLs, d] and generator polynomid¥ls(x), where
Ms(x) andLg are given in Lemm@l9, and

d>3ifa=-1andd(1) =0,
d>4ifa=-1andd(l) =1,
d>5ifa?=—1andd(a—1) =0,
d>6ifa’?=—-landd(a—1) =1,

d>6if (a+1)(a®+1) #0andd(1+a+2a%) =0,
d>7if (a+1)(a®+1) #0andd(1+a+2a%) = 1.

Open Problem 18 Determine the minimum distance d of the caén Theorenfi 19.

Examples of the code of Theordml 19 are available in arXiv12870, and some of
them are optimal. The code is a BCH code, except in the casa tha-1.
We finally consider the cage> 7, and present the following lemma and theorem.

Lemma 10 Let p> 7 and m> 2. Let $° be the sequence ¢fl(5), wheréxf = Ds(x,a) =
x° — 5ax® + 5a?x. Then the minimal polynomialls(x) of s° is given by

(x— 1)2-Sa520my 5 (x)my-+ ()M 2 (X)My 1 (X) ifa =2,
(x— )-S50 my 5 (x) My« ()M s (X) My (X) ifa = 4,
(x—1)81-52+52) m o (X)my -4 (X)My-3(X) My 2(X) if a2 —3a+1 =0,
(x—1)20-525) 0 ) my () if (@2 — 3a+ 1) (a—2)(3a—2) #0,

Ms(x) =

where m3-;(x) and the functiord(x) were defined in Sectién 2.1, and the linear sparof
s” is given by

L. [3(1-5a+ 5a%) +4m, if (a® —3a+1)(a—2)(3a—2) =0,
$7 | 8(1—5a+ 5a?) + 5m, otherwise.
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The following theorem provides information on the cade

Theorem 20 Let p> 7 and m> 2. Then the code’ defined by the sequence of Lemma
[I0 has parameterg, n— s, d] and generator polynomid¥is(x), whereMs(x) and L are
given in Lemm&10, and

d>3ifa=2andd(1-5a+5a%) =0,
d>4ifa=2andd(1-5a+5a%) =1,
d>4ifa=2andd(1-5a+5a%) =0,

d>5ifa= g andd(1—5a+5a%) =1,
d>5if 1-3a+a?=0andd(1—5a+5a%) =0,
d>6if 1-3a+a?=0andd(1—5a+5a%) =1,
d>6if (a2 —3a+1)(a—2)(3a—2) #0andd(1—-5a+5a%) =0,
d>7if (22—3a+1)(a—2)(3a—2) #0andd(1—5a+5a%) = 1.

Open Problem 19 Determine the minimum distance d of the caén Theoreni 20.

Examples of the code of Theordml 20 can be found in arXiv:#3¥&), and some of
them are optimal. The code is a BCH code, except in the Gase,2/3}.

4.2.7 Cyclic codes from other;[x,a) fori > 6

Parameters of cyclic codes frob)(x,a) for smalli could be established in a similar way.
However, more cases are involved and the situation is gettiore complicated whergets
bigger. Examples of the cod& from D7(x,a) andD11(x, &) can be found ih arXiv:1206.4370.

4.2.8 Cyclic codes from Dickson polynomials of the second ki

Results on cyclic codes from Dickson polynomials of the selckind can be developed in
a similar way. Experimental data indicates that the coda® fihe Dickson polynomials of
the first kind are in general better than those from the Dicksolynomials of the second
kind, though some cyclic codes from Dickson polynomialshef second kind could also be
optimal or almost optimal.

4.2.9 Comments on the cyclic codes from Dickson polynomials

Itis really amazing that in most cases the cyclic codes ddrikom the Dickson polynomials
of small degrees within the framework of this paper are oatior almost optimal (see
arXiv:1206.4370 for examples of optimal codes).

We had to treat Dickson polynomials of small degrees caseabg over finite fields
with different characteristics as we do not see a way ofitifgahem in a single strike. The
generator polynomial and the dimension of the codes depeadilis on the degree of the
Dickson polynomials and the characteristic of the base.field

5 Concluding remarks
Recall that every cyclic code over a finite field can be exgess(C; for some sequence

s”. This approach can produce all cyclic codes over finite figldsuding BCH codes. It is
thus no surprise that some of the codes from Dickson polyalsnaire in fact BCH codes.
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Since it is a fundamental approach, it produces both goodaddtyclic codes. It is open
what sequences over a finite field give cyclic codes with ogitiparameters.

Though a considerable amount of progress on this approamnsfructing cyclic codes
with sequences has been made, a lot of investigation sheufdrther done, as there is a
huge number of constructions of sequences in the literaflme reader is cordially invited
to join the journey in this direction.
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