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Abstract We define a set of matrices over a finite alphabet where all possible
overlaps between any two matrices are forbidden. The set is also enumerated by
providing some recurrences counting particular classes of restricted words. More-
over, we analyze the cardinality of the set according to certain parameters related
to the construction of the matrices.
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1 Introduction

In the present paper, moving from [6], we define a set of non-overlapping matri-
ces over a finite alphabet having cardinality q ≥ 2. Roughly speaking, two matrices
(possibly the same) are non-overlapping (self non-overlapping) when it is not pos-
sible to shift one on the other one in such a way that the entries of the intersection
match (note that the notion of self non-overlapping matrices coincides with the
one of unbordered pictures proposed in [3]).

More precisely, given two matrices A and B, we can imagine to make a rigid
movement of B on A such that B glides on A. At the end of each slipping, which
can be geometrically interpreted as a translation in a given direction on the plane,
a (non empty) common area is formed. This common area can be seen as the usual
intersection between the two rectangular arrays containing the entries of A and
B, which is, in turn, a rectangular array constituted by a finite number of 1 × 1
cells of the discrete plane. Each cell of the common area contains an entry of A
and an entry of B. If in each cell of the common area the entry of A coincides
with the entry of B, then A and B are overlapping matrices. On the contrary, if
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for any translation we never find an overlapping common area, then A and B are
non-overlapping matrices.

The matrices of the set we are going to define are required to have some fixed
entries on their frame while the rows are subjected to some constraints, including
pattern avoidance requirements.

The notion of pattern is one of the most studied in combinatorics, starting from
[24] where it was introduced for permutations. Successively it has been considered
also in the context of many other combinatorial structures, such as set partitions
[23,29], words or binary words [12,13,17], trees [28] and lattice paths [10]. Some of
these structures have also been endowed with a partial order structure obtaining
in some cases several interesting results [4,11,15].

For our purpose we are going to consider words avoiding consecutive patterns
(factors). In particular, each row of the matrices of the set must avoid some speci-
fied consecutive patterns of length k depending on the entries used to fill (part of)
the frame of the matrices. In the case of the binary alphabet, these consecutive
forbidden patterns are simply 0k and 1k (see [6]). A first straightforward exten-
sion to a q-ary alphabet Σ (q ≥ 2) consists in choosing two symbols of Σ both
for the entries of the frame of the matrices and, consequently, for the forbidden
patterns. Actually, a deeper inspection of the matter reveals the possibility of giv-
ing a more general definition of the matrices. This new approach leads to a set of
non-overlapping matrices whose cardinality, in some cases, turns out to be greater
than the one of the set obtained with the above mentioned simple extension. In
particular, here a number p ≥ 2 of symbols of Σ (so p ≤ q) can be considered for
the entries of the frame of the matrices.

The present paper can be seen as an extension to the bidimensional case of
the theory of non-overlapping strings. In literature, in the linear case, sets of non-
overlapping strings are said cross-bifix-free sets (or codes). Recently, the effort of
the researches has been devoted to the definition of sets having cardinality as large
as possible [7,8,14,16,18], once the length n of the strings and the cardinality q

of the alphabet are fixed. In our work we follow the same trend. In particular,
once fixed the dimension m × n of the matrices, we give some results about the
cardinality of our sets depending on k, p and q.

The increasing interest for digital image processing validates several recent
works on the theory of two-dimensional languages [1,2,26,27], which is an addi-
tional area where our work can be placed, even if most of the classical matters
on formal languages are not here considered. Moreover, our set can be seen as a
bidimensional code which is a set of matrices X over Σ such that any matrix over
Σ has only one tiling decomposition involving elements of X (see [2]).

The paper is organized as follows: after the definition of the main set (Section
2), we give the enumeration of it by means of recurrence relations and their gener-
ating functions, providing also some results on the asymptotics of the number of
matrices (Section 3). In Section 4 we give some considerations about the maximal
size of our set depending on specific parameters. We conclude (Section 5) with
some open problems and further developments.
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2 A set of non-overlapping q-ary matrices

Let Σ = {0, 1, . . . , q − 1} be a finite alphabet with q different symbols, with
q ≥ 2. Let Mm×n,q be the set of all the matrices with m rows and n columns over
Σ. Two distinct matrices A,B ∈ Mm×n,q are said non-overlapping if there are no
translations in any direction of A on B (of B on A) such that the entries of the
intersection match. In the case A = B, the matrix is said self non-overlapping (or
unbordered). The above concept can be also formally defined as [6] involving block
matrices. Nevertheless, here we do not report the related definitions.

Fixed the dimension m × n of the matrices, we now define a possible non-
overlapping set where the matrices have a particular structure involving some
of the entries on the frame of the matrix. More precisely, two symbols of Σ are
chosen and used to fill part of the frame of the matrix. Without loss of generality
we consider 0 and 1. The following definition moves from the one provided in [6]
for the binary alphabet, and here it is adapted for our purpose to q-ary alphabet.

Definition 1 Let 2 ≤ k ≤
⌊
n
2

⌋
. We denote S(k)m×n,q ⊂ Mm×n,q the set of the

matrices A = (ai,j) satisfying the following conditions:

• A1 = 0k−11w101k−1, where v1 = 1w10 is a q-ary string of length n − 2k + 2
avoiding both 0k and 1k;

• for i = 2, . . . ,m − 1, Ai = wi1 = vi, where vi is a q-ary string of length n

avoiding both 0k and 1k;

• Am = 0kvm1k, where vm is a q-ary string of length n − 2k avoiding both 0k

and 1k.

(With A1, Ai and Am we denote the first, the i-th and the m-th row of the
array A.)

In other words, some entries on the frame of a matrix in S(k)m×n,q are fixed. For

example, a matrix in S(3)6×10,4 is represented in Figure 1. Note that the patterns 222
and 333 are allowed in vi, while 000 and 111 are forbidden in vi, with i = 1, 2, . . . , 6.


0 0 1 1 3 2 2 0 1 1
2 3 1 1 2 2 2 2 0 1
3 3 3 2 1 2 1 2 1 1
1 1 2 0 0 2 3 1 3 1
0 1 0 3 3 2 1 0 2 1
0 0 0 2 1 0 2 1 1 1



Fig. 1: A matrix in S(3)6×10,4

The following proposition holds.

Proposition 1 The set S(k)m×n,q ⊂ Mm×n,q is non-overlapping, for each k with 2 ≤
k ≤

⌊
n
2

⌋
and m ≥ 2.
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Proof. We proceed ad absurdum. If two matrices belonging to S(k)m×n,q are
overlapping, then we have two cases. In the first case, as in the top of Figure 2,
one of the two matrices has to contain a forbidden pattern of length k against

the hypothesis that it is in S(k)m×n,q. The second case, pictured in the bottom of
Figure 2, occurs when the fixed entries of the frames of the two matrices overlap.
In this case at least one of these entries is not defined.

0 0 1

0 0 0

0 0 1

0 0 0

0 1 1

1

1

1

1

111

0 1 1

1

1

1

1

111

0 0 1 0 1 1

1

1

1

1

1100 1

0 1

0 0 0

1 1

1

1


1

111

00

Fig. 2: In the top: grey entries are forbidden; in the bottom: grey entry contains different
values and it is not defined

�

We now propose a possible extension of the previous definition leading to a
new set of matrices involving more than two values for the fixed entries on the
frame of the matrices.

Definition 2 Let P = {0, 1, . . . , p−1} ⊆ Σ, with 2 ≤ p ≤ q. Let {P1, P2} a partition
of P (i.e. P1 ∪ P2 = P and P1 ∩ P2 = ∅). Without loss of generality we can assume
P1 = {0, 1, 2, . . . , j− 1} and P2 = {j, j+ 1, . . . , p− 1}. For each (α, β) ∈ P1×P2 and
2 ≤ k ≤

⌊
n
2

⌋
we denote

S(k,p)m×n,q =
⋃

(α,β)

S
(k,p)
m×n,q(α, β)

where S
(k,p)
m×n,q(α, β) is the set of matrices A = (ai,j) satisfying the following con-

ditions:

• A1 = αk−1βw1αβ
k−1, where v1 = βw1α is a q-ary string of length n − 2k + 2

avoiding all the patterns 0k, 1k, 2k, . . . , (p− 1)k;
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0 0 1 ∗ ∗ ∗ 0 1 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1
0 0 0 ∗ ∗ ∗ 1 1 1


0 0 2 ∗ ∗ ∗ 0 2 2
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 2
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 2
0 0 0 ∗ ∗ ∗ 2 2 2



Fig. 3: The structure of the matrices in S(3,3)4×9,4 considering P1 = {0} and P2 = {1, 2}

• for i = 2, . . . ,m − 1, Ai = wiβ = vi, where vi is a q-ary string of length n

avoiding all the patterns 0k, 1k, 2k, . . . , (p− 1)k;

• Am = αkvmβ
k, where vm is a q-ary string of length n − 2k avoiding all the

patterns 0k, 1k, 2k, . . . , (p− 1)k.

(With A1, Ai and Am we denote the first, the i-th and the m-th row of the

array A ∈ S(k,p)
m×n,q(α, β).)

Note that, if p = 2, then S(k,p)m×n,q = S(k)m×n,q given in Definition 1. In Figure 3, we

illustrate the structure of the matrices in S(3,3)4×9,4 with P1 = {0} and P2 = {1, 2},
pointing out that the entries marked with ∗ must avoid 000, 111 and 222.

With the same argument used in Proposition 1, it is not difficult to prove the
following proposition.

Proposition 2 The set S(k,p)m×n,q ⊂ Mm×n,q is non-overlapping, for each k, p,m, n

with 2 ≤ k ≤
⌊
n
2

⌋
, 2 ≤ p ≤ q and m ≥ 2.

3 The enumeration of S(k,p)
m×n,q

In this section we are going to enumerate the set S(k,p)m×n,q. First of all we can
observe that, given P = P1 ∪P2 = {0, 1, 2, . . . , j− 1}∪ {j, j+ 1, . . . , p− 1}, then, for
each (α, β) ∈ P1 × P2,

|S(k,p)m×n,q| =
∑
(α,β)

|S(k,p)m×n,q(α, β)| ,

Since, |S(k,p)m×n,q(α, β)| = |S(k,p)m×n,q(α
′, β′)| for any (α, β), (α′, β′) ∈ P1 × P2, then,

fixed j with 1 ≤ j ≤ p− 1, we have

|S(k,p)m×n,q| = j(p− j)|S(k,p)m×n,q(α, β)| (1)

for some (α, β) ∈ P1×P2. In the above formula j(p− j) counts the number of pairs
(α, β) which is of course maximum for j = bp2c.

In order to evaluate |S(k,p)m×n,q(α, β)| it is easy to realize that it depends on the

number of rows satisfying the constraints of Definition 2. We denote by R
(k,p)
n,q the

set of q-ary strings of length n starting with α, ending with β and avoiding all

the patterns 0k, 1k, 2k, . . . , (p− 1)k. Let Z
(k,p)
n,q be the set of q-ary strings of length

n ending with β and avoiding all the patterns 0k, 1k, 2k, . . . , (p − 1)k. Moreover,

let B
(k,p)
n,q the set of q-ary strings of length n avoiding 0k, 1k, 2k, . . . , (p − 1)k. We
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indicate with r
(k,p)
n,q , z

(k,p)
n,q and b

(k,p)
n,q the cardinality of R

(k,p)
n,q , Z

(k,p)
n,q and B

(k,p)
n,q ,

respectively. It is straightforward that

|S(k,p)m×n,q(α, β)| = r
(k,p)
n−2k+2,q ·

(
z
(k,p)
n,q

)m−2

· b(k,p)n−2k,q (2)

where, referring to Definition 2, the term r
(k,p)
n−2k+2,q counts the number of strings

v1, the terms z
(k,p)
n,q counts the number of strings vi for i = 2, 3, . . . ,m − 1, and

b
(k,p)
n−2k,q is the number of strings vm.

3.1 The sequence b
(k,p)
n,q

Now we consider a possible recursive relation for b
(k,p)
n,q by means of a recursive

construction of B
(k,p)
n,q . We first observe that B

(k,p)
0,q = {λ}, where λ is the empty

string, and if n < k, then B
(k,p)
n,q is formed by all the q-ary strings of length n.

Therefore b
(k,p)
n,q = qn for 0 ≤ n < k.

Denote by B
(k,p)
n,q (ui) the set of the strings in B

(k,p)
n,q ending with exactly i equal

symbols u ∈ Σ and denote by B
(k,p)
n,q (u) =

k−1⋃
i=1

B
(k,p)
n,q (ui) the set of strings in B

(k,p)
n,q

ending with at least a symbol u (note that B
(k,p)
n,q (u) and B

(k,p)
n,q (u1) are different

sets, in particular B
(k,p)
n,q (u) ⊃ B(k,p)

n,q (u1) ).

Clearly,

B
(k,p)
n,q =

q−1⋃
u=0

B
(k,p)
n,q (u).

In particular, B
(k,p)
n,q can be partitioned in the strings ending with at most

k − 1 equal consecutive symbols of Σ and the strings ending with at least k equal
consecutive symbols in Σ \ P . The first set can be generated from the strings

in B
(k,p)
n−i,q(u) followed by the suffix vi, with 0 < i < k, for each v ∈ Σ with

u 6= v, ranging u in Σ. The second set can be generated from the strings in

B
(k,p)
n−k,q(u) followed by the suffix vk, for each v ∈ Σ\{0, 1, 2, . . . , p − 1}, ranging

u in Σ. This recursive construction assures the avoidance of the given forbidden
patterns. Therefore,

b
(k,p)
n,q =


qn if 0 ≤ n ≤ k − 1

(q − 1)
k−1∑
i=1

b
(k,p)
n−i,q + (q − p)b(k,p)n−k,q if n ≥ k.

(3)

3.2 The sequences z
(k,p)
n,q

If 1 ≤ n < k, then it easily seen that z
(k,p)
n,q = qn−1. For n ≥ k, the strings in

Z
(k,p)
n,q can be enumerated in terms of the strings in B

(k,p)
n,q . First of all, we note that
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Z
(k,p)
n,q = B

(k,p)
n,q (β). Then, the set Z

(k,p)
n,q can be partitioned in k − 1 subsets which

are B
(k,p)
n,q (βi), with i = 1, 2, . . . , k − 1. The strings in B

(k,p)
n,q (βi) can be obtained

appending the suffix βi to all the strings contained in the set B
(k,p)
n−i,q except the

ones contained in B
(k,p)
n−i,q(β) which coincides with Z

(k,p)
n−i,q.

In other words, for i = 1, 2, . . . , k − 1, it is |B(k,p)
n,q (βi)| = b

(k,p)
n−i,q − z

(k,p)
n−i,q. Since

Z
(k,p)
n,q =

k−1⋃
i=1

B
(k,p)
n,q (βi), and recalling the initial conditions, we have:

z
(k,p)
n,q =



1 if n = 0

qn−1 if 1 ≤ n ≤ k − 1

k−1∑
i=1

(
b
(k,p)
n−i,q − z

(k,p)
n−i,q

)
if n ≥ k.

(4)

Actually, it is possible to obtain an expression for z
(k,p)
n,q involving only the two

terms b
(k,p)
n,q and b

(k,p)
n−1,q. More precisely, it can be observed that, for n ≥ 1, the

strings in B
(k,p)
n,q can be partitioned in the strings of Z

(k,p)
n,q ending with β for each

β ∈ P and the strings obtained by appending each symbols of Σ \P to each string

in B
(k,p)
n−1,q. In other words b

(k,p)
n,q = p z

(k,p)
n,q + (q − p)b(k,p)n−1,q, hence

z
(k,p)
n,q =

b
(k,p)
n,q − (q − p)b(k,p)n−1,q

p
, for n ≥ 1 . (5)

3.3 The sequence r
(k,p)
n,q

Similarly to the above section it is easily seen that R
(k,p)
n,q = Z

(k,p)
n,q (α), where

with Z
(k,p)
n,q (α) we denote the set containing the strings in Z

(k,p)
n,q starting with α.

Moreover, the set R
(k,p)
n,q can be partitioned in k − 1 subsets, say Z

(k,p)
n,q (αi), with

i = 1, 2, . . . , k − 1. The strings in Z
(k,p)
n,q (αi) can be obtained appending the prefix

αi to all the strings contained in the set Z
(k,p)
n−i,q except the ones contained in

Z
(k,p)
n−i,q(α) which coincides with R

(k,p)
n−i,q. In other words, for i = 1, 2, . . . , k − 1, it

is |Z(k,p)
n,q (αi)| = z

(k,p)
n−i,q − r

(k,p)
n−i,q. Since R

(k,p)
n,q =

k−1⋃
i=1

Z
(k,p)
n,q (αi), and considering the

easy initial conditions, we have:

r
(k,p)
n,q =



1 if n = 0

0 if n = 1

qn−2 if 2 ≤ n ≤ k

k−1∑
i=1

(
z
(k,p)
n−i,q − r

(k,p)
n−i,q

)
if n ≥ k + 1.

(6)
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Also in this case it is possible to provide a formula for r
(k,p)
n,q similar to (5). Nev-

ertheless, here an additional term depending on k and n is needed. More precisely,

we have z
(k,p)
n,q = p r

(k,p)
n,q + (q − p)z(k,p)n−1,q + dkn, where

d
(k)
n =


1 if (n mod k) = 0

−1 if (n mod k) = 1

0 if (n mod k) ≥ 2 .

(7)

leading to the following proposition.

Proposition 3 The sequence r
(k,p)
n,q can be expressed by

r
(k,p)
n,q =

z
(k,p)
n,q − (q − p)z(k,p)n−1,q + d

(k)
n

p
for n ≥ 2 . (8)

Proof. We can proceed by induction on n. If n = 2, from expression (6) we have

r
(k,p)
2,q = 1 which is the same value we obtain from (8) by replacing z

(k,p)
2,q , z

(k,p)
1,q

and d
(k)
2 with the corresponding value calculated from (4) and (7). Note that for

k = 2, it is z
(2,p)
2,q = b

(2,p)
1,q − z(2,p)1,q = q − 1 (using (3)) and d

(2)
2 = 1, while for k ≥ 3,

it is z
(k,p)
2,q = q, a

(k,p)
1,q = 1 and d

(k)
2 = 0.

For n > 2 we distinguish the following three cases:

• for 2 < n < k, from (6) we have r
(k,p)
n,q = qn−2 which can be easily obtained

from (8) using the expressions (4) and (7) for z
(k,p)
n,q and d

(k)
n ;

• for n = k, it is r
(k,p)
k,q = qk−2 and, from (8),

r
(k,p)
k,q =

k−1∑
i=1

(
b
(k,p)
k−i,q − z

(k,p)
k−i,q

)
− (q − p)qk−2 + 1

p = . . .

= qk−1−1−(q−p)qk−2+1
p = qk−2 ;

• for n > k, we suppose that r
(k,p)
s,q =

z(k,p)
s,q −(q−p)z(k,p)

s−1,q+d
(k)
s

p for each s < n. Eval-

uating r
(k,p)
n,q by means (6), using the inductive hypothesis and expression (4),

we get:
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r
(k,p)
n,q =

k−1∑
i=1

(
z
(k,p)
n−i,q − r

(k,p)
n−i,q

)

=
k−1∑
i=1

(
b
(k,p)
n−i,q − (q − p)b(k,p)n−i−1,q

p
−
z
(k,p)
n−i,q − (q − p)z(k,p)n−i−1,q + d

(k)
n−i

p

)

= 1
p

k−1∑
i=1

(
b
(k,p)
n−i,q − z

(k,p)
n−i,q

)
− (q − p)

p

k−1∑
i=1

(
b
(k,p)
n−i−1,q − z

(k,p)
n−i−1,q

)
− 1

p

k−1∑
i=1

d
(k)
n−i

=

z(k,p)
n,q −(q−p)z(k,p)

n−1,q−
k−1∑
i=1

d
(k)
n−i

p .

Since
k−1∑
i=0

d
(k)
n−i = 0, the term

k−1∑
i=1

d
(k)
n−i is equal to dn. Therefore

r
(k,p)
n,q =

z
(k,p)
n,q − (q − p)z(k,p)n−1,q + d

(k)
n

p
for n ≥ 2 ,

as required.

�

3.4 Generating functions

The generating functions b
(k,p)
q (x), z

(k,p)
q (x) and r

(k,p)
q (x) for the sequences (3),

(4) and (6), respectively, can be easily determined by using the general approach
presented in [22] adapted to our constraints. Here, we are going to directly deter-
mine them from the recurrences in the previous section. From (3), we obtain:

b
(k,p)
q (x) =

∑
n≥0

b
(k,p)
n,q xn

= b
(k,p)
0,q + b

(k,p)
1,q x+ b

(k,p)
2,q x2 + . . .+ b

(k,p)
k−1,qx

k−1 +
∑
n≥k

b
(k,p)
n,q xn

=
k−1∑
n=0

qnxn +
∑
n≥k

(
(q − 1)

k−1∑
i=1

b
(k,p)
n−i,q + (q − p)b(k,p)n−k,q

)
xn

=
k−1∑
n=0

qnxn + (q − 1)
k−1∑
i=1

xi
∑
n≥k

b
(k,p)
n−i,qx

n−i + (q − p)xk
∑
n≥k

b
(k,p)
n−k,qx

n−k

=
k−1∑
n=0

qnxn + (q − 1)
k−1∑
i=1

xi

b(k,p)q (x)−
k−i−1∑
j=0

qjxj

+ (q − p)xkb(k,p)q (x).
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Since (q − 1)
k−1∑
i=1

k−1∑
j=i

qj−ixj =
k−1∑
j=1

qjxj −
k−1∑
i=1

xi then we deduce that

b
(k,p)
q (x) =

k−1∑
n=0

qnxn+ (q−1)b
(k,p)
q (x)

k−1∑
i=1

xi−
k−1∑
j=1

qjxj +
k−1∑
i=1

xi+ (q−p)xkb(k,p)q (x).

Hence,

b
(k,p)
q (x) =

k−1∑
i=0

xi

1− (q − 1)
k−1∑
i=1

xi − (q − p)xk
. (9)

From recurrences (4) and (6) the generating functions z
(k,p)
q (x) and r

(k,p)
q (x) can

be easily obtained:

z
(k,p)
q (x) = 1 +

b
(k,p)
q (x)

k−1∑
i=1

xi

k−1∑
i=0

xi

. (10)

r
(k,p)
q (x) = 1 +

(
z
(k,p)
q (x)− 1

) k−1∑
i=1

xi

k−1∑
i=0

xi

. (11)

Moreover, it is possible to observe that the generating function for the se-

quence
{
|S(k,p)m×n,q|

}
n≥2k

, for any fixed m, p, q and k, using relations (1), (2) and

the above expressions for the generating functions, is rational due to the fact that
the Hadamard product of rational generating functions is rational (see [25]).

3.5 Asymptotic behavior

First, we estimate the asymptotic behaviour of the n-th coefficient b
(k,p)
n,q of

b
(k,p)
q (x). Following [20] we say that the sequence b

(k,p)
n,q is of exponential order Cn

(abbreviated by b
(k,p)
n,q ./ Cn) if, for any ε > 0,

• |b(k,p)n,q | >i.o. (C− ε)n; that is to say, |b(k,p)n,q | exceeds (C− ε)n infinitely often (for
infinitely many values of n);

• |b(k,p)n,q | <a.e. (C + ε)n; that is to say, |b(k,p)n,q | is dominated by (C + ε)n almost

everywhere (except for possibly finitely many values of n).

The following theorem holds (Exponential Growth Formula, [20]):
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Theorem 1 If f(x) is analytic at 0 and x0 is the modulus of a singularity nearest to

the origin, then the coefficient fn = [xn]f(x) satisfies

fn ./

(
1

x0

)n
.

Since b
(k,p)
q (x) = h(x)

g(x) is a rational function, the modulus x0 = x0(k, p, q) of a

singularity of b
(k,p)
q (x) nearest to the origin is the modulus of a zero of g(x) nearest

to the origin. We have the following proposition:

Proposition 4 The polynomial g(x) has a unique zero in A =
{
x ∈ C : |x| < 1

q−1

}
,

for q ≥ 3.

Proof. We consider the polynomial

G(x) = (1− x)g(x) = xk(q − 1)− qx+ 1− (1− x)(q − p)xk.

The zeros of G(x) are the zeros of g(x) and x̄ = 1. Clearly, if x0 is the modulus
of the zero nearest to the origin of G(x) and x0 < 1, then x0 is also the modulus
of the zero nearest to the origin of g(x).

Since G(1/q) = p(q−1)
qk+1 > 0 and G

(
1
q−1

)
= 1−(q−1)k−2

(q−1)k−1 − (q−2)(q−p)
(q−1)k+1 < 0, for

k, q ≥ 3, then G(x) has at least a real zero α, with 1
q < α < 1

q−1 . We will prove

that α is the unique zero of G(x) inside A. Therefore, x0 = α is the modulus of

the singularity nearest to the origin of b
(k,p)
q (x). This proof is carried on by means

Rouché’s Theorem (see for example [30]). To this aim we pose G(x) = F1(x)+F2(x)
where

F1(x) = 1− qx

and
F2(x) = xk(q − 1)− (1− x)(q − p)xk.

It is easily seen that, for x ∈ ∂A =
{
x ∈ C : |x| = 1

q−1

}
,

|F1(x)| ≥ 1

q − 1

and

|F2(x)| ≤ (p− 1)|x|k + (q − p)|x|k+1 =
pq − 2p+ 1

(q − 1)k+1
.

Since pq−2p+1
(q−1)k+1 <

1
q−1 for k, q ≥ 3, we have

|F2(x)|x∈∂A < |F1(x)|x∈∂A.

Clearly, F1(x) has the unique zero 1
q ∈ A. Then, for Rouché’s Theorem, we

have that G(x) = F1(x) + F2(x) has a unique zero x0 = α ∈ A, which is also the
modulus of the zero of g(x) nearest to the origin.

�

By Theorem 1 the coefficient b
(k,p)
n,q is of exponential order

(
1

x0(k,p,q)

)n
. Being

b
(k,p)
q (x) = h(x)

g(x) , we observe that, from (10), z
(k,p)
q (x) = 1 + h(x)−1

g(x) has the same
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denominator of b
(k,p)
q (x) so that x0 is the smallest singularity of z

(k,p)
q (x). Moreover,

from (11), it is r
(k,p)
q (x) = 1 + (h(x)−1)2

g(x)h(x) . Since all the zeros of h(x) have modulus

equal to 1 and x0 < 1, the smallest singularity of r
(k,p)
q (x) is x0 again.

Summarizing, we have the following proposition:

Proposition 5 For q ≥ 3,(
1

x0(k, p, q)
− ε
)n

<i.o. r
(k,p)
n,q < z

(k,p)
n,q < b

(k,p)
n,q <a.e.

(
1

x0(k, p, q)
+ ε

)n
. (12)

Therefore r
(k,p)
n,q , z

(k,p)
n,q and b

(k,p)
n,q are of exponential order

(
1

x0(k,p,q)

)n
.

For what the asymptotic behavior of |S(k,p)m×n,q| is concerned, we recall that,

according to (1), (2) and considering j =
⌊p
2

⌋
, the size of S(k,p)m×n,q is given by

|S(k,p)m×n,q| =
⌊
p

2

⌋ ⌈
p

2

⌉(
r
(k,p)
n−2k+2,q ·

(
z
(k,p)
n,q

)m−2

· b(k,p)n−2k,q

)
. (13)

From Proposition 5, it immediately follows:

Proposition 6 For q ≥ 3,⌊
p

2

⌋ ⌈
p

2

⌉( 1

x0(k, p, q)
− ε
)nm−4k+2

<i.o. |S
(k,p)
m×n,q|

and

|S(k,p)m×n,q| <a.e.
⌊
p

2

⌋ ⌈
p

2

⌉( 1

x0(k, p, q)
+ ε

)nm−4k+2

.

The above proposition shows that the asymptotic behavior of |S(k,p)m×n,q| is the same
when n→∞ or m→∞.

The exact expression for x0(k, p, q) can not be easily found. Nevertheless we
provide a lower and an upper bound x1 and x2 for x0 depending on the parameters
k, p and q.

A first fact is that 1
q < x0 < 1

q−1 . Using classical approximation tools it is
possible to obtain better bounds for x0. In particular, for a left bound x1, we
observe that, being g′(x) < 0, g′′(x) < 0 for 1

q < x < 1
q−1 , and

g

(
1

q

)
=

p

qk
> 0, g

(
1

q − 1

)
= − (q − 1)k − p(q − 2)− 1

(q − 1)k(q − 2)
< 0 ,

then the straight line passing through
(

1
q , g

(
1
q

))
and

(
1
q−1 , g

(
1
q−1

))
crosses the

x-axis in x1 such that 1
q < x1 < x0. It is not difficult to obtain that

x1 = 1
q + p

q(q−1)(p−g( 1
q−1 )qk)

= 1
q + p(q−1)k−1(q−2)

q(p(q−1)k(q−2)+qk(q−1)k−pqk(q−2)−qk) .
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A better right bound x2 for x0 can be found by means of Newton’s method for
finding successively better approximations to the root of g(x) with initial point 1

q .

The above consideration about the derivatives of g(x) assures that x2 > x0. Its
exact expression is:

x2 =
1

q
−
g
(

1
q

)
g′
(

1
q

) =
1

q
+

p(q − 1)

q(qk+1 − kp(q − 1)− q)
.

It is easy to check that x2 <
1
q−1 , therefore

1

q
< x1 < x0 < x2 <

1

q − 1
,

hence

q − 1 <
1

x2
<

1

x0
<

1

x1
< q , (14)

with

1

x1
= q − p(q − 1)k−1(q − 2)

p(q − 1)k−1(q − 2) + qk−1(q − 1)k − pqk−1(q − 2)− qk−1
(15)

and

1

x2
= q − qp(q − 1)

q(qk − 1)− p(q − 1)(k − 1)
. (16)

For the sake of completeness we also consider the case q = 2. Recalling that
2 ≤ p ≤ q, from (9) it is

b
(k,2)
2 (x) =

∑k−1
i=0 x

i

1−
∑k−1
i=1 x

i
.

The modulus x0 = x0(k) of a singularity of b
(k,2)
2 (x) nearest to the origin is the

modulus of a zero of the denominator nearest to the origin. It can be shown that
x0 = 1

y0
where y0 is the positive real root of the polynomial

y(x) = yk−1 − yk−2 − . . .− y − 1 .

The equation y(x) = 0 is studied in [31] where it can be found that y0 = 2(1− δk)
with δk =

∑
i≥1 (ki−2

i−1 ) 1
i2ki . From Theorem 1 we deduce

b
(k,2)
n,2 ./ (2(1− δk))n .

With an argument similar to the one used for the singularities nearest to the origin

of z
(k,p)
q (x) and r

(k,p)
q (x), we deduce that the modulus of the singularities nearest

to the origin of z
(k,2)
2 (x) and r

(k,2)
2 (x) are 1/y0 again. Hence, from Theorem 1, we

have:
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Proposition 7 For q = 2,

(2(1− δk)− ε)n <i.o. r
(k,2)
n,2 < z

(k,2)
n,2 < b

(k,2)
n,2 <a.e. (2(1− δk) + ε)

n
. (17)

Therefore r
(k,2)
n,2 , z

(k,2)
n,2 and b

(k,2)
n,2 are of exponential order (2(1− δk))

n
.

The asymptotic behavior of |S(k,p)m×n,2| is easily obtained from the previous
proposition and formula (13).

4 On the maximal size of S(k,p)
m×n,q

In this section we provide some considerations about the maximal size of

S(k,p)m×n,q taking into account its asymptotic behavior. More precisely, we are inter-
ested in the values of k and p giving the maximal value of (13) when n is sufficiently
large, once q is fixed. A first step in this direction is the analysis of the sequences

involved in (13). We start from z
(k,p)
n,q . It is already known (see Proposition 5) that

z
(k,p)
n,q ./

(
1

x0(k, p, q)

)n
and

1

x2
<

1

x0(k, p, q)
<

1

x1

where the values of the bounds can be found in (15) and (16). We observe that
1
x1

= q − p(q−1)k−1(q−2)
p(q−1)k−1(q−2)+qk−1(q−1)k−pqk−1(q−2)−qk−1 < q − p(q−1)k−1(q−2)

qk−1(q−1)k−qk−1 hence

q − qp(q − 1)

q(qk − 1)− p(q − 1)(k − 1)
<

1

x0(k, p, q)
< q − p(q − 1)k−1(q − 2)

qk−1(q − 1)k − qk−1
. (18)

If k increases it is easily seen that the same happens for 1/x1 and 1/x2, so that
also 1/x0 increases. Moreover, if p decreases, then 1/x1 and 1/x2, and so 1/x0,

increase. Therefore the number z
(k,p)
n,q of strings avoiding the patterns 0k, 1k, ...,

(p− 1)k rises when the length k of the patterns increases and the number p of the

forbidden patterns decreases. Then the maximal size of z
(k,p)
n,q , which counts the

number of strings in each row vi for i = 2, 3, . . . ,m−1 of a given matrix in S(k,p)m×n,q,
is obtained when k is the greatest possible value (k = bn2 c) and p is the smallest
one (p = 2).

The above discussion can be used as a formal argument to justify the intuitive
fact that a set of strings avoiding a certain set of p patterns with a certain length
k increases in its cardinality if the number of patterns decreases and their length
increases.

Thanks to Proposition 5 the asymptotic behavior of z
(k,p)
n,q is similar to the one

of b
(k,p)
n,q and r

(k,p)
n,q . Notice that for the estimation of formula (13) we have to recall

that the strings in the first and the last row of a matrix in S(k,p)m×n,q have length
n− 2k + 2 and n− 2k, respectively, instead of n. Therefore we have
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r
(k,p)
n−2k+2,q ./

(
1

x0(k, p, q)

)n−2k+2

and

b
(k,p)
n−2k,q ./

(
1

x0(k, p, q)

)n−2k

whit the same bounds (18) for 1/x0(k, p, q). Since the length k appears also in the

exponent as well as in 1/x2 and 1/x1, the coefficients r
(k,p)
n−2k+2,q and b

(k,p)
n−2k,q do

not have the same behavior of z
(k,p)
n,q when k increases. More precisely, experimen-

tal results show a unimodal behavior of r
(k,p)
n−2k+2,q and b

(k,p)
n−2k,q depending on k.

Another difference with respect to z
(k,p)
n,q can be observed when the cardinality of

the alphabet grows. In particular, since limq→∞(1/x1)/q = limq→∞(1/x2)/q = 1,
there exists a ql such that 1/x1 ' q and 1/x2 ' q, if q > ql. In other words, 1/x1
and 1/x2 can be arbitrarily close to q so that the coefficients r

(k,p)
n−2k+2,q and b

(k,p)
n−2k,q

can be approximated by qn−2k+2 and qn−2k, respectively. Therefore, their greatest
value is obtained for k = 2, as opposed to the value k = bn2 c giving the maximum

for z
(k,p)
n,q , independently of q.

As far as the parameter p is concerned, notice that the coefficients r
(k,p)
n−2k+2,q

and b
(k,p)
n−2k,q have the same behavior as z

(k,p)
n,q when p decreases, then they assume

their maximum value when p = 2, as opposed to the value p = q giving the
maximum for the term

⌊p
2

⌋ ⌈p
2

⌉
in (13).

From the above arguments it follows that, in general, it is not easy to find the

maximum value of S(k,p)m×n,q depending on k and p. Some numerical results of this
fact are showed in Table 1.

5 Further developments

The present work is the generalization of the study started in [5] where we
considered sets constituted by only square matrices and overlappings only along
the direction of the main diagonal. Surely, these hypotheses lead to a very special
case and they are very restrictive. Nevertheless, such sets of square matrices have
at least two notable properties: the matrices can be listed in a 1-Gray code sense
(by using the Gray code defined in [9] and the well-known generalization [19] of
the Binary Reflected Gray Code [21]) and the sets are non-expandable. As far
as the 1-Gray code (which is a list of the matrices of the set in a such way that
two consecutive matrices differ only for one entry) is concerned, we observe that

S(k,p)m×n,q is not a 1-Gray code. Indeed, it is possible to prove that in general there

does not exist a 1-Gray code for the strings in B
(k,2)
n,2 so that it does not exist for

S(k,p)m×n,q. In order to show that the strings in B
(k,2)
n,2 can not be listed as desired, we

note that a 1-Gray code exists if and only if it is possible to find an Hamiltonian

path on the graph whose vertexes are the strings in B
(k,2)
n,2 and the edges connect
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p = 2 p = 3 p = 4

k = 2 1.21 · 108 9.36 · 107 5.76 · 107∣∣∣∣S(k,p)
3×8,4

∣∣∣∣ k = 3 3.05 · 106 5.68 · 106 1.05 · 107

k = 4 1.57 · 104 3.11 · 104 6.14 · 104

k = 2 1.18 · 1027 8.74 · 1025 2.88 · 1024∣∣∣∣S(k,p)
8×8,4

∣∣∣∣ k = 3 1.44 · 1027 1.87 · 1027 2.38 · 1027

k = 4 1.54 · 1025 2.84 · 1025 5.25 · 1025

k = 2 4.46 · 1072 1.17 · 1069 3.45 · 1064∣∣∣∣S(k,p)
20×8,4

∣∣∣∣ k = 3 6.04 · 1076 3.30 · 1076 1.68 · 1076

k = 4 3.66 · 1075 5.78 · 1075 9.09 · 1075

k = 2 3.67 · 10224 6.80 · 10212 1.35 · 10198∣∣∣∣S(k,p)
60×8,4

∣∣∣∣ k = 3 1.52 · 10242 4.69 · 10240 1.15 · 10239

k = 4 3.05 · 10243 2.84 · 10243 2.61 · 10243

Table 1: Maximal values (bold character) of
∣∣∣S(k,p)m×8,4

∣∣∣ as m grows

Fig. 4: The graph of B
(3,2)
4,2 non admitting an Hamiltonian path

any two strings differing for only one symbol of the alphabet. For example it does

not exist an Hamiltonian path in the graph of B
(3,2)
4,2 (see Figure 4).

Nevertheless, a further development in this direction could be the investigation
about the existence of a d-Gray code (d ≥ 2), in the sense that any two consecutive
matrices differ in at most d entries.

Moreover, recalling that a non-expandable set N is such that any other matrix
C /∈ N can be overlapped with at least one matrix of N , it is not difficult to
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prove that the set S(k,p)m×n,q considered in this work is not a non-expandable set.

Indeed, considering A ∈ S(k,p)m×n,q(α, β) and B ∈ S(k+1,p)
m×n,q (α, β), the last row of A

can be overlapped with the first row of B. More precisely, if the last row of A is
Am = αkuβk and the first row of B is B1 = αkβu′αβk, then Am and B1 can be
overlapped posing u = βu′α.

A further task could be the characterization of a set of non-overlapping matrices
over a q-ary alphabet where the matrices have different dimensions. This would be
a possible generalization in two dimensions of sets of variable length codes. Also, it
could be fruitful to investigate on the possibility to make that set non-expandable.
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