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Abstract

We study the pseudorandomness of automatic sequences in terms
of well-distribution and correlation measure of order 2. We detect
non-random behavior which can be derived either from the functional
equations satisfied by their generating functions or from their generat-
ing finite automatons, respectively.

2000 Mathematics Subject Classification: 11K45, 03D05, 68Q25, 68Q70
Keywords and phrases: finite automaton, automatic sequences, correla-

tion measure, pseudorandom sequences, Thue-Morse sequence, state com-
plexity

1 Introduction

Let k ≥ 2 be an integer. A k-automatic sequence (sn) over an alphabet Σ is
the output sequence of a finite automaton, where the input is the k-ary digi-
tal expansion of n. Automatic sequences have gained much attention during
the last decades. For monographs and surveys about automatic sequences
we refer to [1, 2, 7, 8].
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For a prime k = p, p-automatic sequences (sn) over the finite field Fp of
p elements can be characterized by a result of Christol [4], see also [5]: Let

G(x) =
∞
∑

n=0

snx
n

be the generating function of the sequence (sn) over Fp. Then (sn) is p-
automatic over Fp if and only if G(x) is algebraic over Fp[x], that is, there is
a characteristic polynomial 0 6= h(x, y) ∈ Fp[x, y] such that h(x,G(x)) = 0.

For example, the Thue-Morse sequence over F2 is defined by

tn =

{

tn/2 if n is even,

t(n−1)/2 + 1 if n is odd,
n = 1, 2, . . .

with initial value t0 = 0. Taking

h(x, y) = (x+ 1)3y2 + (x+ 1)2y + x,

its generating function G(x) satisfies h(x,G(x)) = 0.
Any p-automatic sequence over Fp which is not ultimately periodic, that

is, its generating function G(x) is not rational, passes some unpredictability
tests. In particular, it has large linear complexity profile. This can be
expressed in terms of the local degrees of h(x, y).

We recall that the N th linear complexity L(sn, N) of a sequence (sn)
over Fp is the length L of a shortest linear recurrence relation satisfied by
the first N elements of (sn):

sn+L = cL−1sn+L−1 + · · ·+ c1sn+1 + c0sn, 0 ≤ n ≤ N − L− 1,

for some c0, . . . , cL−1 ∈ Fq. We use the convention that L(sn, N) = 0 if the
first N elements of (sn) are all zero and L(sn, N) = N if s0 = · · · = sN−2 =
0 6= sN−1.

For a random sequence (sn) we have

L(sn, N) =
N

2
+O(logN) for all N ≥ 2, (1)

see [14].
The authors proved in [13] that any p-automatic sequence over Fp which

is not ultimately periodic has Nth linear complexity of (best possible) or-
der of magnitude N , that is constant times N , where the implied constant
depends on the degree of a characteristic polynomial h(x, y) of G(x).
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Especially, the Nth linear complexity of sequences with h(x,G(x)) = 0
and local degree 2 in y of h(x, y) satisfy (1). For example, [13, Theorem 1]
applied to the Thue-Morse sequence gives

⌈

N − 1

2

⌉

≤ L(tn, N) ≤

⌈

N − 1

2

⌉

+ 1.

(The exact value L(tn, N) = 2
⌊

N+2
4

⌋

can be obtained using a different
method, see also [13].)

Although automatic sequences have large linear complexity profile, they
are statistically distinguishable from random sequences if N is sufficiently
large and certain pseudorandom measures are of (worst possible) order of
magnitude N .

For a given finite sequence (sn) over F2 write

U (sn, t, a, b) =
t−1
∑

j=0

(−1)sa+jb ,

and for D = (d1, . . . , dk) with non-negative integers 0 ≤ d1 < · · · < dk write

V (sn,M,D) =

M−1
∑

n=0

(−1)sn+d1
+sn+d2

+···+sn+dk .

Then the N th well-distribution measure of (sn) is

W (sn, N) = max
a,b,t

|U (sn, t, a, b)| = max
a,b,t

∣

∣

∣

∣

∣

∣

t−1
∑

j=0

(−1)sa+jb

∣

∣

∣

∣

∣

∣

,

where the maximum is taken over all a, b, t ∈ N such that 0 ≤ a ≤ a+ (t−
1)b < N , and the N th correlation measure of order k of (sn) is

Ck (sn, N) = max
M,D

|V (sn,M,D)| = max
M,D

∣

∣

∣

∣

∣

M
∑

n=0

(−1)sn+d1
+sn+d2

+···+sn+dk

∣

∣

∣

∣

∣

,

where the maximum is taken over all D and M such that dk +M < N . For
more background on pseudorandom measures see [9, 16,17].

The sequence (sn) possesses good properties of pseudorandomness if both
these measures W (sn, N) and Ck (sn, N) (at least for small k) are ‘small’ in
terms of N (in particular, both are o(N) as N → ∞). This terminology is
justified since for a truly random sequence (sn)

N−1
n=0 each of these measures
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is N1/2(logN)O(1). (For a more precise version of this result see [3].) The
Legendre sequence is an example of such a pseudorandom sequence with
both small well-distribution and correlation measures, see [11].

In Section 2 we show that a certain family of 2-automatic sequences clas-
sified by its functional equation for its generating function h(x,G(x)) = 0
suffers a large well-distribution measure. This family includes the Baum-
Sweet sequence and the characteristic sequence of the set of sums of three
integer squares. In Section 3 we show that another family, again character-
ized by h(x,G(x)) = 0 for a certain class of polynomials h(x, y), is of large
correlation measure of order 2. This family includes pattern sequences such
as the Thue-Morse sequence as well as the Rudin-Shapiro sequence and the
regular paperfolding sequence.

Note that it is known that both the Thue-Morse sequence and the Rudin-
Shapiro sequence have a large correlation measure of order 2, see [12].

In Section 4 we prove another bound on the correlation measure of or-
der 2 of any 2-automatic sequence in terms of the number of states of its
generating finite automaton. Roughly speaking, if the number of states of
the finite automaton is small, the correlation measure of order 2 of the cor-
responding sequence is large. However, the results of Section 3 are slightly
stronger but apply only to some special automatic sequences.

On the other hand, our last result implies that for any automatic se-
quence with small correlation measure of order 2, its state complexity has
to be large. In particular, we apply this result to the Legendre sequence.

2 Sequences with large well-distribution measure

First we mention two sequences with large well-distribution measure, the
Baum-Sweet sequence and the characteristic sequence of the set of sums of
three squares. Then we show that these sequences belong to a larger family
of sequences with a certain type of polynomials h(x, y) with h(x,G(x)) = 0
which all have a large well-distribution measure.

Baum-Sweet sequence

The Baum-Sweet sequence (bn) is a 2-automatic sequence defined by the
rule b0 = 1 and for n ≥ 1

bn =







1 if the binary representation of n contains no block of
consecutive 0’s of odd length,

0 otherwise.
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Equivalently, we have for n ≥ 1 of the form n = 4km with m not divisible
by 4

bn =

{

0 if m is even,
b(m−1)/2 if m is odd.

The Baum-Sweet sequence satisfies

W (bn, N) ≥

∣

∣

∣

∣

∣

∣

⌊(N−3)/4⌋
∑

n=0

(−1)b4n+2

∣

∣

∣

∣

∣

∣

=

⌊

N + 1

4

⌋

for N ≥ 1. (2)

The generating function G(x) of (bn) satisfies

h(x,G(x)) = 0 with h(x, y) = y4 + xy2 + y.

The characteristic sequence of the set of sums of three squares

Let (un) be the characteristic sequence of non-negative integers that can be
written as a sum of three squares

un =

{

1 if n = u2 + v2 + w2 for some integers u, v, w,
0 otherwise.

By the Three-Square Theorem this is equivalent to

un =

{

0 if there exist non-negative integers a, k with n = 4a(8k + 7),
1 otherwise.

We have

W (un, N) ≥

∣

∣

∣

∣

∣

∣

⌊N/8⌋−1
∑

n=0

(−1)u8n+7

∣

∣

∣

∣

∣

∣

=

⌊

N

8

⌋

for N ≥ 1. (3)

The generating function G(x) of (un) satisfies h(x,G(x)) = 0 with

h(x, y) = (x8 + 1)y4 + (x8 + 1)y + x6 + x5 + x3 + x2 + x,

see [10].
We present some generalizations of (2) and (3).

Theorem 1. Let (sn) be a sequence over F2 with generating function G(X)
satisfying h(x,G(x)) = 0 for some polynomial h(x, y) over F2 of the form

h(x, y) = f2(y
2ℓ) + xf1(y

2) + y + f0(x) (4)

5



with polynomials f0, f1, f2 over F2, deg f0 ≤ 2ℓ − 3, and ℓ ≥ 2. Then we

have

W (sn, N) ≥

⌊

N + 1

2ℓ

⌋

.

If h(x, y) is of the form

h(x, y) = f1(x
2, y2) + (x2

ℓ

+ 1)y + f0(x) (5)

with polynomials f1 and f0 over F2 with deg f0 ≤ 2ℓ − 2 and ℓ ≥ 1, then we

have

W (sn, N) ≥

⌊

N

2ℓ

⌋

.

Proof. First let h(x, y) be of the form (4). Comparing the coefficients of

h(x,G(x)) = 0 at x2
ℓn+2ℓ−2 we see that s2ℓn+2ℓ−2 = 0. Hence,

M−1
∑

n=0

(−1)s2ℓn+2ℓ−2 = M.

Taking

M =

⌊

N + 1

2ℓ

⌋

gives the first result.
If h(x, y) is of the form (5), we compare the coefficients at x2

ℓn+2ℓ−1 and
get s2ℓ−1 = 0 and s2ℓ(n+1)+2ℓ−1 = s2ℓn+2ℓ−1 for n ≥ 0 and the result follows
analogously.

3 Large correlation measure of order 2 obtained

from a characteristic polynomial

Now we prove a lower bound on the correlation measure of order 2 for a
large class of automatic sequences.

Theorem 2. Let (sn) be a sequence over F2 with generating function G(x)
satisfying

h(x,G(x)) = 0

for some polynomial h(x, y) of the form

h(x, y) = (x+ 1)2
ℓ

((a1x+ a0)y
2 + y) + f(x)

with ℓ ≥ 0, deg f ≤ 2ℓ − 1, and (a1, a0) 6= (0, 0). Then we have

C2(sn, N) >
N

2ℓ + 2
− 2 for N ≥ 2ℓ+1 + 4.
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Proof. For any k ≥ 0 comparing coefficients in (x+1)2
k+ℓ−2ℓh(x,G(x)) = 0

at x2n+2k+ℓ

and x2n+2k+ℓ+1 provides

s2n + s2n+2k+ℓ = a0(sn + sn+2k+ℓ−1), n ≥ 0, (6)

and
s2n+1 + s2n+2k+ℓ+1 = a1(sn + sn+2k+ℓ−1), n ≥ 0, (7)

respectively.
We define the integer M by 2M ≤ N

2ℓ+1
< 2M+1 and put for k =

0, 1, . . . ,M

γk =

2k−1
∑

n=0

(−1)sn+s
n+2k+ℓ .

By (6) and (7) we get for 1 ≤ k ≤ M

γk =
2k−1−1
∑

n=0

(−1)s2n+s
2n+2k+ℓ +

2k−1−1
∑

n=0

(−1)s2n+1+s
2n+2k+ℓ+1

=
2k−1−1
∑

n=0

(−1)a0(sn+s
n+2k+ℓ−1) +

2k−1−1
∑

n=0

(−1)a1(s2n+1+s
n+2k+ℓ−1)

= (a0 + a1)γk−1 + (2− a0 − a1)2
k−1,

γ0 = ±1, and thus by induction

γk = (a0 + a1)
kγ0 + (2− a0 − a1)(2

k − 1) for k = 1, . . . ,M.

Hence, C2(sn, N) ≥ |γM | = 2M > N
2ℓ+2

if a0 = a1 = 1 and C2(sn, N) ≥

|γM | ≥ 2M − 2 > N
2ℓ+2

− 2 otherwise.

Remark 3. The method can be extended to larger families of polynomials
h(x, y). However, for the readability we chose a simple family which covers
all of the following examples.

Examples

Pattern sequence

For a pattern P 6= (0, . . . , 0) of length ℓ define the sequence (rn) by

rn ≡ eP (n) mod 2, rn ∈ F2, n = 0, 1, . . .

7



where eP (n) is the number of occurrences of P in the binary expansion of
n. The sequence (rn) over F2 satisfies the following recurrence relation

rn =

{

r⌊n/2⌋ + 1 if n ≡ a mod 2ℓ,

r⌊n/2⌋ otherwise,
n = 1, 2, . . . (8)

with initial value r0 = 0, where a is the integer 0 < a < 2ℓ such that its
binary expansion corresponds to the pattern P .

Classical examples for binary pattern sequences are the Thue-Morse se-

quence (ℓ = 1 and P = 1 (a = 1)) and the Rudin-Shapiro sequence (ℓ = 2
and P = 11 (a = 3)).

Corollary 4. Let a, ℓ be integers with 1 ≤ a < 2ℓ. If (rn) is the pattern

sequence defined by (8), then

C2(rn, N) >
N

2ℓ + 2
− 2 for N ≥ 2ℓ+1 + 4.

Proof. The result follows from Theorem 2 with h(x, y) = (x + 1)2
ℓ+1y2 +

(x+ 1)2
ℓ
y + xa.

Regular paperfolding sequence

The value of any given term vn ∈ F2 in the regular paperfolding sequence
can be defined as follows. If n = m · 2k where m is odd, then

vn =

{

1 if m ≡ 1 mod 4,
0 if m ≡ 3 mod 4,

n = 1, 2, . . .

and any v0 ∈ F2.

Corollary 5. Let (vn) be the regular paperfolding sequence. Then

C2(vn, N) >
N

6
− 2 for N ≥ 12.

Proof. The result follows from Theorem 2 with h(x, y) = (x+1)4(y2 + y) +
1.

A sequence with perfect lattice profile and perfect linear complex-

ity profile

The generating function G(x) of the sequence (wn) over F2 defined by

w2n = 1 and w2n+1 = wn + 1, n = 0, 1, . . . (9)
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satisfies the functional equation h(x,G(x)) = 0 with h(x, y) = (x+1)(xy2+
y) + 1 ∈ F2[x, y]. This is the only sequence with both a perfect linear
complexity profile and a perfect ’lattice profile’, see [6] for more details.
Sequences with the first are characterized by w0 = 1 and w2n+2 = w2n+1+wn

but the choice of w2n+1 is free for n ≥ 1, see [15]. Sequences with the latter
are characterized by w2n+1 = wn+1 but the choice of any w2n is free, see [6].

Corollary 6. Let (wn) be the sequence defined by (9). Then

C2(wn, N) >
N

3
− 2 for N ≥ 6.

4 Large correlation measures of order 2 obtained

from the generating automaton

In this section we prove lower bounds on the correlation measure of order 2
of automatic sequences in terms of the number of states of the automaton
which generates the sequence.

We recall that a finite automaton is defined to be a 6-tuple M = (Q,Σ, δ,
q0,∆, τ), where Q is a finite set of states, Σ is the finite input alphabet,
δ : Q × Σ → Q is the transition function, q0 ∈ Q is the initial state, ∆ is
the output alphabet and τ : Q → ∆ is the output function. As usual, we
define δ(q, xa) = δ(δ(q, x), a) for all q ∈ Q, x ∈ Σ∗ and a ∈ Σ. For k ≥ 2
put Σk = {0, 1, . . . , k− 1}. Then we say that the sequence (sn) over a finite
alphabet ∆ is k-automatic if there exists an automaton (Q,Σk, δ, q0,∆, τ)
such that sn = τ(δ(q0, (n)k)) for all n ≥ 0 where (n)k ∈ Σ∗

k is the word
consisting of the k-ary digits of n.

In the following theorem we prove that an automatic sequence which
is generated by an automaton with only a few states cannot have good
pseudorandomness properties in terms of the correlation measure of order
2.

Theorem 7. Let (sn) be a k-automatic binary sequence generated by the

finite automaton (Q,Σk, δ, q0,Σ2, τ). Then

C2(sn, N) ≥
N

k(|Q|+ 1)
for N ≥ k(|Q|+ 1).

Proof. We can assume that δ(q0, 0) = 0, see [2, Theorem 5.2.1]. Let ϕ :
Q∗ → Q∗ be defined by ϕ(q) = δ(q, 0)δ(q, 1) . . . δ(q, k − 1) for q ∈ Q and
ϕ(xy) = ϕ(x)ϕ(y). Let w = w0w1w2 . . . be an infinite word over Q which

9



is a fixed point of ϕ. Then δ(q0, (n)k) = wn and τ(wn) = sn for all n ≥ 0,
see [2, Proof of Theorem 6.3.2].

Put

M =

⌊

log(N/(|Q| + 1))

log k

⌋

≥ 1.

By the pigeon hole principle, among the first |Q|+1 elements of (wn) there
are two elements having the same value, say wi = wj , 0 ≤ i < j ≤ |Q|.

Then for the Mth iteration of ϕ, ϕM : Q → QkM we have ϕM (wi) =
ϕM (wj), thus wi·kM+l = wj·kM+l for l = 0, . . . kM − 1 so si·kM+l = sj·kM+l

for l = 0, . . . kM − 1. Then

C2(sn, N) ≥ V (sn, N, kM ,D) =
kM−1
∑

l=0

(−1)uikM+l
+u

jkM+l = kM ≥
N

k(|Q|+ 1)

with lags D = (i · kM , j · kM ).

Examples

The Thue-Morse sequence (tn)n≥0 can be defined by a finite automaton with
two states, see Figure 1. Hence, Theorem 7 yields

C2(tn, N) ≥
N

6
for N ≥ 6.

A/0 B/1

1

1

00

Figure 1: Automaton generating the Thue-Morse sequence.

The Rudin-Shapiro sequence (rn)n≥0 can be defined by a finite automa-
ton with four states, see Figure 2. Hence, Theorem 7 yields

C2(tn, N) ≥
N

10
for N ≥ 10.
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A/0 B/0 C/1 D/1

1 1 0

110

00

Figure 2: Automaton generating the Rudin-Shapiro sequence.

State complexity of binary sequences

Theorem 7 allows to give lower bounds on the state complexity of binary
sequences in terms of the correlation measure of order 2.

Let k ≥ 2. Then the N th state complexity SCk(sn, N) of a sequence
(sn) over F2 is the minimum of the number of states of finite k-automatons
which generate the first N elements. For example, the state complexity of
the Thue-Morse sequence (tn) is SC2(tn, N) = 2 for N ≥ 2. By Theorem 7
we get lower bound on the Nth state complexity of binary sequences.

Corollary 8. Let (sn) be a binary sequence. Then for all k ≥ 2 we have

SCk(sn, N) ≥
N

k · C2(sn, N)
− 1 for N ≥ 3.

As an example we can give a lower bound on the state complexity of the
Legendre sequence (ln) defined by

ln =

{

0 if
(

n
p

)

= 1,

1 otherwise,

where p > 2 is a prime number and
(

·
p

)

is the Legendre symbol modulo

p. Mauduit and Sárközy [11] proved that C2(ln, N) ≪ p1/2 log p for N ≤ p
thus Corollary 8 gives

SCk(ln, N) ≫
N

k · p1/2 log p
− 1 for 3 ≤ N ≤ p.
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