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A New Class of Permutation Trinomials Constructed from Niho

Exponents

Tao Bai and Yongbo Xia∗

Abstract

Permutation polynomials over finite fields are an interesting subject due to their important
applications in the areas of mathematics and engineering. In this paper we investigate the trinomial
f(x) = x(p−1)q+1 + xpq − xq+(p−1) over the finite field Fq2 , where p is an odd prime and q =

pk with k being a positive integer. It is shown that when p = 3 or 5, f(x) is a permutation
trinomial of Fq2 if and only if k is even. This property is also true for more general class of

polynomials g(x) = x(q+1)l+(p−1)q+1+x(q+1)l+pq −x(q+1)l+q+(p−1), where l is a nonnegative integer
and gcd(2l + p, q − 1) = 1. Moreover, we also show that for p = 5 the permutation trinomials f(x)
proposed here are new in the sense that they are not multiplicative equivalent to previously known
ones of similar form.

Index Terms Finite fields, Permutation polynomials, Trinomials, Niho exponents, Multiplica-
tive inequivalent.

AMS 94B15, 11T71

1 Introduction

Let Fq denote the finite field with q elements and F
∗

q = Fq \{0}, where q is a prime power. A polynomial

f(x) ∈ Fq[x] is called a permutation polynomial of Fq if the associated mapping f : c 7−→ f(c) permutes

Fq. Permutation polynomials were firstly studied by Hermite for the finite prime fields and by Dickson

for arbitrary finite fields [19]. They have wide applications in coding theory [14], cryptography [5, 25]

and combinatorial designs [3]. For a finite field Fq, there are in total q! permutation polynomials of Fq,

and all of them can be obtained from the Lagrange interpolation. Permutations with a few terms are of

particular interest because of the simple algebraic expressions. Especially, permutation binomials and

trinomials attracted particular attention [11, 12, 20, 27, 15, 31]. Recent achievements on the study of

permutation polynomials were surveyed in [11, 23].

Let p be a prime and k a positive integer. A Niho exponent over the finite field Fp2k is a positive

integer d satisfying d ≡ pj (mod pk − 1) for some nonnegative integer j < k. In the case of j = 0, it is

called a normalized Niho exponent. Researches in the past decades demonstrate that Niho exponents

∗Corresponding author. T. Bai and Y. Xia are with the Department of Mathematics and Statistics, South-Central
University for Nationalities, Wuhan 430074, China. Y. Xia is also with the Hubei Key Laboratory of Intelligent Wireless
Communications, South-Central University for Nationalities, Wuhan 430074, China (e-mail: xia@mail.scuec.edu.cn).
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are good resources that lead to desirable objects in sequence design [6, 30], coding theory [2, 32] and

cryptography [7]. Recently, a lot of permutation trinomials of the form

F (x) = x+ λ1x
s(pk

−1)+1 + λ2x
t(pk

−1)+1 (1)

have been proposed, where s and t are two integers, and the coefficients λ1 and λ2 are restricted to

{−1, 1}. For p = 2, Li and Helleseth gave a rather detailed list of known pairs (s, t) and some new

pairs such that F (x) is a permutation polynomial of F22k [16, 17]. In [21, 8, 34, 28] some permutation

trinomials of F22k of similar form were also presented. For p = 3, Li et al. in [21] investigated

several permutation trinomials of F32k of the form (1) and proposed three conjectures, which were later

confirmed in [18] and [1]. Very recently, for p = 5, Wu and Li in [29] derived a series of sufficient

conditions on s, t, λ1 and λ2 for F (x) to permute F52k .

There are also some permutation polynomials constructed from Niho exponents over Fq2 with q

being a power of an arbitrary prime. Hou in [10] characterized the necessary and sufficient conditions

on the coefficients for the polynomial ax+ bxq + x2q−1 ∈ Fq2 [x] to be a permutation of Fq2 . In [4], for

q 6≡ 3 (mod 3), the necessary and sufficient conditions for x+xt(q−1)+1+x−t(q−1)+1 to be a permutation

polynomial of Fq2 were determined, where t is a positive integer. Let Trq2/q(·) denote the trace function

from Fq2 to Fq [19]. Some permutation trinomials of Fq2 of the form x+ γT rq2/q(x
d) were obtained in

[13], where γ ∈ F
∗

q and d is a Niho exponent over Fq2 .

In this paper, we investigate the permutation property of the following trinomial

f(x) = x(p−1)q+1 + xpq − xq+(p−1), (2)

where p is an odd prime and q = pk for a positive integer k. It is easily verified that (p − 1)q + 1, pq

and q+(p− 1) are Niho exponents over Fp2k . We show that for p = 3 or 5, f(x) in (2) is a permutation

polynomial of Fp2k if and only if k is even. However, for the case p > 5, such a result may not hold.

Furthermore, we prove that the above property is also true for more general polynomials

g(x) = x(q+1)l+(p−1)q+1 + x(q+1)l+pq − x(q+1)l+q+(p−1), (3)

where l is a nonnegative integer and gcd(2l + p, q − 1) = 1. In addition, when p = 5, the permutation

polynomials f(x) presented in (2) are shown to be new in the sense that they are not multiplicative

equivalent to the permutation polynomials of the form (1) in [21, 18, 29, 22, 9, 10, 4, 13].

The remainder of this paper is organized as follows. Section 2 gives some preliminaries and notation,

including some useful lemmas. In Section 3, we give the proofs of our main results. Section 4 is devoted

to demonstrating that the permutation trinomials f(x) given in (2) are new when p = 5. Section 5

concludes the study.
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2 Preliminaries

Let p be a prime, k a positive integer and q = pk. The trace function and the norm function from Fq2

to Fq will be denoted by Tr(x) and N(x), respectively [19]. Namely,

Tr(x) = x+ xq and N(x) = x · xq, x ∈ Fq2 .

The unit circle U of Fq2 is defined by

U = {x | xq+1 = 1, x ∈ Fq2}. (4)

In [16, 17, 21, 18, 29], in order to prove the permutation property of the trinomials constructed from

Niho exponents, the authors mainly used the following lemma, which was proved by Park and Lee in

2001 and reproved by Zieve in 2009.

Lemma 1 ([24, 33]) Let p be a prime and n a positive integer. Assume that d is a positive integer

such that d | (pn − 1), h(x) ∈ Fpn [x] and r > 0 is a integer. Then, xrh(x
pn−1

d ) is a permutation of Fpn

if and only if

(i) gcd(r, pn
−1
d ) = 1 and

(ii) xrh(x)
pn−1

d permutes µd, where µd is the set of d-th root of unity in F
∗

pn .

The polynomials constructed from Niho exponents over Fq2 can always be rewritten as the form

xrh(x
q2−1

d ) with d = q + 1. To determine the permutation property of the polynomials xrh(x
q2−1

d )

constructed from Niho exponents by Lemma 1, the main task is to decide if xrh(x)
q2−1

d permutes the

unit circle U of Fq2 . However, sometimes the corresponding polynomial xrh(x)
q2−1

d leads to fractional

polynomial with high degree [26, 16, 17, 21, 18, 29]. It is still a difficult problem in general to verify

that xrh(x)
q2−1

d permutes U .

Another general approach to investigating the permutation property of the polynomials constructed

from Niho exponents over Fq2 is to concentrate on the subset Fq2 \ Fq. More specifically, assume that

G(x) is a polynomial constructed from Niho exponents over Fq2 with coefficients in Fq. If we can show

that G(x) is a permutation of Fq and a permutation of Fq2 \Fq respectively, then G(x) is a permutation

polynomial of Fq2 . To this end, it is usually required that G(x) has the property G(Fq2 \Fq) ∈ Fq2 \Fq,

and the key step in the proof is to prove that G(x) is a permutation of Fq2 \ Fq. This idea originated

from [9] and later was used in [21]. In this paper we will use this idea to prove our main result.

The following lemma is needed in the sequel. Its proof is trivial and is omitted here.
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Lemma 2 Let q be a prime power. Denote by Tr(x) and N(x) the trace function and the norm

function from Fq2 to Fq, respectively. Then, for any c ∈ Fq2 , {c, cq} is uniquely determined by the pair

(Tr(c), N(c)).

The following lemma is obtained by direct computations.

Lemma 3 Let q be a prime power, and Tr(x) and N(x) be the trace function and the norm function

from Fq2 to Fq, respectively.

(i) If q = 3k, then for any x ∈ Fq2 ,

Tr(x2) = Tr2(x) +N(x) and Tr(x4) = Tr4(x)−N(x)Tr2(x) −N2(x);

(ii) If q = 5k, then for any x ∈ Fq2 ,

Tr(x2) = Tr2(x) − 2N(x), T r(x3) = Tr3(x) + 2N(x)Tr(x),

T r(x4) = Tr4(x) +N(x)Tr2(x) + 2N2(x),

T r(x6) = Tr6(x)−N(x)Tr4(x) −N2(x)Tr2(x)− 2N3(x),

and

Tr(x8) = Tr8(x) + 2N(x)Tr6(x)−N3(x)Tr2(x) + 2N4(x).

Proof: We only give the proof of (ii). In Lemma 1 of [29], the expressions for Tr(x2), Tr(x3), Tr(x4)

and Tr(x8) were given while that for Tr(x6) was not. Now we compute Tr(x6) to illustrate how to

obtain the above results. Note that

Tr6(x) = (x+ xq)6

= (x+ xq)5(x+ xq)
= (x5 + x5q)(x + xq)
= x6 + x5+q + x5q+1 + x6q

= Tr(x6) + x1+q
(

x4 + x4q
)

= Tr(x6) +N(x)Tr(x4),

which implies

Tr(x6) = Tr6(x)−N(x)Tr(x4). (5)

Substituting Tr(x4) into (5), we get the desired result. �

Lemma 4 Let U be defined as (4). We have the following results:

(i) if q = 3k, then y2 + 1 = 0 has no root in U if k is even and has two roots in U otherwise;

(ii) if q = 5k, then y2 − y + 1 = 0 has no root in U if k is even and has two roots in U otherwise.
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Proof: (i) Let α be a primitive root of Fq2 with q = 3k. Then, the roots of y2 = −1 are ±α
q2−1

4 , which

belong to U if and only if q + 1 is divisible by 4. Since q + 1 is divisible by 4 if and only if k is odd, it

follows the desired result.

(ii) Note that y2 − y+1 is an irreducible polynomial over F5 because it has no solution in F5. Since

the degree of y2 − y + 1 is 2, it follows that its two roots belong to F52 . We can rewrite y2 − y + 1 as

(y+ 2)2 − 3. Then, the two roots of y2 − y+1 in F52 are −2±
√
3, where ±

√
3 denote the two roots of

x2 = 3 in F52 .

When k is even,
(√

3
)q

=
√
3 since

√
3 ∈ F52 and when k is odd,

(√
3
)q

=
(√

3
)5

= −
√
3. Thus,

when k is even, we have

(

−2±
√
3
)q+1

=
(

−2±
√
3
)q (−2±

√
3
)

=
(

−2±
√
3
)2

= 2±
√
3,

which is not equal to 1. When k is odd, we have

(

−2±
√
3
)q+1

=
(

−2∓
√
3
) (

−2±
√
3
)

= 4− 3
= 1.

Therefore, when k is odd, −2±
√
3 ∈ U . From the above computations, it follows the desired result. �

The following lemma is a special case of Exercise 7.4 in [19]. For the reader’s convenience, we include

a proof here.

Lemma 5 Let Fq be a finite field of characteristic p. Then, xp−ux ∈ Fq[x] is a permutation polynomial

of Fq if and only if u is not a (p− 1)th power of an element of F∗

q.

Proof: Note that xp − ux is a p-polynomial over Fq, and it is a permutation polynomial of Fq if and

only if it only has the root 0 in Fq. Thus, xp − ux is a permutation polynomial of Fq if and only if

xp−1 − u has no root in Fq. The latter exactly means that u is not a (p− 1)th power in Fq. �

3 A new class of permutation trinomials from Niho exponents

In this section, we present our main results about the permutation property of f(x) defined in (2) and

that of g(x) defined in (3). The first main result is given in the following theorem.

Theorem 1 Let q = pk and f(x) be the trinomial defined in (2). Then for p = 3 or 5, f(x) is a

permutation polynomial of Fq2 if and only if k is even.
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Before we prove this theorem in detail, we mention some characterizations of f(x) and g(x). The

three exponents appearing in f(x) are Niho exponents since (p − 1)q + 1 = (p − 1)(q − 1) + p, pq =

p(q− 1)+ p, and q+(p− 1) = (q− 1)+ p. However, the exponents in g(x) may not be Niho exponents.

As we will see in the sequel, the permutation property of f(x) and that of g(x) depend on a same

condition after utilizing Lemma 1. If we obtain the condition for f(x) to permute Fq2 , then it is also

true for g(x). In addition, a permutation polynomial f(x) of the form (2) is closely related to some

permutation polynomial of the form (1). In the next section, we will study the relationship between

f(x) in Theorem 1 and the previously known permutation trinomials of the form (1). By comparison,

we will show that the permutation polynomial f(x) proposed here is new when p = 5.

In order to prove Theorem 1, the following preparatory lemma is needed.

Lemma 6 Let q = pk and f(x) be defined in (2). When p = 3 or 5, for any x ∈ Fq2 \ Fq, we have

f(x) ∈ Fq2 \ Fq if and only if k is even.

Proof: Assume that x ∈ Fq2 \ Fq. Note that f(x) ∈ Fq if and only if

x(p−1)q+1 + xpq − xq+(p−1) = xq+(p−1) + xp − x(p−1)q+1

which is equivalent to

2xq+(p−1) + xp − xpq − 2x(p−1)q+1 = 0.

Dividing the above equation by xp, we get

2xq−1 + 1− xp(q−1) − 2x(p−1)(q−1) = 0. (6)

Setting z = xq−1, (6) can be rewritten as

2z + 1− zp − 2zp−1 = 0,

which equals

(z − 1)(z2 + 1) = 0 (7)

if p = 3, and

(z − 1)(z2 − z + 1)2 = 0 (8)

if p = 5.

Note that if x ∈ Fq2 \ Fq, then z = xq−1 ∈ U \ {1}, where U is defined as (4). For p = 3, from (7),

we can conclude that for any x ∈ Fq2 \Fq, we have f(x) ∈ Fq if and only if z = xq−1 satisfies z2+1 = 0.

By Lemma 4, if k is even, then z2 + 1 = 0 has no root in U . Thus, in this case, for any x ∈ Fq2 \ Fq,

we have f(x) /∈ Fq, i.e., f(x) ∈ Fq2 \ Fq. If k is odd, then z2 + 1 = 0 has two roots in U \ {1}, which
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shows that there are 2(q − 1) elements x ∈ Fq2 \ Fq such that f(x) ∈ Fq. Similarly, for p = 5, we can

obtain the same conclusion by (8) and Lemma 4.

From the above discussions, it follows the desired result. �

Proof of Theorem 1. Note that in this proof q = pk and p is restricted to {3, 5}. To prove that

f(x) is a permutation of Fq2 , it suffices to show that for any c ∈ Fq2 , f(x) = c has exactly one root in

Fq2 .

Note that when x ∈ Fq, then f(x) = xp, which is a permutation of Fq since gcd(p, q−1) = 1. On the

other hand, if k is odd, from the proof of Lemma 6, there are 2(q − 1) elements x ∈ Fq2 \ Fq such that

f(x) ∈ Fq. Therefore, when k is odd, for some c ∈ Fq there must exist at least two distinct elements

x1, x2 ∈ Fq2 such that f(x1) = f(x2) = c. Thus, f(x) is not a permutation polynomial of Fq2 when k

is odd.

Next we prove that when k is even, then f(x) is a permutation polynomial of Fq2 , i.e., f(x) = c has

exactly one root in Fq2 . We consider the following two cases.

Case 1: c ∈ Fq. Then, by Lemma 6, we can derive from f(x) = c that x must belong to Fq. Thus,

in this case f(x) = c is equivalent to that xp = c. Obviously, the latter has only one root in Fq2 .

Case 2: c ∈ Fq2 \ Fq. Then, by Lemma 6, the roots of f(x) = c belong to Fq2 \ Fq. Next we will

show that f(x) = c has exactly one root in Fq2 \ Fq under the given conditions. Let Tr(x) and N(x)

be defined as (3). We compute Tr(f(x)) and N(f(x)) as follows:

Tr(f(x)) =
(

x(p−1)q+1 + xpq − xq+(p−1)
)

+
(

x(p−1)q+1 + xpq − xq+(p−1)
)q

= xpq + xp

= Trp(x),
(9)

and

N(f(x)) =
(

x(p−1)q+1 + xpq − xq+(p−1)
) (

xq+(p−1) + xp − x(p−1)q+1
)

= 3xpq+p +
(

x(p−1)q+(p+1) + x(p+1)q+(p−1)
)

−
(

x(2p−2)q+2 + x2q+(2p−2)
)

−
(

x(2p−1)q+1 + xq+(2p−1)
)

= 3Np(x) +Np−1(x)Tr(x2)−N2(x)Tr(x2p−4)−N(x)Tr(x2p−2).

(10)

When p = 3 or 5, by Lemma 3, N(f(x)) in (10) can be expressed in terms of Tr(x) and N(x) as follows:

N(f(x)) =























−N(x)Tr4(x) +N2(x)Tr2(x) +N3(x), for p = 3,

N5(x) + 3N4(x)Tr2(x) +N3(x)Tr4(x)

+ 2N2(x)Tr6(x)−N(x)Tr8(x), for p = 5.

(11)

For any c ∈ Fq2 \ Fq, from f(x) = c, we have

Tr(f(x)) = Tr(c) and N(f(x)) = N(c). (12)
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In what follows, we will prove that Tr(x) and N(x) are uniquely determined by c under the aforemen-

tioned conditions. We only give the proof of this conclusion in the case p = 5, and for p = 3 it can be

proved in the same way. Thus, in the sequel we always assume that q = 5k.

By (9), (11) and (12), we have











Tr5(x) = Tr(c),

N5(x) + 3N4(x)Tr2(x) +N3(x)Tr4(x) + 2N2(x)Tr6(x)−N(x)Tr8(x) = N(c).
(13)

Note that gcd(5, q− 1) = 1. Thus, from Tr5(x) = Tr(c), one knows that Tr(x) is uniquely determined

by c. Therefore, it suffices to show that N(x) is also uniquely determined by c. We consider the

following two subcases.

Subcase 2.1: Tr(c) = 0. Then, it follows that Tr(x) = 0. From the second equation in (13), we have

N5(x) = N(c) and thus N(c) is also uniquely determined by c.

Subcase 2.2: Tr(c) 6= 0. Then, Tr(x) 6= 0. For convenience, put

r =
N(x)

Tr2(x)
and s =

N(c)

Tr2(c)
. (14)

Then, divided by Tr10(x), the second equation in (13) can be rewritten as

r5 + 3r4 + r3 + 2r2 − r = s

or equivalently

(r − 2)4(r + 1) = s+ 1. (15)

We claim that s is not equal to −1. Otherwise, we have N(c)+Tr2(c) = 0, which implies (cq − c)
2
= 0

leading to c ∈ Fq, a contradiction to the assumption c ∈ Fq2 \ Fq. Let

t = r − 2, (16)

then (15) becomes

t5 + 3t4 = s+ 1. (17)

Note that t is not equal to 0 since s is not equal to −1. Therefore, (17) can be further transformed into

(

1

t

)5

− 3

s+ 1
· 1
t
=

1

s+ 1
. (18)

If we can show that 3
s+1 is not a fourth power in Fq, then by (18) and Lemma 5 we can conclude that

1
t is uniquely determined by s. Then, from (14) and (16), it follows that N(x) is uniquely determined

by c.
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Thus, it suffices to show that 3
s+1 is not a fourth power in Fq. To this end, we express 3

s+1 in terms

of c as follows:

3

s+ 1
=

3

N(c)/T r2(c) + 1
= 3

(

1− 1

c1−q + cq−1 − 2

)

. (19)

Since c ∈ Fq2 \ Fq and Tr(c) 6= 0, it follows that cq−1 ∈ U \ {±1}. Let u = cq−1. Suppose, on the

contrary, that 3
s+1 is a fourth power in Fq. Then, by (19) we have

3

(

1− 1

u+ u−1 − 2

)

= ω4 (20)

for some ω ∈ Fq. Note that 3− ω4 6= 0. Thus, we can rewrite (20) as

u2 +
1 + 2ω4

3− ω4
· u+ 1 = 0

which implies

u =
3ω4 + 4±

√
3ω2

2(3− ω2)
, (21)

where ±
√
3 denote the two root of x2 = 3 in F52 . Note that when k is even, the two roots of x2 = 3,

which are ±
√
3, belong to Fq. From (21), it follows that u ∈ Fq, which contradicts to u ∈ U \ {±1}

since Fq ∩ U = {±1}. Therefore, 1
s+1 is not a fourth power in Fq and the desired result follows.

The discussions in Subcases 2.1 and 2.2 show that for p = 5, when k is even and c ∈ Fq2 \ Fq, we

can derive from f(x) = c that Tr(x) and N(x) are uniquely determined by c. For p = 3, this conclusion

can be similarly proved.

Furthermore, by Lemma 2, when p ∈ {3, 5}, for any c ∈ Fq2 \ Fq, one can conclude from f(x) = c

that the set {x, xq} is uniquely determined by c. Note that if one of {x, xq} satisfies f(x) = c, the other

does not. For instance, if f(x) = c, then f(xq) = (f(x))
q
= cq 6= c since c ∈ Fq2 \ Fq. Thus, for p = 3

or 5, when k is even, for any c ∈ Fq2 \ Fq, f(x) = c has only one root in Fq2 \ Fq.

From Cases 1 and 2, it follows the desired result. �

Corollary 1 Let U be defined as (4) with q = pk and p ∈ {3, 5}. Then, the following fractional

polynomial

x+ 1− xp−1

xp + xp−1 − x
(22)

permutes U if and only if k is even.

Proof: Note that f(x) in (2) can be written as xp
(

x(p−1)(q−1) + xp(q−1) − xq−1
)

. Then, by Lemma

1 and Theorem 1, it follows that xp
(

xp−1 + xp − x
)q−1

permutes U if and only if k is even, where

9



p ∈ {3, 5}. Note that if xp
(

xp−1 + xp − x
)q−1

permutes U , it is not equal to zero when x ∈ U . Thus,

for each p ∈ {3, 5}, xp
(

xp−1 + xp − x
)q−1

can be written as

xp
(

xp−1 + xp − x
)q

xp−1 + xp − x
,

which is exactly (22) since xq = x−1 when x ∈ U . �

Based on Lemma 1 and Corollary 1, we obtain our second main result which gives the permutation

property of g(x) defined in (3).

Theorem 2 Let q = pk with p ∈ {3, 5}, and l a nonnegative integer satisfying gcd(2l + p, q − 1) = 1.

Then,

g(x) = x(q+1)l+(p−1)q+1 + x(q+1)l+pq − x(q+1)l+q+(p−1)

is a permutation polynomial of Fq2 if and only if k is even.

Proof: We can rewrite g(x) as

x(q+1)l+p
(

x(p−1)(q−1) + xp(q−1) − xq−1
)

.

Note that gcd((q + 1)l + p, q − 1) = gcd(2l + p, q − 1) = 1. Then, by Lemma 1, g(x) is a permutation

polynomial of Fq2 if and only if x(q+1)l+p
(

x(p−1) + xp − x
)q−1

permutes U . The latter is equivalent to

that xp
(

x(p−1) + xp − x
)q−1

permutes U since x(q+1)l = 1 when x ∈ U . The desired result follows now

from Corollary 1. �

Remark 1 As we have shown in the proofs of Corollary 1 and Theorem 2, f(x) or g(x) is a permutation

polynomial of Fq2 if and only if xp
(

x(p−1) + xp − x
)q−1

permutes U . This shows that the permutation

property of f(x) and that of g(x) depend on a same condition. However, it seems difficult to verify

directly whether this condition holds. Thus, in this paper we use a different approach to investigate the

permutation property of f(x), and then obtain the permutation property of g(x).

Remark 2 Let f(x) and g(x) be defined in (2) and (3), respectively. The polynomial g(x) contains

f(x) as a special case, and by taking l = 0, g(x) is transformed into exactly f(x). Note that when p = 2,

f(x) = xpq, g(x) = x(q+1)l+pq and they are always permutation polynomials of F22k for any positive

integer k. For p > 5, Theorems 1 and 2 may not hold. By Magma, we have obtained some numerical

results in Table 2.

10



Table 1: Is f(x) or g(x) a permutation over Fp2k?

p k Permutation over Fp2k

7 1 No
7 2 Yes
7 3 No
7 4 No
7 5 No
7 6 No
11 1 No
11 2 Yes
11 3 No
11 4 No
13 1 No
13 2 Yes
13 3 No

4 A comparison with known related permutation trinomials

In this section, we will compare the permutation polynomials f(x) proposed in Theorem 1 with pre-

viously known ones of the form (1). It is straightforward that the composition of two permutation

polynomials of the same finite field is also a permutation polynomial. We recall the definition of mul-

tiplicative equivalence from [11, 20, 28].

Definition 1 Let q be a prime power, and H(x) and h(x) be two permutation polynomials of Fq.

H(x) and h(x) are called multiplicative equivalent if there exists an integer 1 ≤ d ≤ q − 2 such that

gcd(d, q − 1) = 1 and H(x) = ah(xd) for some a ∈ F
∗

q.

Next we will determine whether or not the permutation trinomials f(x) given in Theorem 1 are

multiplicative equivalent to the previously known ones of the form (1) in [21, 18, 29, 22, 9, 10, 4, 13].

We make some preparations as follows.

Proposition 1 Let f(x) be defined in (2), and q = pk with k being even and p ∈ {3, 5}. We have the

following results:

(a) If p = 3, then f(x) is multiplicative equivalent to the following permutation trinomials of Fq2 :

(i) f1(x) = x+ x(2·3k−1+1)(q−1)+1 − x(3k−1+1)(q−1)+1;

(ii) f2(x) = x+ x−q+2 − xq;

(iii) f3(x) = x− xq − x2q−1;

(b) If p = 5, then f(x) is multiplicative equivalent to the following permutation trinomials of Fq2 :

11



(i) f1(x) = x+ x(4·5k−1+1)(q−1)+1 − x(5k−1+1)(q−1)+1;

(ii) f2(x) = x+ x
2q+1

3
(q−1)+1 − xq;

(iii) f3(x) = x− xq − x
q+5

3
(q−1)+1.

Proof: We only prove the case p = 5. For the case p = 3, the result can be proved in the same

way. When p = 5, note that f1(x) = f(x5k−1

). Thus, f(x) is multiplicative equivalent to f1(x). Let

d1 = (4 · 5k−1 + 1)(q − 1) + 1 and d2 = (5k−1 + 1)(q − 1) + 1. When k is even, gcd(d1, q
2 − 1) =

gcd(d2, q
2 − 1) = 1. Then, by extended Euclidean algorithm, we have d−1

1 = 2q+1
3 (q − 1) + 1 and

d−1
2 = q+5

3 (q − 1) + 1, where d−1
i denotes is the inverse of di modulo q2 − 1, i = 1, 2. Note that

f2(x) = f1(x
d−1

1 ) and f3(x) = −f1(x
d−1

2 ). Therefore, f(x) is multiplicative equivalent to f2(x) and

f3(x). It is easily seen that f1(x), f2(x) and f3(x) are pairwise multiplicative equivalent to each other.

�

The following claims are needed.

Claim 1: Recall that the inverse d−1 of a (normalized) Niho exponent d over Fp2k , if it exists,

is again a (normalized) Niho exponent, and the product of two (normalized) Niho exponents is also a

(normalized) Niho exponents [6].

Let F (x) be a permutation polynomial of Fp2k of the form (1), d1 = s(pk−1)+1 and d2 = t(pk−1)+1.

If one of d1 and d2 is invertible, say d1, then λ1F (xd−1

1 ) is also a permutation polynomial of the form

(1) which is multiplicative equivalent to F (x). This analysis together with Claim 1 gives the following

claim.

Claim 2: Let F (x) be a permutation polynomial of Fp2k of the form (1). Then, all the permutation

trinomials of the form (1) that are multiplicative equivalent to F (x) are given by λiF (xd−1

i ) provided

gcd(di, p
2k − 1) = 1, i = 1, 2.

Claims 1 and 2 together with Proposition 1 give the following claim.

Claim 3: Let f(x) be a permutation polynomial in Theorem 1. If a permutation trinomial of the

form (1) is multiplicative equivalent to f(x), then it must be one of f1(x), f2(x) and f3(x) in Proposition

1.

In the sequel, a permutation polynomial F (x) of Fp2k of the form (1) will be denoted by the tuple

(λ1, s, λ2, t). According to Lemma 1, F (x) is a permutation polynomial of Fp2k if and only if the

associated polynomial

x
(

1 + λ1x
s + λ2x

t
)pk

−1
(23)

permutes the unit circle U . When F (x) is a permutation polynomial of Fp2k , (23) can be further written

12



Table 2: Known permutation trinomials of F32k of the form (1) (q = 3k)

(λ1, s, λ2, t) Fractional polynomial k Ref.

(−1, 2, 1,−2) x5+x3−x

−x4+x2+1
k 6≡ 0 (mod 4) [21, Theorem 3.2]

(1, 3,−1,−1)
−x4 + x3 + 1

x5 + x2 − x
odd k [21, Theorem 3.4]

(−1, 4, 1,−2)
x6 + x4 − 1

−x7 + x3 + x
all k [21, Conjecture 5.1 (2)], [18]

(−1,−2, 1, 2)
−x5 + x3 + x

x4 + x2 − 1
k 6≡ 2 (mod 4) [21, Conjecture 5.1 (3)], [18]

(

−1, q+3
4

,−1, 3q+5
4

)

x
x

3q+5

4 − x
q+1

2 − 1

x
3q+5

4 − x− x
q+3

2

even k [13, Theorem 1.1 (d)]

(

−1,
√
q,−1, 1−√

q
) x

√
q − x2

√
q−1 − 1

x
√
q−1 − x2

√
q−1 − 1

even k [13, Theorem 1.1 (e)]

(

−1,
√
q + 1,−1,−√

q
) x

√
q+1 − x2

√
q+1 − 1

x
√
q − x2

√
q+1 − 1

even k [13, Theorem 1.1 (f)]

(−1, 1,−1, 2)
x+ 1− x2

x3 + x2 − x
even k [10, Theorem A (iv)]

as a fractional polynomial

x
1 + x−s + x−t

1 + xs + xt

since x ∈ U , which is called the fractional polynomial of F (x). For comparison purposes, we collect

all known permutation trinomials of F32k and F52k of the form (1). We list them in Tables 2 and

3, respectively. To the best of our knowledge, Tables 2 and 3 contain such permutation trinomials

completely.

Note that the last one in Table 2 is exactly f3(x) in Proposition 1 (a)(iii). In [10], Hou determined

all permutation trinomials of Fq2 of the form ax + bxq + x2q−1 ∈ Fq2 [x]. When p = 3, according to

Theorem A (iv) of [10], −x + xq + x2q−1 is a permutation polynomial of F32k if and only if −1 is a

square of F∗

3k , which is equivalent to that k is even. The permutation polynomial x− xq −x2q−1 equals

−
(

−x+ xq + x2q−1
)

, and thus its permutation property can be derived from Theorem A (iv) of [10].

According to Tables 2-3, Proposition 1 and Claim 3, we conclude the following result.

Proposition 2 Let f(x) be a permutation polynomial proposed in Theorem 1. When p = 3, f(x) is

multiplicative equivalent to the permutation polynomial x − xq − x2q−1 (or −x + xq + x2q−1 ) which

is contained in Theorem A (iv) of [10]. When p = 5, f(x) is not multiplicative equivalent to any

permutation trinomial listed in Table 3.

The above proposition shows that f(x) proposed in Theorem 1 is indeed new when p = 5. When

p = 3, the permutation polynomial f(x) proposed in Theorem 1 is multiplicative equivalent to a known

one contained in [10]. Nevertheless, the method for proving the permutation property in this paper are

different from that in [10].
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Table 3: Known permutation trinomials of F52k of the form (1) (q = 5k)

(λ1, s, λ2, t) Fractional polynomial k Ref.
(

1, q+3
4

,−1, q+3
2

)

−x
q+1

2

(

xs−2
xs+2

)2

(s = q+3
4

) all k [29, Theorem 1]

(

1, q−1
2

,−1, q+3
2

)

−x
(

x
q+3

2 − x
q−1

2 + 1
)

x
q+3

2 − x
q−1

2 − 1
odd k [29, Theorem 2]

(

1,−1,−1, q+3
2

)

x2
(

x
q−1

2 − x− 1
)

x
q+5

2 − x− 1
odd k [29, Theorem 3]

(

−1, q+3
2

, 1, q+5
2

)

−x
(

x
q−1

2 − x
q−3

2 − 1
)

x
q+5

2 − x
q+3

2 + 1
odd k [29, Theorem 4]

(

−1, 2, 1, q+3
2

) x
q+3

2 + x2 − 1

x
(

x
q+3

2 − x2 + 1
) even k [29, Theorem 5]

(

1, 1,−1, q−1
2

) x
q+5

2 − x− 1

x
q−1

2 − x− 1
even k [29, Theorem 6]

(

−1, 1, 1, q+5
2

) x
q−1

2 + x− 1

x
q+5

2 − x+ 1
even k [29, Theorem 7 (i)]

(

1, q+3
2

, 1, q+5
2

) x
q+1

2 + x
q−1

2 + x

x
q+5

2 + x
q+3

2 + 1
even k [29, Theorem 7 (ii)]

(

1, q+3
2

,−1,−1
)

x2
(

x
q−1

2 − x+ 1
)

x
q+5

2 + x− 1
even k [29, Theorem 7 (iii)]

(1, 2,−1,−2) −x

(

x2 + 2

x2 − 2

)2

odd k [29, Proposition 1]

[22, Theorem 4.1]
(

−1, q+5
3

,−1, 2(q+2)
3

)

−x

(

x2 − 2

x2 + 2

)2

even k [29, Proposition 2]

[22, Theorem 3.1]

(

1, q+2
3

, 1, 2q+4
3

) x
2q+4

3 + x
q+2

3 + 1

x
2q+1

3 + x
q+2

3 + 1
even k [13, Theorem 1.1 (c)]

(

−1,
√
q,−1, 1−√

q
) x

√
q − x2

√
q−1 − 1

x
√
q−1 − x2

√
q−1 − 1

even k [13, Theorem 1.1 (e)]

(

−1,
√
q + 1,−1,−√

q
) x

√
q+1 − x2

√
q+1 − 1

x
√
q − x2

√
q+1 − 1

even k [13, Theorem 1.1 (f)]

(1, t, 1,−t) x even k [4, Theorem 3.4 (i) ]

(1, t, 1,−t) x
odd k and

exp3(t) ≥ exp3(q + 1)∗
[4, Theorem 3.4 (iii) ]

(±1, 1, 1, 2)
1

x
even k [9, Theorem A (ii) ]

∗where exp3(i) denotes the exponent of 3 in the canonical factorization of i.

5 Conclusion

In this paper, we construct a class of permutation trinomials of Fq2 with q = 3k and 5k. Precisely, for

each p ∈ {3, 5}, we prove that f(x) = x(p−1)q+1+xpq−xq+(p−1) is a permutation trinomial of Fq2 if and
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only if k is even. This conclusion is also true for more general polynomials g(x) = x(q+1)l+(p−1)q+1 +

x(q+1)l+pq−x(q+1)l+q+(p−1) with l being a nonnegative integer satisfying gcd(2l+p, q−1) = 1. Moreover,

when p = 5, we prove that f(x) presented here is not multiplicative equivalent to any known permutation

trinomial of the form (1). Numerical experiments show that Theorems 1 and 2 may not hold when p > 5.

It would be nice if our construction can be generalized to arbitrary finite field. Namely, the readers are

invited to determine the permutation polynomials of Fq2 of the form

x(p−1)q+1 + λ1x
pq + λ2x

q+(p−1),

where p is a prime, q = pk for some positive integer k and λ1, λ2 ∈ Fq.
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