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Abstract. We propose and analyze the Lizard-construction, a way to
construct keystream generator (KSG) based stream ciphers with provable
2
3
n-security with respect to generic time-memory-data tradeoff attacks.

Note that for the vast majority of known practical KSG-based stream
ciphers such attacks reduce the effective key length to the birthday bound
n/2, where n denotes the inner state length of the underlying KSG. This
implies that practical stream ciphers have to have a comparatively large
inner state length (e.g., n = 288 bit for Trivium [6] and n = 160 bit for
Grain v1 [16]).
The Lizard-construction proposes a state initialization algorithm for
stream ciphers working in packet mode (like the GSM cipher A5/1 or
the Bluetooth cipher E0). The proposal is that for each packet i the
packet initial state qiinit is computed from the secret session key k and
the packet initial value IV i via qiinit = P (k⊕IV i)⊕k, where P denotes a
state mixing algorithm. Note that the recently published cipher Lizard
(see [14]), a stream cipher having inner state length of only 121 bit, is a
lightweight practical instantiation of our proposal, which is competitive
w.r.t. the usual hardware and power consumption metrics.
The main technical contribution of this paper is to introduce a formal
ideal primitive model (in the sense of [12]) for KSG-based stream cip-
hers and to show the sharp 2

3
n-bound for the security of the Lizard-

construction against generic time-memory-data tradeoff attacks.

1 Introduction

The vulnerability against generic time-memory-data (TMD) tradeoff attacks like
those of Babbage [3], Biryukov and Shamir [4], and Dunkelman and Keller [9]
represents an inherent weakness of keystream generator-based (for short: KSG-
based) stream ciphers. This vulnerability implies that for KSG-based stream
ciphers working in one-stream mode1 the effective key length is bounded by n

2 ,
where n denotes the inner state length of the underlying KSG. As a consequence,

1 One-stream mode means that an initial state is computed only once and the corre-
sponding keystream is used for the whole session.
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modern practical stream ciphers have comparatively large inner state lengths
(e.g., 288 bit for the eSTREAM portfolio member Trivium [6] or 160 bit for the
eSTREAM portfolio member Grain v1 [16]).

In this paper, we show how to design KSG-based stream ciphers with a pro-
vable beyond-the-birthday-bound security of 2

3n against generic TMD tradeoff
attacks.

Our construction refers to stream ciphers working in the so-called packet
mode, like the E0 cipher of the Bluetooth system or the A5/1 cipher in the
GSM standard. Such ciphers produce a keystream which is divided into packets
of moderate length, where for each keystream packet i, the initial state qiinit =
qiinit(k, IV

i) for this packet is computed from the symmetric secret session key
k and a packet-specific initial value (IV) IV i according to a state initialization
algorithm.

As in many communication scenarios data streams are encrypted and trans-
mitted packet-wise (Bluetooth, WLAN, cellular networks etc.), it seems natural
to consider stream ciphers working in packet mode (see [14] for more practical
examples of stream ciphers working in packet mode and more information about
the practical relevance of such ciphers).

We focus on analyzing the influence of the state initialization algorithm on
the security against generic session key recovery and packet prediction TMD
tradeoff attacks.

Note that the state initialization algorithms of E0 and A5/1, two prominent
practical examples of stream ciphers working in packet mode, are of type

qiinit(k, IV
i) = P

(
L(k)⊕ L′(IV i)

)
,

which provides only a security level of n
2 w.r.t. session key recovery attacks.

Here, L,L′ denote GF (2)-linear mappings, and P : {0, 1}n −→ {0, 1}n denotes
the state mixing algorithm of the cipher.2

The main contribution of this paper is to show that stream ciphers using a
state initialization algorithm of type

qiinit(k, IV
i) = P

(
k ⊕ IV i

)
⊕ k (1)

reach a security level of 2
3n w.r.t. session key recovery attacks and even w.r.t.

so-called packet prediction attacks. Note here that in a previous version of this
paper, the algorithmic scheme (1) was called FP (1)-mode and as such it is
referenced by the designers of Lizard in [14].

We prove our security bound by introducing, in the sense of Gazi and Tessaro
[12], an ideal primitive model (IPM) for KSG-based stream ciphers working in
packet mode and show a tight information-theoretic 2

3n security bound against

2 The aim of the mixing algorithm is to provide enough diffusion, confusion and high
algebraic degree in the dependencies of the initial state bits from the session key
bits and IV bits. The easiest way to perform the mixing algorithm is by clocking
the KSG a sufficiently large number of times without producing keystream, see e.g.
Trivium.
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key recovery and packet prediction attacks for ciphers which use a state initia-
lization algorithm of type (1).

To the best of our knowledge, this is the first time that a formal model for
the security of stream ciphers against generic time-memory-data tradeoff attacks
is considered. So far, similar IPMs were used, e.g., for analyzing the security of
operation modes of block ciphers, of key-alternating block cipher constructions
(see the framework of iterated Even-Mansour ciphers), or of cryptographic hash
functions, but not for stream ciphers.

Very recently, the specification of the lightweight stream cipher Lizard [14]
has been published. Lizard works in packet mode with a packet length of R ≤
218 bit, has a state initialization algorithm of type (1), and an inner state length
of 121 bit. The design features of Lizard presented in [14] show that our design
principle packet mode + state initialization of type (1) allows for lightweight
practical instantiations which are competitive w.r.t. all relevant hardware and
power consumption metrics.

Note that Armknecht and Mikhalev suggested with Sprout [2] another ap-
proach for obtaining KSG-based stream ciphers with beyond-the-birthday-bound
security against generic TMD tradeoff attacks (see also [13], where another cip-
her named Fruit, also basing on this principle, has been presented). The idea here
is that the session key is not only accessed during the state initialization but also
continuously used as part of the state update function (see [14] for a discussion
about the practical hardware and energy efficiency of this approach). It has to
be mentioned here that, so far, security proofs showing a beyond-the-birthday-
bound security against generic TMD tradeoff attacks for the Sprout-construction
are missing.

In the remaining part of this introduction, we provide some basics on KSG-
based stream ciphers (subsection 1.1), TMD tradeoff attacks (subsection 1.2),
and motivate and describe our results in more detail (subsection 1.3).

1.1 Stream Ciphers

Stream ciphers are symmetric encryption algorithms intended for encrypting,
in an online manner, plaintext bitstreams X which have to pass an insecure
channel. The encryption is performed via bitwise addition of a keystream S to
X, which is generated in dependence of a secret session key k and public initial
values. The legal recipient, who also knows k, decrypts the encrypted bitstream
Y = X⊕S by generating S and computing X = Y ⊕S. The secret session key k
is typically generated in the first phase of a session by executing a key exchange
protocol. This session key generation phase will not be considered in this paper.

We consider stream ciphers working in packet mode, which means that a
session is divided into packet steps, and that the keystream S and plaintext X are
generated and encrypted packet-wise. LetX = X1X2X3 · · · and S = S1S2S3 · · ·
denote the corresponding partition of the plaintext X and the keystream S into
packets. It holds |Xi| = |Si| ≤ R for all i ≥ 0 and some parameter R called
the packet length. In each packet step i, the keystream packet Si is generated
in dependence of k and an initial value IV i, and Xi is encrypted via Xi ⊕ Si.
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We consider stream ciphers which are defined by KSGs. KSGs are clock-
controlled devices which can be formally specified by finite automata, defined by
an inner state length n, the set of inner states {0, 1}n, a state update function
π : {0, 1}n −→ {0, 1}n and an output function out : {0, 1}n −→ {0, 1}∗. Starting
from an initial state q1, in each clock cycle t ≥ 1, the KSG produces a piece
of keystream zt = out(qt) and changes the inner state according to qt+1 =
π(qt). The output bitstream S(q1) is defined by concatenating all the outputs
z1z2z3 · · · .

Note that in this paper, we consider only KSGs which produce one bit per
clock cycle.

Packet mode for KSG-based stream ciphers means that each packet step
i ≥ 0 starts with computing an initial inner state qiinit = qiinit(k, IV

i) from the
secret session key k and an initial value IV i. Then, the keystream packet Si is
generated as the prefix of length R of the keystream S(qiinit).

The opposite of the packet mode would be the one-stream mode, in which
only one initial state qinit = qinit(k, IV ) per session is generated and where the
keystream S = S(qinit) is used for the whole session. Trivium [6] and Grain
[16] can be considered examples of stream ciphers designed for one-stream mode
due to their extremely large limits (e.g., 264 bits for Trivium) on the amount of
keystream generated under a single key-IV pair.3

Besides the KSG, the second main component of a stream cipher is the state
initialization algorithm, which defines how the initial state qiinit = qiinit(k, IV

i)
for the i-th keystream packet is computed from k and the initial value IV i.

The state initialization algorithm is typically performed by the KSG and
divided into the following three phases:

(1) The loading phase defines how k and IV i are loaded into the inner state
registers and results in a loading state qiload = qiload(k, IV

i).
(2) The mixing phase runs an appropriate KSG-based mixing algorithm on

qiload and results in a mixing state qimixed = qimixed(q
i
load).

(3) The hardening phase, which computes qiinit from qimixed and, possibly, k
and IV i.

The aim of the mixing phase (2) is to generate a sufficient amount of diffusion,
confusion, high algebraic degree etc. in the dependencies of the initial state bits
from the session key bits. Concerning (3), note that in many previous cases we
had qiinit = qimixed.

We formalize the process of state initialization and keystream generation
of KSG-based stream ciphers by identifying the following primitives P, F̃ :
{0, 1}n −→ {0, 1}n, where n denotes the inner state length of the underlying
keystream generator.

For all y ∈ {0, 1}n, the function value F̃ (y) ∈ {0, 1}n is defined as the
sequence of the first n keystream bits generated on the inner state y. Clearly,
F̃ should be preimage resistant in the sense that it is infeasible to compute, for

3 Clearly, Trivium and Grain could also be used in packet mode but, in contrast to,
e.g., Lizard [14], their design is not specifically optimized for such scenarios.
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given z ∈ {0, 1}n, a value y ∈ {0, 1}n fulfilling F̃ (y) = z. Otherwise, for instance,
it would be feasible to predict, on the basis of the first n keystream bits of a
packet, all remaining keystream bits of this packet.

Note that the n-block of bits r to r + n− 1 of the keystream packet Si can
be expressed as

(Sir, · · · , Sir+n−1) = F̃
(
πr(qiinit)

)
. (2)

We use further the primitive P : {0, 1}n −→ {0, 1}n for modeling the mixing
phase, i.e., for all u ∈ {0, 1}n, the value P (u) denotes qimixed if u = qiload.
Standard efficiency and security assumptions on KSGs imply that P should be
an efficiently computable function which behaves like a random function with
respect to several combinatorial properties.

Let us describe the state initialization algorithm of some relevant stream
ciphers and express them by our formalism:

Trivium: The stream cipher Trivium has an inner state of length 288 bit, distributed
over three nonlinear feedback shift registers (NFSRs) of lengths 93 bit, 84 bit,
and 111 bit. The state update function consists of the corresponding three
feedback functions, which in each case are quadratic and take their inputs
from two of the three NFSRs. The linear output function XORs six inner
state bits, two from each NFSR. The loading state qload(IV,CONST , k) is
defined to be the concatenation of the 80-bit session key k, the 80-bit IV IV
and a predefined 128-bit constant CONST . In the mixing phase, the KSG
is clocked 4 · 288 times without producing output (see [6] for more details).
Consequently,

qinit = qmixed = P (IV ||CONST ||k). (3)

Grain v1: The stream cipher Grain v1 has an inner state of length 160 bit, distributed
over one NFSR and one linear feedback shift register (LFSR), both of length
80 bit. The state update function consists of the corresponding two feedback
functions, where the NFSR feedback function depends also on one of the
LFSR bits. The output function produces one keystream bit per clock cycle
and depends nonlinearly on five LFSR bits and one NFSR bit and linearly on
further seven NFSR bits. The loading state qload(IV,CONST , k) is defined
to be the concatenation of the 80-bit session key k, a 64-bit IV IV and a
predefined 16-bit constant CONST . In the mixing phase, the Grain-KSG
is clocked 160 times, where, in each clock cycle, the corresponding output
keystream bit is XORed to the result of each of the two feedback functions
(see [16] for more details). Consequently, we have again

qinit = qmixed = P (IV ||CONST ||k). (4)

Bluetooth-E0: E0 works in packet mode with a packet length R ≤ 2745 bit.4 The inner
state length is 132 bit, distributed over four LFSRs of overall length 128 bit
and an extra finite state machine of inner state length four bit. The state

4 More exactly, if the so-called basic rate is used, Bluetooth data packets contain at
most 2745 bits of payload, which are encrypted using the E0 cipher.

5



update function updates all LFSRs separately. The state transition of the
4-bit finite state machine additionally depends on four bits from the LFSRs.
The output function XORs the output bits of the LFSRs with the nonlinear
output of the finite state machine.
For each packet step i, the initial value IV i is composed of the 48-bit
Bluetooth address of the master device, 26 bits of the master’s clock (to
which both devices are synchronized) at the time of the first transmission
slot of the packet i and two 3-bit constants. The E0 cipher loads k and
IV i stepwise to the register cells of the KSG, resulting in the inner state
qiload = L(k) ⊕ L̃(IV i), where L, L̃ denote linear functions defined by the
four linear feedback shift registers of the E0-KSG. Subsequently, the gene-
rator is clocked 56 times and the output is discarded. Based on the resulting
inner state of the E0-KSG, 128 keystream bits are then computed without
outputting them. Instead, they are copied into the LFSR register cells, over-
writing the old inner state (see [19] for more details). Consequently, the state
initialization algorithm of E0 can be modeled as

qiinit = qimixed = P
(
L (k)⊕ L̃

(
IV i

))
. (5)

Lizard: The definition of Lizard is highly inspired by the Grain family [15] of stream
ciphers. In opposite to Grain, Lizard is designed for working in packet mode
with a packet length of up to 218 bit. It has an inner state length of 121 bit,
distributed over two NFSRs of lengths 90 bit and 31 bit, and a nonlinear
output function (see [14] for more details). The prominent innovation of
Lizard is that the state initialization algorithm is designed according to
the scheme (1) mentioned above with some minor adaptions (see section
3.5 in [14] for a detailed discussion of how Lizard implements the generic
construction presented here).

1.2 Attacks against Stream Ciphers

During the last decades, many KSGs for practical use have been suggested and
many different techniques for cryptanalyzing stream ciphers have been develo-
ped (correlation attacks, fast correlation attacks, guess-and-verify attacks, BDD
attacks, cube attacks etc.).

Attacks on stream ciphers typically suppose that the attacker knows a piece
S′ of keystream. Typical goals of attacks are to distinguish S′ from a truly
random bitstream, to recover inner states responsible for S′, to predict a new
keystream packet on the basis of S′, or to recover the secret session key.

In this paper, we concentrate on analyzing the security of stream ciphers
running in packet mode with respect to generic TMD tradeoff attacks which try
to recover the secret session key k or to predict a new packet on the basis of
black-box access to the primitives F̃ and P , and on the basis of a set of keystream
packets generated w.r.t. to k and publicly known initial values.

For illustration purposes, let us shortly demonstrate how the idea of the
TMD tradeoff attack of Babbage [3] can be applied to stream ciphers working
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in packet mode. Suppose that the attacker knows a collection S of pieces of
keystream which can have their origin in different packets of one session and
which contain s different subsequences of n consecutive keystream bits. Then the
attacker generates a set T of pairs (y, F̃ (y)) for randomly chosen inner states
y ∈ {0, 1}n. If s · |T | ≈ 2n, then, with high probability, there is some pair
(y, F̃ (y)) ∈ T such that F̃ (y) occurs as a subsequence of length n in one of
the keystream pieces contained in S. With high probability, y is responsible for
this piece of keystream. As the state transition function π is usually efficiently
invertible, this allows to efficiently compute the secret initial state qiinit of the
corresponding packet. Hence, one gets a TMD tradeoff attack of Õ(2n/2) for
computing the initial state of one packet.

If we were in the one-stream mode, the attacker would be done, as, with the
knowledge of the only initial state qinit, the whole remaining bitstream of this
session could be computed. Note here that the state initialization algorithms of
Trivium and Grain v1 are designed in such a way that the secret session key k
can be efficiently computed from qinit.

However, in the packet mode, the knowledge about the initial state for one
packet does not suffice for predicting future packets of this session. For reaching
this goal, it would be sufficient to recover the secret session key k.

Consequently, to achieve beyond-the-birthday-bound security against generic
TMD tradeoff attacks, the state initialization algorithm has to ensure that the
session key cannot be efficiently derived from the packets’ initial states.

1.3 Our Results

Our results are based on introducing, in the sense of [12], an ideal primitive
model (IPM) for KSG-based stream ciphers, which allows to prove information
theoretic security lower bounds w.r.t. to generic chosen-IV attackers who have
black-box access to the primitives, i.e. the components of the cipher. Note that all
types of generic TMD tradeoff attacks against stream ciphers which are known
from the literature can be formulated as attacks in this IPM in a straightforward
way. As mentioned above, the relevant components, which will be modeled as
ideal primitives, are the function F̃ : {0, 1}n −→ {0, 1}n, assigning to each inner
state the block of the next n keystream bits, and the permutation P : {0, 1}n −→
{0, 1}n corresponding to the mixing algorithm. In our IPM, we define P to be
a random permutation over {0, 1}n and F̃ to be a random π-iterative function,
where π-iterativeness means that for all inputs y ∈ {0, 1}n, the suffix of F̃ (y) of
length n−1 equals the prefix of F̃ (π(y)) of length n−1. This reflects exactly the
output behavior of a KSG which produces always one keystream bit per clock
cycle. Again, π denotes the state transition function, which is not counted as an
ideal primitive but given as a global parameter fulfilling certain combinatorial
properties.

Our security analysis will consist in analyzing the success probability of an
attacker Eve to win a certain packet prediction game against an honest player
Alice. This game is defined in a way which is common standard in the context
of formal IP-models. Alice chooses a random session key k ∈ {0, 1}n, a random
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permutation P and a random π-iterative function F̃ . Eve is allowed to pose com-
ponent queries, i.e., oracle queries to a P -, a P−1-, and an F̃ -oracle5. Moreover,
Eve is allowed to pose construction queries with inputs x ∈ {0, 1}n, which are
answered by Alice with the keystream packet E(x) corresponding to session key
k and initial value x. The aim of Eve is to submit a pair (x∗, E(x∗)) for an initial
value x∗ which did not occur as input of a construction query posed before.

Our main results is to derive a sharp bound on the security of the Lizard-
variant of the packet prediction game (for short, the Lizard-PPG), which means
that construction queries are answered in accordance with the Lizard-construc-
tion (see relation (1)).

Upper Bounds w.r.t. key recovery attacks: We show that Eve can win
the Lizard-PPG with success probability 1/2 with O(2(2/3)n) oracle queries.
The corresponding attack combines a randomized algorithm for constructing a
sufficiently large number of pairs (x, y) ∈ {0, 1}n × {0, 1}n for which E(x) has
prefix F̃ (y) with the Slidex-attack of Dunkelman, Keller, Shamir [10] against
the Even-Mansour cipher (see [11]).

Upper Bounds w.r.t. distinguishing attacks: It is important to note
that for a packet length of R > n, the security of KSG-based stream ciphers
working in packet mode w.r.t. distinguishing TMD tradeoff attacks is bounded
by only O(2n/2). We sketch a corresponding attack. It is possible to compute
with TMD-cost O(2n/2) a pair (x, y) ∈ {0, 1}n×{0, 1}n for which E(x) has prefix
F̃ (y). In the pseudorandom case, w.h.p. bit n+ 1 of E(x) equals the last bit of
F̃ (π(y)). But in the random case, in which construction queries are answered

according to a truly random function E : {0, 1}n −→ {0, 1}R, the probability for
this event is exactly 1/2. In the appendix section A, we describe a formal model
for the security of stream cipher constructions w.r.t. distinguishing attacks and
formulate the O(2n/2)-attack for packet length R > n in terms of this model.

Lower Bounds w.r.t. key recovery and packet prediction attacks:
Our main technical contribution consists in the proof of a matching security
lower bound implying that for all constants α < 2/3, the success probability of
Eve to win the Lizard-PPG with O(2α·n) oracle queries is bounded by 2−ε·n

for some constant ε > 0.
The way our lower bound proof is organized is inspired by the typical struc-

ture of similar proofs which occur in the context of the security analysis of
iterated Even-Mansour ciphers (see, e.g., [11], [5], [1], [8], [7], [17]). Note here
that at several places, our proof uses a very nontrivial combinatorial argument,
the so-called Sum-Capture Theorem, which was developed in [7] for proving ma-
tching security lower bounds for minimized Even-Mansour ciphers of iteration
depth two.

A main difference lies in the fact that our lower bound concerns attackers
who have the aim to recover the secret session key or to predict a new package,
while the lower bounds for Even-Mansour ciphers typically refer to distinguishing
attackers. This implies that well-established proof techniques like Patarin’s H-
coefficient [18] technique can not be directly applied in our scenario. The rough

5 Note that the absence of an F̃−1-oracle reflects the preimage resistency of F̃ .
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idea of our proof is to show that if the number of oracle queries is bounded
by O(2α·n), then, from Eve’s point of view, the entropy of the secret session
key is still larger than n/2, which implies only an exponentially small success
probability for recovering the session key or predicting a correct packet.

The paper is organized as follows. In section 2, we introduce our ideal primi-
tive model for stream ciphers including the packet prediction game. Section 3 is
devoted to the O(2(2/3)n)-attack against the Lizard-construction, while section
4 contains the lower bound results. Section 5 concludes the paper by summari-
zing our results and showing some directions of further research. Due to space
restrictions, some parts of the lower bound proofs had to be shifted into the
appendix.

2 Formal Description of Stream Ciphers and a Security
Model for the LIZARD-Construction

In this section, we introduce a formal ideal primitive model (IPM) for KSG-
based stream ciphers and define a prediction game between a secret-holder Alice
and an adversary Eve which models generic TMD tradeoff attacks against the
Lizard-construction.

Definition 1. A stream cipher construction is an 8-tuple

(n,KL, IV L,R, π, P, F, Ê),

where

– parameter n corresponds to the inner state length of an underlying KSG,
– KL, IV L and R correspond to the session key length, the initial value length,

and the packet length, respectively.
– π denotes a bijective function π : {0, 1}n −→ {0, 1}n corresponding to the

state transition function.
– P : {0, 1}n −→ {0, 1}n denotes the function corresponding to the mixing

algorithm of the cipher as described in subsection 1.1.
– F : {0, 1}n −→ {0, 1}n denotes the function assigning to each inner state
y ∈ {0, 1}n the n-bit keystream block F (y) generated on y as described in
subsection 1.1.

– Ê : {0, 1}KL × {0, 1}IV L −→ {0, 1}R denotes the function assigning to each
pair (k, IV ) the keystream packet generated on session key k and packet
initial value IV .

Definition 2. The Lizard-construction is defined to be a stream cipher con-
struction which additionally fulfills the following four conditions.

(L1) It holds n = KL = IV L and R ≥ n.
(L2) The function F is π-iterative in the sense that for all y ∈ {0, 1}n it holds

that the suffix of length n − 1 of F (y) equals the prefix of length n − 1 of
F (π(y)).
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(L3) For all k, x ∈ {0, 1}n it holds that

Ê(k, x) = (z0, z1, · · · , zR−1)

where for all r, 0 ≤ r ≤ R− n, it holds

(zr, zr+1, · · · , zr+n−1) = F (πr(P (x⊕ k)⊕ k)).

(L4) For all inner states y ∈ {0, 1}n the period of the sequence (πr(y))r≥0 is larger
than R.

Note here that the stream cipher Lizard, as defined in [14], differs from the
design features of the Lizard-construction in some minor points, which do not
harm our security bounds. For instance, in contrast to condition (L1), the IV
length of Lizard is smaller than the inner state length. Observe that in our
situation a smaller IV length lowers the power of a chosen-IV attacker.

We assign to each stream cipher construction an IPM by considering the
functions P and F as ideal primitives, which can be evaluated by a possible
attacker via black-box access. Note that the function Ê depends on P and F and
describes how these components play together in computing, for given session key
k and packet initial value IV , the corresponding keystream packet. Conditions
(L2) and (L3) reflect the fact that exactly one keystream bit per clock cycle is
generated.

In particular, we define the ideal primitive P to be a random permutation
over {0, 1}n, and we allow the attacker Eve to have black-box access to a P - and
to a P−1-oracle.

Moreover, we define the ideal primitive F to be a random π-iterative function.
The preimage resistance of F is reflected by the fact that Eve does not have access
to an F−1-oracle.

Note that random, uniformly distributed π-iterative function can be genera-
ted as follows:

Generating a random π-iterative function F :
Note that, as π is bijective, the connected components of the undirected graph

Gπ = ({0, 1}n , Eπ), where Eπ = {(v, π(v)); v ∈ {0, 1}n}, are simple circuits
C1, · · · , Cs of sizes d1, · · · , ds, which we call π-circuits.

For each π-circuit Cj , 1 ≤ j ≤ s, fix a starting point xj0 ∈ Cj .
Note that Cj = {xj0, · · · , x

j
dj−1}, where for all i, 1 ≤ i ≤ dj − 1 it holds

xji = πi(xj0),
A uniformly distributed π-iterative function F can be defined by choosing for

all j, 1 ≤ j ≤ s, randomly and independently a uniformly distributed bitstring

bj = (bj0, · · · , b
j
dj−1) ∈ {0, 1}dj

and defining F (xji ) for all i, 0 ≤ i ≤ dj − 1, by

F (xji ) = (bji , b
j
i+1 mod dj

· · · , bji+n−1 mod dj
).
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We model the security of the Lizard-construction against generic TMD tra-
deoff attacks by the adversary Eve’s success probability to win the following
packet prediction game with a limited number of oracle queries against Alice.
Informally, we consider an adversary Eve who has black-box access to the ideal
components P and F and is allowed to ask for keystream packets generated
w.r.t. a secret session key k and IVs x of Eve’s choice. Eve wins the game if,
after asking a certain number of oracle queries, she is able to predict a new
keystream packet w.r.t. to a new IV, which has not been asked before.

Definition 3. (i) The game depends on the global parameters π, M , n, R,
where π denotes a fixed bijective state transition function π : {0, 1}n −→
{0, 1}n, M , n, R denote natural numbers, and n, R, π fulfill the conditions
[A1, A2]. The game is divided into a query phase and a prediction phase.

(ii) At the beginning, Alice chooses randomly and w.r.t. the uniform distribution
a secret triple ω = (kω, Pω, Fω), where

• kω ∈ {0, 1}n denotes the secret session key,

• Pω : {0, 1}n −→ {0, 1}n denotes a random permutation,

• Fω : {0, 1}n −→ {0, 1}n denotes a random π-iterative function.

We denote by Ω the corresponding probability space of all such triples toget-
her with the uniform distribution.

(iii) The adversary Eve is supposed to be a randomized oracle algorithm of poten-
tially unbounded computational power, who is allowed to pose component
oracle queries of type P (u) =?, or P−1(v) =?, or F (y) =? for inputs
u, v ∈ {0, 1}n and y ∈ {0, 1}n, which are correctly answered by Alice by
Pω(u), (Pω)−1(v), or Fω(y), respectively.

(iv) Moreover, Eve poses construction queries of the form E(x) =?, where x ∈
{0, 1}n, which will be answered by Alice with the keystream packet Eω(x)
corresponding to the initial state y := Pω(x⊕kω)⊕kω induced by the session
key kω and the initial value x. Note that this keystream packet Eω(x) is the
concatenation of R/n F -values. In particular,

Eω(x) = Fω(y)||Fω(πn(y))||Fω(π2n(y))|| · · · ||Fω(π(R/n−1)n(y)).

(v) In the query phase, Eve poses exactly M oracle queries. In the prediction
phase, Eve has to submit a pair (x, z) ∈ {0, 1}n × {0, 1}n, where x does not
occur as input of an E-query in the query phase. Eve wins if z = Fω(Pω(x⊕
kω)⊕kω), i.e., if z equals the block of the first n bits of the keystream packet
Eω(x) corresponding to the initial state Pω(x⊕ kω)⊕ kω, i.e., the keystream
packet corresponding to session key kω and initial value x.

(vi) Besides the running time and the number M of oracle queries, the essential
cost parameter is the winning probability of Eve, which is measured with
respect to the uniform distribution on Ω and the internal randomization of
Eve.
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3 Upper Bounds

Theorem 1. Eve can win the packet prediction game, described in Definition 3,
with winning probability 1/2 with M = O(22/3·n) oracle queries in running time
O(22/3·n).

Proof (Theorem 1). We sketch a key-recovery attack for the case that R = n.
This attack can be easily applied also for greater packet lengths by considering
only the first n bits of the packets generated during the attack.

According to Definition 3 we suppose that Alice chooses a random elementary
event ω = (kω, Pω, Fω) ∈ Ω. Remember that kω ∈ {0, 1}n, Pω : {0, 1}n −→
{0, 1}n is a random permutation, and Fω : {0, 1}n −→ {0, 1}n is a random
π-iterative function.

Note that, with the knowledge of the secret session key kω, Eve can choose
some random y ∈ {0, 1}n, compute z = Fω(y) and x = P−1ω (y ⊕ kω) ⊕ kω by
one further F - and a further P−1-query. Eve wins in the prediction phase with
(x, z) with high probability.

Let Eω : {0, 1}n −→ {0, 1}n denote the construction function corresponding
to ω, which is, as R = n, for all x ∈ {0, 1}n defined by

Eω(x) = Fω(Pω(x⊕ kω)⊕ kω).

Let us further denote by EMω : {0, 1}n −→ {0, 1}n the function which, to
each IV x, assigns the corresponding packet initial state, i.e.,

EMω(x) = Pω(x⊕ kω)⊕ kω.

Note that EMω corresponds to the one-key variant of the Even-Mansour
cipher of iteration depth 1 (see, e.g., [11]). Our attack uses the Slidex attack
of Dunkelman, Keller, and Shamir [10] against this Even-Mansour cipher as a
subroutine.

In a first phase, Eve uses O(22/3·n) E- and F -queries oracle queries to con-
struct a set of pairs {(x,EMω(x));x ∈ X∗} for a set X∗ ⊆ {0, 1}n of size
Θ(21/3·n).

She does this by generating a sufficiently large set Coll = {(x, y);x ∈ X∗, y ∈
{0, 1}n} of so-called EF-collisions, where |X∗| = Ω(21/3·n). Here, a pair (x, y)
is called EF-collision if Eω(x) = Fω(y). It can be shown quite straightforwardly
that for any EF-collision (x, y), it holds that EMω(x) = y with high probability.

In particular, Eve first generates a set of pairs {(x,Eω(x));x ∈ X} for a set
X ⊆ {0, 1}n of size Θ(22/3·n). Then, Eve generates pairs (y, Fω(y)) for randomly
chosen elements y ∈ {0, 1}n and puts (x, y) to Coll if Eω(x) = Fω(y) for some
x in X. Note that the probability for this event is |X|/2n. Consequently, after
Θ(22/3·n) rounds of choosing values y, the set Coll has the desired size Ω(21/3·n)
with high probability.

In a second phase, Eve chooses random elements u ∈ {0, 1}n and asks Alice
for Pω(u). Eve stops with u if

x⊕ u = Pω(u)⊕ EMω(x) (6)
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for some x ∈ X∗ and publishes the hypothesis kω = u⊕ k.
Note that this hypothesis is correct if the choice of u generates a so-called

sudden death pair (u, x) where x ∈ X∗ and u⊕x = kω. This implies, by definition,

x⊕ u = kω = Pω(x⊕ kω)⊕ EMω(x) = Pω(u)⊕ EMω(x).

Consequently, Eve is successful after choosing an element u ∈ X∗ ⊕ kω, which
happens after

2n

|X∗|
= Θ

(
2

2
3n
)

rounds of choosing elements u with high probability. �

4 The Security Lower Bound Proof

4.1 Preliminaries

In this section, we show the main result of this paper, a sharp security lower
bound for the Lizard-construction. At several places, our lower bound proof
uses a combinatorial result proved by Chen, Lampe, Lee, Seurin, Steinberger in
[7], namely Theorem 1 in section 3, which is known as Sum Capture Theorem.

For motivating the use of this result note first that, from Eve’s point of view,
it is desirable to generate a sufficiently large set of triples (u, x, y) for which
x ⊕ u = Pω(u) ⊕ y, as such triples give nontrivial information about the secret
session key kω.

In particular, if Fω(y) is not equal to the prefix of Eω(x) of length n, then
x ⊕ u 6= kω. If Fω(y) equals to the prefix of Eω(x) of length n then, with high
probability, (u, x) forms a sudden death pair in the sense of the proof of Theorem
1, and u⊕ k is a good hypothesis for kω.

Let us recall the Sum-Capture Theorem from [7] in a slightly modified form.

Theorem 2. Let P denote a uniformly random permutation over {0, 1}n, let
N = 2n and fix an arbitrary number M , 9n ≤M ≤ N/2. Suppose that Eve (who
is supposed to be a probabilistic algorithm) poses a sequence U = {u1, · · · , uM}
of M P -queries. For any subsets X,Y ⊆ {0, 1}n let

µ(P,U,X, Y ) = |{(u, x, y) ∈ U ×X × Y ;x⊕ u = y ⊕ P (u)}| .

Then the probability for the event that there are subsets X,Y ⊆ {0, 1}n such that

µ(P,U,X, Y ) ≥ M · |X| · |Y |
N

+
2M2 ·

√
|X| · |Y |
N

+ 3
√
n ·M · |X| · |Y | (7)

is at most 2
N , where the probability is taken over the random choice of P and

the internal randomization of Eve. �
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In the following definition, we will state some technical relations between the
parameters M , ∆, R, and n, which form the set of assumptions under which
our security bound holds. These technical terms will become transparent during
the course of our proof. ∆ denotes some balancedness parameter, which will be
needed in the proof for identifying computational transcripts, which have some
critical combinatorial properties.

Definition 4. (1) M ·R ≤ 2(2/3)n.
(2) It holds that

B(M,R, n) + 2 ·∆ ·M +
(R+ n) ·M2

∆
≤ 2n√

2
,

where for all j, 1 ≤ j ≤M , B(j, R, n) is defined as

B(j, R, n) = 2−n · j3 ·
(
R+ n− 1 + 2

√
R+ n− 1

)
+3 ·

√
n · j3 · (R+ n− 1).

(3) It holds that

22 · 2−(n−1) ·R ·M2 +

√
n ·M

2
≤ ∆− (R+ n− 1)

R+ n− 1
.

(4) It holds that

∆ · ((n+R+ 2) ·M +∆) ≤ ln 2 · 2−(n−2).

4.2 The Formulation of the Main Theorem

Theorem 3. Suppose that the parameters M , n, R satisfy all rules in Definition
4 for some number ∆. Then Eve’s success probability to win the packet prediction
game with parameters ρ, π, R, n with M oracle queries is bounded by

34 · 2−n +M · e−n +M · (∆+ 1) · 2−(n−1) + 11 · (R+ 4n) ·M · 2−(n−1). (8)

Corollary 1. Suppose that M ≤ 2(
2
3−ε)n for some constant ε > 0, and let ∆ =

b2 1
3nc. Then there are positive constants c1 and c2 such that for M ·R ≤ 1

c1·n ·2
2
3n

it holds that M , R, n, ∆ satisfy all rules in Definition 4 if n is large enough and
that Eve’s success probability to win the packet prediction game with parameters
π, R, n with M oracle queries is bounded by c2 · 2−ε·n if n is large enough. �

4.3 The Friendly Alice, Structural Collisions, and Sudden Death

We will prove our security bound for a modified game, in which Alice is friendly to
Eve in the sense that in certain situations Alice gives some additional information
to Eve, and that Alice directly gives up in certain other situation. In particular,
Alice informs Eve if Eve managed to discover a so-called structural collision, and
she follows a sudden death rule, which has to do with structural collisions.
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Definition 5. – A pair (x, y), where x, y ∈ {0, 1}n is called a structural EF -
collision w.r.t. to an elementary event ω = (kω, Pω, Fω), if

y = πr(Pω(x⊕ kω)⊕ kω)),

for some r, −(n− 1) ≤ r ≤ R− 1. Note that this implies that the n-bit block
Fω(y) is a subblock of packet Eω(x) or has at least a nonempty intersection
with packet Eω(x).

– If (x, y) is a structural EF -collision w.r.t. ω, then the point ȳ = Pω(x ⊕
kω)⊕ kω is called the reference point of this collision.

– A pair (x, x′), where x 6= x′ ∈ {0, 1}n, is called a structural EE-collision
w.r.t. to ω if the packets Eω(x) and Eω(x′) have a nonempty intersection,
i.e., there is some number r, 1 ≤ r ≤ R− 1, such that

πr(Pω(x⊕ kω)⊕ kω) = Pω(x′ ⊕ kω)⊕ kω.

Note that this implies that the suffix of packet Eω(x) starting at position r
equals the prefix of packet Eω(x′).

Note here that structural EF -collisions are exactly those collisions which are
exploited in the classical TMD tradeoff attacks against stream ciphers. Note
further that there may occur collisions which are non-structural but caused by
internal collisions of Fω.

Suppose that Alice holds the elementary event ω = (kω, Pω, Fω) and commu-
nicates with Eve. The friendly Alice does the following.

Definition 6. – Whenever Eve poses an F -query with some input y ∈ {0, 1}n
which forms a structural EF -collision (x, y) w.r.t. ω for some x ∈ {0, 1}n
which already occurred as input of an E-query posed before, then, besides
publishing Fω(y), Alice confirms a structural collision, publishes a pointer to
the input x and publishes the reference point Pω(x⊕kω)⊕kω of this collision.

– Whenever Eve poses an E-query with some input x ∈ {0, 1}n which forms
a structural EF -collision (x, y) w.r.t. ω for some y which already occurred
as input of an F -query posed before, then, besides publishing Eω(x), Alice
confirms a structural collision, publishes a pointer to y and publishes the
reference point Pω(x⊕ kω)⊕ kω of this collision.

– Suppose that Eve poses an E-query with some input x ∈ {0, 1}n which forms
a structural EE-collision (x, x′) or (x′, x) w.r.t. ω for some x′ which alre-
ady occurred as input of another E-query posed before. Suppose w.l.o.g. that
πr(Pω(x⊕ kω)⊕ kω) = Pω(x′ ⊕ kω)⊕ kω for some r, 1 ≤ r ≤ R − 1. Then,
besides publishing Eω(x), Alice confirms a structural EE-collision and pu-
blishes a pointer to x′. Moreover, Alice publishes the value y = πr(Pω(x ⊕
kω) ⊕ kω)) = Pω(x′ ⊕ kω) ⊕ kω), the value Fω(y), and the reference points
ȳ = Pω(x ⊕ kω) ⊕ kω and y of the resulting structural EF -collisions (x, y)
and (x′, y).

Next we formulate the sudden death rule.
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Definition 7. Suppose that Alice holds an elementary event ω = (kω, Pω, Fω)
and consider a situation in which Eve already posed a number of queries. A pair
(x, u), where x, u ∈ {0, 1}n is called a sudden death pair w.r.t. ω if the following
conditions are fulfilled

– Eve has already asked an E-query with input x and a P -query with input u
or a P−1-query with output u.

– There is a structural EF-collision (x, y) discovered already by Eve.
– It holds x⊕ u = kω.

Whenever Eve asks a query which causes a sudden death pair w.r.t. to the
secert ω holded by Alice, then Alice immediately gives up, the game stops and
Eve wins.

Note that the friendliness of Alice increases Eve’s chances to win the pre-
diction game. Consequently, it is sufficient to show the security lower bound of
Theorem 3 for an adversary Eve who plays the packet prediction game with a
friendly Alice.

Note further that the definition of a sudden death pair in Definition 7 equals
the corresponding definition in the description of the key recovery attack in the
proof of Theorem 1.

4.4 Transcripts and Deterministic versus Randomized Adversaries

First note the well-known fact, proved, e.g., in [7] and many other papers, that
it is sufficient to prove our security lower bound for deterministic adversaries.
For showing this suppose that Eve is randomized and that the randomization is
organized by a number B of random bits. Then Eve’ success probability can be
written as

Pr[Eve successfull] =
∑

b∈{0,1}B
2−BPr[Eve successfull|b], (9)

where Pr[Eve successfull|b] denotes the success probability of the deterministic
algorithm obtained by assigning b to Eve’s random bits.

Consequently, if we show an upper bound on the success probability of all
deterministic adversaries then, by (9), this bound holds also for randomized
adversaries.

Therefore, we assume from now on that Eve is deterministic.
During each computation, Eve poses at most M oracle queries, where she

either wins via sudden death of Alice or she stops after M queries with the
publication of a challenge-response pair from {0, 1}n × {0, 1}n as final output.

We identify computations of Eve with transcripts of the form τ , which are
defined to be a sequences of at most M query-triples (typej , inputj , outputj)
corresponding to the oracle queries posed during the computation. If τ has length
M then (chall(τ), res(τ)) ∈ {0, 1}n×{0, 1}n denotes the challenge-response pair
published after τ in dependence of τ .
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We define typej ∈ {F, P−1, P, E} and inputj and outputj to denote the
type, the input and the output of the j-th oracle query, j = 1, · · · ,M . Note
that the output of an oracle query can, besides function values of Pω, P−1ω , Fω,
Eω, contain additional information about structural collisions discovered by this
query (see Definition 6).

Note that each elementary event ω ∈ Ω defines a unique computation of Eve
on ω which can be written as a pair

(τω, next(τω, ω)),

where τω is the transcript corresponding to the sequence of all queries posed by
Eve on ω.

For all transcripts τ of a length j ≤M and all elementary events ω, for which
the transcript of the first j queries along τω equals τ , next(τω, ω)) is defined to
be

– sudden death if τ has less than M queries and the uniquely defined next
query after τ causes a sudden death pair w.r.t. ω, or

– (chall(τω), res(τ)ω), if τ consists of M queries, or
– the query-triple corresponding to the uniquely defined next query after τ

and the answer corresponding to ω, if τ consists less than M queries and the
next query does not causes a sudden death pair w.r.t. ω.

Note that the computation corresponding to (τω, next(τω, ω)) is successful
(from Eve’s point of view) if and only if

next(τω, ω) = sudden death

or the first n bits of the packet corresponding to chall(τω) via ω coincide with
res(τω), i.e., if

Fω (Pω (chall(τω)⊕ kω)⊕ kω) = res(τω).

Let us denote with Ωsucc ⊆ Ω the set

Ωsucc = {ω; (τω, next(τω, ω)) is successful}

of elementary events leading to a successful computation.
The set Ωsucc contains the subset Ωs.death consisting of all elementary events

ω for which result(τω, ω) = sudden death.
Note that Ωs.death can be written as

Ωs.death =

M−1⋃
j=2

Ωs.deathj ,

where for all j, 2 ≤ j ≤M −1, Ωs.deathj contains all elementary events for which
the j + 1-th query generates a sudden death pair.

Observe that for all j, 2 ≤ j ≤M − 1, and Ωs.deathj it holds that τω consists
of j query-triples.

For all j, 1 ≤ j ≤ M , let us call an elementary events ω to be j-alive if τω
contains at least j query-triples, i.e., if ω 6∈ Ωs.deathJ for all J , 1 ≤ J ≤ j − 1.

Note
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Lemma 1. For all j, 2 ≤ j ≤M − 1, it holds that ω ∈ Ωs.deathj if and only if ω
is j-alive but not j + 1-alive. �

For all j, 1 ≤ j ≤M , we denote by T j the set of all transcripts (i.e. sequences
of query-triples) of length j for which there is some ω ∈ Ω such that τ is the
prefix of length j of τω.

Moreover, for all J , 1 ≤ J ≤ j, we denote τ≤J the subsequence of the first J
queries along τ .

Note that fore all j, 1 ≤ j ≤M , Ω defines a probability distribution on T j .
For all τ ∈ T j it holds

PrΩ [τ ] =
|Ω(τ)|
|Ω|

,

where Ω(τ) = {ω ∈ Ω; τ≤jω = τ}.

A Visualization of the Computational Behavior of Eve: Note that the
computational behavior of Eve can be visualized by a leaf-directed tree of depth
M and two additional sinks labeled with succ and unsucc, which is defined as
follows.

– For all j, 1 ≤ j ≤ M , the tree-nodes of depth j − 1 correspond to the j-
th query made by Eve and are labeled by the type and the input of the
corresponding query. Corresponding to this, the source of the tree is labeled
by the type and the input of the first query posed by Eve.

– The tree-nodes of depth M are labeled by challenge-response pairs.
– The edges leaving a tree-nodes of depth j − 1, where 1 ≤ j ≤ M − 1,

correspond to and are labeled with the possible answers of the corresponding
query the node is labeled with. They point to the node in depth j which
corresponds to the uniquely determined next query. Moreover, there is one
edge leaving this node which points to the succ-sink and which corresponds
to the sudden death event.

– The edges leaving a tree-node of depth M − 1 correspond also to and are
also labeled with the possible answers of the corresponding query the node
is labeled with. They point to the node in depth M which corresponds to
the uniquely determined challenge-response pair published after this query.

– All tree-nodes of depth M are left by two edges, one pointing to the succ-sink
and one pointing to the unsucc-sink.

Note for all j, 1 ≤ j ≤ M , each node of depth j correspond exactly to one
transcripts τ in T j (and vice versa), where the nodes and edges at the unique
path from the source to this node correspond to the queries of τ .

Note further that each elementary event ω defines a unique path through the
tree which starts at the source, follows the transcript τω and reaches either the
succ-sink or the unsucc-sink in dependence of ω is in Ωsucc or not.

4.5 Basic Definitions for Transcripts

For each j, 1 ≤ j ≤ M , and each transcript τ ∈ T j we define the following sets
corresponding to the queries along τ .
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– X(τ) = {x ∈ {0, 1}n ; τ contains an E-query with input x},
– Y (τ) = {y ∈ {0, 1}n ; τ contains an F -query with input y}, 6

– U(τ) = {u ∈ {0, 1}n ; τ contains a P -query with input u, or a P−1-query
with output u},

– V (τ) = {v ∈ {0, 1}n ; τ contains a P -query with output v, or a P−1-query
with input v},

– X∗(τ) = {x ∈ X(τ); x occurs at the left-hand side of some structural EF -
collision in Coll(τ)},

– Ȳ ∗(τ) = {ȳ ∈ {0, 1}n ; ȳ is reference point of some structural EF -collision
in Coll(τ)},

– Coll(τ) = {(x, ȳ); where x ∈ X∗(τ), and ȳ ∈ Y ∗(τ) is the reference point of
a structural EF -collision (x, y) of τ},

– Ȳ (r)(τ) = {ȳ ∈ {0, 1}n ; πr(ȳ) ∈ Y (τ)}
– Ȳ (τ) =

⋃R−1
r=−(n−1) Ȳ

(r)(τ)

Remember that we suppose Alice to be friendly in the sense of Definition 6.
This implies that the oracle answers of Alice along τ yield the complete know-
ledge about Coll(τ) and Ȳ ∗(τ) and X∗(τ).

Note further that Coll(τ) also yields all information about structural EE-
collisions discovered during τ . This is because, due to Definition 6, a pair (x, x′)
is a structural EE-collisions discovered during τ if and only if there is some
y ∈ Y (τ) for which (x, y) ∈ Coll(τ) and (x′, y) ∈ Coll(τ).

Moreover, Coll(τ) defines a one-to-one correspondence between X∗(τ) and
Ȳ ∗(τ) which is established by the bijection Pω(x ⊕ kω) ⊕ kω for an ω ∈ Ω(τ).
(Note that, by definition, this bijection is the same for all ω ∈ Ω(τ).)

Definition 8. A transcript ω is called τ -consistent, if τ≤jω = τ , i.e., if ω ∈ Ω(τ).

A key k ∈ {0, 1}n is called τ -consistent if there is some τ -consistent elemen-
tary event ω with kω = k.

Let K(τ) denote the set of all τ -consistent keys.

Let us take a look on the situation of Eve after posing j queries and let τ
denote the corresponding transcript. The knowledge of Eve about the secret ω
chosen by Alice is that ω ∈ Ω(τ) and, particularly, that kω ∈ K(τ). From Eve’s
point of view, all transcripts in Ω(τ) are equally likely to be the secret.

Note that Ω(τ) defines a probability distribution on K(τ), where for all
k ∈ K(τ)

PrΩ(τ)[k] = Prω∈Ω(τ)[kω = k].

The analysis of this distribution will be an important part of the proof of The-
orem 3.

6 We put also those y to Y (τ), which occur at the right side of a structural EF -
collision, which was disclosed by Alice as additional information to an EE-collision,
see Definition 6).
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4.6 Critical Keys and Critical Points and the Characterization of
τ -Consistency

Definition 9. A key k is called to be τ -critical, if there is some u ∈ U(τ) such
that u⊕ k ∈ X(τ) and Pτ (u)⊕ k ∈ Ȳ (τ).

Here, Pτ (u) denotes the output of the P -query on input u along τ , resp. the
input of the P−1-query with output v.

Definition 10. Let k ∈ {0, 1}n. A point u ∈ U(τ) is called (τ, k)-critical if at
least one of the following conditions is fulfilled.

C1: u⊕ k ∈ X(τ) \X∗(τ) and Pτ (u)⊕ k ∈ Ȳ (τ) \ Ȳ ∗(τ).
C2: u⊕ k ∈ X∗(τ) or Pτ (u)⊕ k ∈ Ȳ ∗(τ).

The notion of (τ, k)-critical points allows to characterize τ -consistency.

Lemma 2. A key k ∈ {0, 1}n is not τ -consistent if and only if there is a (τ, k)-
critical point u ∈ U(τ).

Proof: We prove first the if-direction.
Let k ∈ {0, 1}n and suppose that there is some u ∈ U(τ) which is (τ, k)-

critical.
For deriving a contradiction we assume that k ∈ K(τ), i.e., that there is some

ω ∈ Ω(τ) with kω = k.
Suppose first that u is (τ, k)-critical via condition C1 of Definition 10.
By definition, Pτ (u)⊕ k = Pω(u)⊕ kω ∈ Ȳ (τ) which implies the existence of

some r, −(n−1) ≤ r ≤ R−1 such that πr(Pω(u)⊕kω ) ∈ Y (τ). This implies, that
(u⊕kω, πr(Pω(u)⊕kω)) has to be classified as structural collision with reference
point Pω(u)⊕kω along τ . But this can not be true, as, by Definition 7, (u⊕k, u)
would form a sudden death pair w.r.t. ω, which implies that ω 6∈ Ω(τ).

Suppose now that u is (τ, k)-critical via condition C2 of Definition 10. If
u⊕ k = u⊕ kω ∈ X∗(τ) then (u, x) is again a sudden death pair w.r.t. ω which
implies that ω 6∈ Ω(τ).

If Pτ (u)⊕ k ∈ Ȳ ∗(τ) then (u⊕ k, Pτ (u)⊕ k) ∈ Coll which again implies that
u⊕ k = u⊕ kω ∈ X∗(τ) and ω 6∈ Ω(τ).

Let us now show the only-if direction of Lemma 2.

We fix some j, 1 ≤ j ≤ M , some transcript τ ∈ T j with PrΩ [τ ] > 0 and
some key k ∈ {0, 1}n for which there do not exist (τ, k)-critical points u ∈ U(τ)
in the sense of Definition 10.

We have to show that k is τ -consistent.
We do this by constructing a permutation P ′ over {0, 1}n and a π-iterative

function F ′ : {0, 1}n −→ {0, 1}n such that ω′ = (k, P ′, F ′) ∈ Ω(τ).
For all inputs x ∈ X(τ), u ∈ U(τ), v ∈ V (τ), y ∈ Y (τ) of oracle queries posed

during τ we denote by Eτ (x), Pτ (u), P−1τ (v), and Fτ (y), resp., the corresponding
oracle answers given by Alice during τ .

First observe that P ′ and F ′ have to satisfy the condition that P ′(u) = Pτ (u)
and F ′(y) = Fτ (u) for all u ∈ U(τ) and y ∈ Y (τ), respectively.
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We have now to define P ′ ands F ′ outside of U(τ) and Y (τ), respectively, in
such a way that ω′ is τ -consistent.

We do this by defining P ′ and F ′ along the (k, P ′)-paths, where the (k, P ′)-
path through an input u ∈ {0, 1}n is defined to be the triple (u⊕k, u, P ′(u)⊕k).

We do this by going with u through {0, 1}n in a certain order.
We dynamically maintain a set Target(P ′), which is initially set to {0, 1}n \

V (τ). Whenever we define P ′(u) for a new u, we delete P ′(u) from Target(P ′).

– Phase 1: Here we consider all u ∈ {0, 1}n for which u⊕ k ∈ X∗(τ).
Then it holds u 6∈ U(τ) as otherwise u would be (τ, k)-critical via condition
C2 of Definition 10.
We define P ′(u) = ȳ ⊕ k, where ȳ denotes the unique point in Ȳ ∗(τ) for
which (u ⊕ k, ȳ) ∈ Coll(τ). Note that this point ȳ ⊕ k does not belong to
V (τ). Otherwise, if ȳ ⊕ k would equal Pτ (u′) for some u′ 6= u ∈ U(τ) then
u′ would be (τ, k)-critical.
In both cases, we define F ′ on the set {πr(P ′(u)⊕k); r = −(n−1), · · · , R−1}
according to the packet Eτ (u ⊕ k). Note hereby that if −(n − 1) ≤ r < 0
then Eτ (u ⊕ k) determines only a suffix of F ′(πr(P ′(u) ⊕ k)), and that
if R − n − 1 < r < R − 1 then Eτ (u ⊕ k) determines only a prefix of
F ′(πr(P ′(u)⊕ k)).

– Phase 2 concerns the (k, P ′)-paths through those u ∈ U(τ) for which u⊕k ∈
X(τ) \X∗(τ). Note that for these u ∈ U(τ), as they are not (τ, k)-critical,
it holds ȳ := Pτ (u)⊕ k 6∈ Ȳ (τ).
This implies that for all r, −(n− 1) ≤ r ≤ R − 1, it holds that πr(ȳ) is not
in Y (τ), which allows us to define F ′(ȳ) according to the packet Eτ (u⊕ k).

– Phase 3 considers all u 6∈ U(τ) for which u⊕ k ∈ X(τ) \X∗(τ).
Here, P ′(u) has to be chosen in such a way that P ′(u)⊕k 6∈ Ȳ (τ). Otherwise,
as u⊕k does not occur as left hand side of a EF-collision, u would be (τ, k)-
critical.
Corresponding to this, we define a set

Forbidden(u) = {v ∈ {0, 1}n ; v ⊕ k ∈ Ȳ (τ)},

and choose
P ′(u) ∈ Target(P ′) \ Forbidden(u).

Note that for all remaining u ∈ {0, 1}n the values of P ′(u) can be freely
chosen in Target(P ′). For all remaining y ∈ {0, 1}n, the values of F ′(y) can
also be freely chosen {0, 1}n in such a way that the π-iterativeness of F ′ is
maintained. �

4.7 Assigning Colors to Elementary Events, Transcripts and Keys

We will now assign the colors red, black, blue and green to transcripts, elemen-
tary events, and keys. There will be three colors, namely black, red, and blue,
which have to be considered as bad in the sense, that if ω has a bad color then
τω yields some nontrivial information which helps Eve to win the game.
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Let us start with the definition of black elementary events, which is partly
based on considering the following equivalence relation ≡P , induced by a per-
mutation P over {0, 1}n.

Definition 11. Let P denote a permutation of {0, 1}n and let U be an arbitrary
subset of {0, 1}n.

– For all u, u′ ∈ U let u ≡P u′ if and only if u⊕ P (u) = u′ ⊕ P (u′).
– Let Max(P,U) denote the maximal size of an equivalence class w.r.t. ≡P in
U .

Definition 12. – For all j, 1 ≤ j ≤ M , we call a transcript τ ∈ T j to be
black if the number of τ -critical keys (see Definition 9) exceeds

B(j, R, n) = 2−n · j3 ·
(
R+ n− 1 + 2

√
R+ n− 1

)
+ 3
√
n · j3 · (R+ n− 1)

or if
Max(Pτ , U(τ)) > 5,

where Pτ : U(τ) −→ {0, 1}n denotes the injective mapping corresponding to
the P - and P−1-queries in τ .

– For all j, 1 ≤ j ≤M , an elementary event ω is called j-black, if ω is j-alive
and the transcript τ≤jω , corresponding to the first j queries along τω, is black.

– Let Ωjblack denote the set of all j-black elementary events and by T jblack the
set of all black transcripts τ ∈ T j.

– Let Ωblack =
⋃M
j=1Ω

j
black.

Let us next define red transcripts.

Definition 13. – For all j, 1 ≤ j ≤M , we call a transcript τ ∈ T j to be red
if it is not black but it holds |X∗(τ)| > ∆.

– An elementary event ω is called j-red, if ω is j-alive and the transcript τ≤jω
is red.

– Let Ωjred denote the set of all j-red elementary events and by T jred the set of
all red transcripts τ ∈ T j.

– Let Ωred =
⋃M
j=1Ω

j
red.

Note that one strategy of Eve could be to pose queries in a first phase in such
a way that for the resulting transcript τ it holds that the set K(τ) of τ -consistent
keys is small, and then to try each key in K(τ) if it fits. Redness and blackness
of transcripts τ cover exactly the case in which this strategy could be successful:

Lemma 3. For all j, 1 ≤ j ≤ M , and τ ∈ T j it holds the following. If τ is
neither red nor black then

|K(τ)| ≥ 2n −B(j, R, n)− 2 ·∆ · j.
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Proof: From Definition 10 and Lemma 2 we know that k ∈ {0, 1}n \K(τ)
if and only if there is some u ∈ U(τ) such that u is k-critical via condition
C1 or via condition C2. Condition C1 implies that k is τ -critical in the sense
of Definition 10. As τ is not black, the number of such keys is bounded by
B(j, R, n). Condition C2 implies that k ∈ X∗(τ) ⊕ U(τ) or k ∈ Ȳ ∗(τ) ⊕ V (τ).
As τ is not red, it holds that |X∗(τ)⊕U(τ)| ≤ ∆ · j and |Ȳ ∗(τ)⊕U(τ)| ≤ ∆ · j.
�

The motivation for considering blue elementary events is as follows. We have
seen above that Ω(τ), the set of all possible events if Eve sees τ , defines a
probability distribution on K(τ), the set of all keys which are consistent with
τ . This distribution is known to Eve. Eve could make a Bayes-decision and test
the hypothesis that the secret key is the most probable key in K(τ).

Let us now define blue elementary events and green elementary events.
Blue elementary events ω = (kω, Pω, Fω) will have the property that for

τ = τω it holds that PrΩ(τ)[kω] is large, i.e., if Alice chooses an blue elementary
event then the success probability of a Bayes decision made by Eve will be non
trivially high.

Definition 14. – For all numbers j, 1 ≤ j ≤M , we call an elementary event
ω ∈ Ω to be j-blue if ω is j-alive and not black and if

|(X(τ≤jω )⊕ kω) ∩ U(τ≤jω )| > ∆

or
|(Ȳ (τ≤jω )⊕ kω) ∩ V (τ≤jω )| > ∆.

– Let Ωjblue denote the set of all j-blue elementary events.

– Let Ωblue =
⋃M
j=1Ω

j
blue.

Definition 15. – For all numbers j, 1 ≤ j ≤M , an elementary event ω ∈ Ω
is called to be j-green if ω is j-alive and neither j-blue, nor j-red, nor j-black.

– Let Ωjgreen denote the set of all j-green elementary events.

– Let Ωgreen = ΩMgreen
– For all numbers j, 1 ≤ j ≤ M , a transcript τ ∈ T j is called green, if it is

neither red nor black.
– Let T jgreen denote the set of green transcripts in T j.

It is important to note the following difference between red and black events
on the one side and green and blue events on the other side. Let τ be a transcript
and let one elementary event in Ω(τ) be black (resp. red). Then, by definition,
all elementary events in Ω(τ) are black (resp. red) which justifies to define τ to
be black (resp. red).

On the other side, if a transcript τ is green, then the elementary events in
Ω(τ) are either blue or green. This is because blueness does not only depend on
τ but also on the key-component kω of the elementary events ω ∈ Ω(τ).

We will prove Theorem 3 by showing that the probabilities of black, red, and
black transcripts are exponentially small, that the probability of sudden-death
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events is exponentially small, and that for green transcripts τ ∈ T Mgreen, the
probability that Eve publishes a correct challenge-response pair is exponentially
small (see Lemma 4 in Subsection 4.8).

Therefore, let us take more insight into the structure of Ω(τ) for green
transcripts τ .

We know that the decision if an elementary event ω ∈ Ω(τ) is green or blue
depends only on kω. This justifies the following definition.

Definition 16. – Let τ denote a green transcript. We call a τ -consistent key
k ∈ K(τ) to be τ -green if |(X(τ)⊕k)∩U(τ)| ≤ ∆ and |(Ȳ (τ)⊕k)∩V (τ)| ≤ ∆,
and τ -blue otherwise.

– We denote by Kgreen(τ) (resp. Kblue(τ)) the set of all τ -consistent keys,
which are τ -green (resp. τ -blue).

Note that by definition

K(τ) = Kgreen(τ) ∪Kblue(τ).

4.8 The Structure of the Proof of Theorem 3

We have to derive an upper bound for Eve’s success probability PrΩ [Ωsucc].
This probability can be upper bounded by

PrΩ [Ωsucc] ≤ PrΩ [Ωblack] + PrΩ [Ωred] + PrΩ [Ωblue]

+PrΩ [Ωs.death \
(
Ωblack ∪Ωred ∪Ωblue

)
] + PrΩ [Ωsucc ∩Ωgreen]. (10)

The probability PrΩ [Ωsucc ∩Ωgreen] can be written as

PrΩ [Ωsucc ∩Ωgreen] = PrΩ [Ωgreen] · PrΩgreen [Ωsucc]

≤ PrΩgreen [Ωsucc], (11)

where PrΩgreen [Ωsucc] can be written as

PrΩgreen [Ωsucc] =
∑

τ∈TMgreen

PrΩgreen [Ωsucc ∩Ωgreen(τ)]

=
∑

τ∈TMgreen

PrΩgreen [τ ] · PrΩgreen(τ)[Ωsucc]. (12)

By Relations (10), (12) and (12), Theorem 3 follows directly from the follo-
wing

Lemma 4. (i) It holds that PrΩ [Ωblack] ≤ 34 · 2−n.

(ii) It holds that PrΩ [Ωred ∪Ωblue] ≤M · e−n.

(iii) It holds that

PrΩ
[
Ωs.death \

(
Ωblack ∪Ωred ∪Ωblue

)]
≤ 2−(n−1) · (∆+ 1) ·M.
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(iv) For all τ ∈ T Mgreen it holds that

PrΩgreen(τ)[Ω
succ] ≤ 11 · (R+ 4n) ·M · 2−(n−1).

The Structure of the Proof of Lemma 4:
The proofs of parts (i), (ii), (iii), and (iv) will be given in Subsections 4.10,

4.12, 4.9, and 4.11, respectively.
Our main technical result is the following Smoothness Lemma, which will be

proved in Subsection 4.14 and which shows that for all green transcripts the
probabilities of the green keys do not differ too much.

Lemma 5. For all green transcripts τ and all k, k′ ∈ Kgreen(τ) it holds that

PrΩgreen(τ)[k] ≤
√

2 · PrΩgreen(τ)[k′].

Lemma 5 implies the following corollary, which is an important tool for pro-
ving parts (ii), (iii) and (iv) of Lemma 4.

Corollary 2. For all green transcripts τ the following is true.

(a) For all k ∈ {0, 1}n it holds

PrΩgreen(τ)[kω = k] ≤ 2−(n−1).

(b) For all x, ȳ ∈ {0, 1}n, where x 6∈ X∗(τ) and ȳ 6∈ Ȳ ∗(τ) and (x 6∈ X(τ) or
ȳ 6∈ Ȳ (τ)) it holds

PrΩgreen(τ)[Pω(x⊕ kω)⊕ kω = ȳ] ≤ 9 · 2−(n−1).

(c) For all x, x′ ∈ {0, 1}n, where x 6∈ X(τ) and x′ ∈ X(τ), and all i, −(n− 1) ≤
r ≤ R+ n− 2, it holds

PrΩgreen(τ)
[
πi (Pω(x⊕ kω)⊕ kω) = Pω(x′ ⊕ kω)⊕ kω

]
≤ 11 · 2−(n−1).

We give here only the proof of part (a). Parts (b) and (c) will be proved in
Subsection 4.13.

Proof of part (a):
We combine Lemma 5 with the following lower bound for the size ofKgreen(τ).

Therefore we fix some number j, 1 ≤ j ≤M , and suppose that τ ∈ T jgreen.
By Lemma 3 it holds that

|Kgreen(τ)| = |K(τ)| − |Kblue(τ)| ≥ 2n −B(j, R, n)− 2 ·∆ · j − |Kblue(τ)|.

We show that

|Kblue(τ)| ≤ (R+ 2n) · j2

∆
.

This is because
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∑
k∈{0,1}n

|(X(τ)⊕ k) ∩ U(τ)| =
∑

k∈{0,1}n
|{(x, u) ∈ X(τ)× U(τ); x⊕ u = k}|

= |X(τ)× U(τ)| = |X(τ)| · |U(τ)|.

This implies that

|{k; |(X(τ)⊕ k) ∩ U(τ)| > ∆}| ≤ |X(τ)| · |U(τ)|
∆

≤ j2

∆
.

In exactly the same way one can prove that

∣∣{k;
∣∣(Ȳ (τ)⊕ k

)
∩ V (τ)

∣∣ > ∆
}∣∣ ≤ |Ȳ (τ)| · |V (τ)|

∆
≤ (R+ n− 1) · j2

∆
.

Consequently

|Kgreen(τ)| ≥ 2n −B(j, n,R)− 2 ·∆ · j − (R+ n)j2

∆
≥ 1√

2
· 2n

if n is large enough. The last inequality holds due to condition (2) of Definition
4.

By Lemma 5 we obtain that for all k ∈ Kgreen(τ)

PrΩgreen(τ)[k] ≤
√

2 · 1

|Kgreen(τ)|
≤ 2 · 2−n = 2−(n−1).

which proves Corollary 2, part (a). �

4.9 Bounding the Probability of Sudden Death

In this subsection, we prove part (iii) of Lemma 4, namely that

PrΩ
[
Ωs.death \

(
Ωblack ∪Ωred ∪Ωblue

)]
≤ 2−(n−1) · (∆+ 1) ·M. (13)

Note that for all elementary events ω it holds that

ω ∈ Ωs.death \
(
Ωblack ∪Ωred ∪Ωblue

)
if and only if there is some number j, 2 ≤ j ≤ M − 1, such that ω is j-green,
but ω ∈ Ωs.deathj (i.e., the (j + 1)-th query causes a sudden death pair w.r.t. ω).
This implies

PrΩ [Ωs.death \
(
Ωblack ∪Ωred ∪Ωblue

)
] ≤

M−1∑
j=2

∑
τ∈T jgreen

PrΩ [τ ] · PrΩgreen(τ)[Ωs.deathj ]. (14)
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Let us fix some number j, 2 ≤ j ≤M − 1, some transcript τ ∈ T jgreen, and some

ω ∈ Ωs.deathj ∩Ωgreen(τ). The fact that ω ∈ Ωs.deathj implies that

kω ∈ X∗(τ ′)⊕ U(τ ′),

where τ ′ denotes a transcript obtained from τ by posing the uniquely determined
next query after τ . Here, we took into account that X∗(τ ′) and U(τ ′) do not
depend on the answer of this next query.

It holds by definition that

|U(τ ′)| ≤ |U(τ)|+ 1 ≤ j + 1 ≤M.

Moreover, the next query after τ can increase X∗(τ) by at most two (in case of
generating a new EE-collision), which implies

|X∗(τ ′)| ≤ |X∗(τ)|+ 2 ≤ ∆− 1 + 2 = ∆+ 1.

Consequently, by Corollary 2, part (a), it follows that

PrΩgreen(τ)[Ω
s.death
j ] ≤ 2−(n−1) · (∆+ 1) ·M,

which, by Relation (14), proves Relation (13) and part (iii) of Lemma 4. �

4.10 Bounding the Probability of Black Transcripts

In this subsection we prove part (i) of Lemma 4, namely that for all numbers j,
1 ≤ j ≤M , it holds that

PrΩ

[
Ωjblack

]
= PrΩ

[
T jblack

]
≤ 34 · 2−n. (15)

Proof of Relation (15):

Remember that PrΩ

[
T jblack

]
= Prω∈Ω

[
τ≤jω ∈ T jblack

]
.

Theorem 2 says that the probability that

µ(Pω, U(τ≤jω ), X(τ≤jω ), Ȳ (τ≤jω )) ≤ B(j, R, n)

is bounded by 2 · 2−n.
Here, we took into account that |U(τ≤jω )| ≤ j, |X(τ≤jω )| ≤ j and |Ȳ (τ≤jω )| ≤

j ·R+ n− 2.
Note that for all ω ∈ Ω it holds by definition that the number of τ≤jω -critical

keys is bounded by µ(Pω, U(τ≤jω ), X(τ≤jω ), Ȳ (τ≤jω )).
This implies that the probability that the number of τ≤jω -critical keys exceeds

B(j, R, n) is bounded by 2 · 2−n.
We proceed with the proof by showing that for all U ⊆ {0, 1}n with |U | ≤

j ≤ 2(2/3)n it holds that

Pr[Max(P,U) ≥ 6] ≤ 32 · 2−n,
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where the probability Pr is taken w.r.t. a uniformly distributed random permu-
tation P over {0, 1}n.

Clearly, the event Max(P,U) ≥ 6 implies the existence of some U ′ ⊆ U ,
|U ′| = 6, such that u ≡P u′ for all u, u′ ∈ U ′. Given a subset U ′ ⊆ U with 6
elements, the probability for the event that u ≡P u′ for all u, u′ ∈ U ′ equals

5∏
i=1

1

2n − i
≤
(

1

1/2 · 2n

)5

= 25 · 2−5·n.

Consequently,

Pr[Max(P,U) ≥ 6] ≤ |U |6 · 25 · 2−5·n

≤ 25 · 26·(2/3)n · 2−5·n = 25 · 24·n · 2−5·n

= 32 · 2−n. �

4.11 Completing the Proof of Theorem 3 by proving Part (iv) of
Lemma 4

Let τ be a green transcript of length M , i.e., τ ∈ T Mgreen. We have to bound the
probability that Eve is successful under the condition that Alice has chosen a
green elementary event ω = (kω, Pω, Fω) ∈ Ωgreen(τ).

Depending on τ , Eve publishes a pair (chall(τ), res(τ)) ∈ {0, 1}n × {0, 1}n,
where chall(τ) 6∈ X(τ). Eve wins if and only if res(τ) equals the block of the
first n keystream bits of the packet generated on input chall(τ) under ω, i.e.,

res(τ) = Fω(Pω(chall(τ)⊕ kω)⊕ kω).

For all ω ∈ Ωgood(τ) let yω denote the value

yω = Pω(chall(τ)⊕ kω)⊕ kω.

We have to bound the probability

PrΩgreen(τ)[Fω(yω) = res(τ)].

We do this by dividing Ωgreen(τ) into two disjoint subsets IND and DEP ,
where IND contains all those elementary events ω ∈ Ωgood(τ) for which Fω(yω)
is independent from the queries and answers contained in τ , and DEP =
Ωgreen(τ) \DEP .

Note that ω ∈ DEP if and only if

(I) there is some i, −(n− 1) ≤ i ≤ n− 1, such that πi(yω) ∈ Y (τ), or

(II) there is some i, −(n− 1) ≤ i ≤ n− 1, some x ∈ X(τ), and some r, 0 ≤ r ≤
R− 1, such that πi(yω) = πr(Pω(x⊕ kω)⊕ kω).
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In case (I), Fω(yω) is not independent from the answer of the F -query with
input πi(yω), in case (II) Fω(yω) is not independent from the answer of the E-
query with input x (in particular, from the block starting at position r in packet
Eω(x)).

Corresponding to this, DEP can be written as

DEP = DEP1 ∪DEP2,

where DEP1 contains all ω ∈ Ωgood(τ) for which case (I) is fulfilled and DEP2

contains all ω ∈ Ωgood(τ) for which case (II) is fulfilled.
Note that

PrΩgreen(τ)[Fω(yω) =

res(τ)] = PrΩgreen(τ)[DEP ] · PrΩgreen(τ)[Fω(yω) = res(τ)|DEP ]

+PrΩgreen(τ)[IND] · PrΩgreen(τ)[Fω(yω) = res(τ)|IND]

≤ PrΩgreen(τ)[DEP ] + PrΩgreen(τ)[Fω(yω) = res(τ)|IND],

i.e.,

PrΩgreen(τ)[Fω(yω) = res(τ)] ≤ PrΩgreen(τ)[DEP1] + PrΩgreen(τ)[DEP2]

+PrΩgreen(τ)[Fω(yω) = res(τ)|IND]. (16)

It quite obvious that

PrΩgood(τ)[Fω(yω) = res(τ)|IND] = 2−n, (17)

as ω ∈ IND implies that Fω(yω) can take all values in {0, 1}n with the same
probability.

Next observe that for all ω ∈ Ωgreen(τ) it holds that ω ∈ DEP1 if and only
if

Pω(challτ ⊕ kω)⊕ kω = ȳ

for some ȳ ∈
⋃
y∈Y (τ){πi(y);−(n − 1) ≤ i ≤ n − 1}, a set of size at most

(2n− 1)M .
As chall(τ) 6∈ X(τ), it follows by Corollary 2, part (b), that

PrΩgreen(τ)[DEP1] ≤ (2n− 1) ·M · 9 · 2−(n−1). (18)

Observe further that for all ω ∈ Ωgreen(τ) it holds that ω ∈ DEP2 if and
only if

πi (Pω(challτ ⊕ kω)⊕ kω) = Pω(x⊕ kω)⊕ kω
for some x ∈ X(τ) and number i, −(n− 1) ≤ i ≤ R+ n− 2.

As chall(τ) 6∈ X(τ), it follows by Corollary 2, part (c), that

PrΩgreen(τ)[DEP2] ≤ (R+ 2n− 2) ·M · 11 · 2−(n−1). (19)

Putting Relations (16),(17), (18), and (19) together yields

PrΩgreen(τ)[Ω
green(τ) ∩Ωsucc]

≤ (2 + (2n− 1) ·M · 9 + (R+ 2n− 2) ·M · 11) · 2−(n−1)

< 11 · (R+ 4n) ·M · 2−(n−1). � (20)
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4.12 The Proof of part (ii) of Lemma 4

We have to show that

PrΩ [Ωred ∪Ωblue] ≤M · 2−n. (21)

In the proof we will use a Chernov Bound argument which is described in
the Appendix, Subsection B.

The proof of Relation (21):

Note first that for all ω ∈ Ωred∪Ωblue there is some j, 1 ≤ j ≤M , such that
the j-th query makes ω red or blue. Consequently,

Ωred ∪Ωblue =

M⋃
j=1

Ωj−1green ∩
(
Ωjred ∪Ω

j
blue

)
which implies

PrΩ
[
Ωred ∪Ωblue

]
≤

M∑
j=1

PrΩ

[
Ωj−1green ∩

(
Ωjred ∪Ω

j
blue

)]

≤
M∑
j=1

PrΩ [Ωjred ∪Ω
j
blue|Ω

j−1
green] · PrΩ [Ωj−1green]

≤
M∑
j=1

PrΩ [Ωjred ∪Ω
j
blue|Ω

j−1
green]. (22)

Hence, for proving Relation (21), it is sufficient to show that for all j, 1 ≤
j ≤M , it holds

PrΩj−1
green

[Ωjred ∪Ω
j
blue] = PrΩ [Ωjred ∪Ω

j
blue|Ω

j−1
green] < e−n. (23)

We show Relation (23) by induction on j.
Note first that Relation (23) is true if j < ∆

R+n−1 , as the for all transcripts τ

with j queries it holds that the cardinalities of X(τ) and Ȳ (τ) are smaller than
∆.

For the induction step fix some arbitrary number j, ∆
R+n−1 ≤ j ≤ M , and

suppose that Relation (23) is true for all numbers J , 1 ≤ J ≤ j − 1.
For all J , 1 ≤ J ≤ j − 1, we define a random variable DBJ ∈ {0, 1} over

Ω, where DBJ(ω) = 1 if and only if ω is J-alive and the J-th query along τω
increases (X(τω)⊕kω)∩U(τ) or increases (Ȳ (τω)⊕kω)∩V (τ) or increases X∗(τ).
Formally,

DBJ(ω) = 1 ⇐⇒

|(X(τ≤Jω )⊕ kω) ∩ U(τ≤Jω )| > |(X(τ≤J−1ω )⊕ kω) ∩ U(τ≤J−1ω )| or

|(Ȳ (τ≤Jω )⊕ kω) ∩ V (τ≤Jω )| > |(Ȳ (τ≤J−1ω )⊕ kω) ∩ U(τ≤J−1ω )| or
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|X∗(τ≤Jω )| > |X∗(τ≤J−1ω )|. (24)

Note that the event ω ∈ Ωjred ∩Ω
j
blue implies the event that

j−1∑
J=1

DBJ(ω) ≥ ∆− (R+ n− 1)

R+ n− 1
. (25)

This is because each query along τω increases (X(τω) ⊕ kω) ∩ U(τ) by at most
one and (Ȳ (τω)⊕ kω)∩ V (τ) by at most R+ n− 1 and X∗(τω) by at most two.

In particular, each E-query can increases (X(τω)⊕kω)∩U(τ) by at most one
and X∗(τω) by at most two, each P - or P−1-query can increases (X(τω)⊕ kω)∩
U(τ) and (Ȳ (τω) ⊕ kω) ∩ V (τ) by at most one, and each F -query can increase
(Ȳ (τω)⊕ kω) ∩ V (τ) by at most R+ n− 1 and X∗(τω) by at most one.

We bound the probability of the event in relation (25) over Ωj−1green.

We do this by bounding the probability of the event DBJ(ω) = 1 over Ωj−1green

for all J = 1, · · · , j − 1.
Let us fix a number J , 1 ≤ J ≤ j − 1.
Note that

PrΩj−1
green

[DBJ(ω) = 1] =
∑

τ∈T Jgreen

PrΩj−1
green

[τ ] · PrΩj−1
green(τ)

[DBJ(ω) = 1|]. (26)

Note further that for all τ ∈ T Jgreen and ω ∈ Ωj−1green(τ) it holds thatDBJ(ω) =
1 if and only if at least one of the following conditions is fulfilled.

(A) The J-th query in τ is a P -query with input u or an P−1-query with output
u and kω ∈ u⊕X(τ).

(B) The J-th query in τ is a P -query with output v or an P−1-query with input
v and kω ∈ v ⊕ Ȳ (τ).

(C) The J-th query in τ is an F -query with input y and there is some r, 0 ≤
r ≤ R− 1, such that kω ∈ π−r(y)⊕ V (τ).

(D) The J-th query in τ is an E-query with input x and kω ∈ x⊕ U(τ).
(E) The J-th query in τ is an E-query with input x and Pω(x ⊕ kω) ⊕ kω = ȳ

for some ȳ ∈ Ȳ (τ).
(F) The J-th query in τ is an F -query with input y and y = πi(Pω(x⊕kω)⊕kω)

for some x ∈ X(τ) \X∗(τ) and some number i, −(n− 1) ≤ i ≤ R− 1.
(G) The J-th query in τ is an E-query with input x and Pω(x ⊕ kω) ⊕ kω =

πi(Pω(x ⊕ kω) ⊕ kω) for some x′ ∈ X(τ) and some number r, −(R − 1) ≤
i ≤ R− 1.

Note that (A) and (E) are the situations in which query J increases (X(τω)⊕
kω) ∩ U(τω), that (B) and (C) are the situations in which query J increases
(Ȳ (τω) ⊕ kω) ∩ V (τω), that (E) and (F) are the situations in which query J
generates a new structural EF-collision (i.e., increases X∗(τ) by one), and that
(G) is the situation in which query J generates a new structural EE-collision
(i.e., increases X∗(τ) by one or two).
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Note further that conditions (A,B,D) imply that kω belongs to a set of at
most J−1 elements, or to a set of at most (R+n−1)·(J−1) elements (condition
(C)).

From Corollary 2, part (a), it follows that these events have probability at
most 2−(n−1) · (R+ n− 1) · (J − 1).

From Corollary 2, part (b), it follows that condition (E) has probability at
most 9 · |Ȳ (τω)| · 2−(n−1) ≤ 9 · (R+ n− 1) · (J − 1), and that condition (F ) has
probability at most 9 · (2n− 1) · |X(τω)| · 2−(n−1) ≤ 9 · (2n− 1) · (J − 1).

From Corollary 2, part (c), it follows that condition (E) has probability at
most 11 · (2R− 1) · |X(τω)| · 2−(n−1) ≤ 11 · (2R− 1) · (J − 1) · 2−(n−1).

We obtain that for all J , 1 ≤ J ≤ j − 1,

PrΩJgreen [DBJ(ω) = 1] ≤ 11 · 2−(n−1) · (2R− 1) · (J − 1).

≤ 22 · 2−(n−1) ·R · (j − 1). (27)

Relation (27) enables us to apply the Chernov Bound Method from Lemma
8 in subsection B with N = j − 1, p = 22 · 2−(n−1) ·R · (j − 1) and D = n, and
to obtain directly that

PrΩ̃good,j−1

[
j−1∑
J=1

DBJ(ω) > 22 · 2−(n−1) ·R · (j − 1)2 +

√
n · (j − 1)

2

]
< e−n.

(28)
Note that relation (3) of Definition 4 says that

22 · 2−(n−1) ·R · (j − 1)2 +

√
n · (j − 1)

2

≤ 22 · 2−(n−1) ·R ·M2 +

√
n ·M

2
≤ ∆− (R+ n− 1)

R+ n− 1
. (29)

Thus, Relation (28) together with Relation (29) proves Relations (23) and (21),
and, consequently, Lemma 4, part (ii). �

4.13 The Proof of Corollary 2, Parts (b) and (c)

Let us fix an arbitrary number j, 1 ≤ j ≤M , and a green transcript τ ∈ T jgreen.
We assume that part (a) of Corollary 2 holds, i.e., that for all k ∈ Kgreen(τ)

PrΩgreen(τ)[kω = k] ≤ 2−(n−1). (30)

Let us first prove part (b) of Corollary 2. We fix some x, ȳ ∈ {0, 1}n, where
x 6∈ X∗(τ) and ȳ 6∈ Ȳ ∗(τ) and (x 6∈ X(τ) or ȳ 6∈ Ȳ (τ)). We have to show

PrΩgreen(τ)[Pω(x⊕ kω)⊕ kω = ȳ] ≤ 9 · 2−(n−1). (31)

Proof of Relation (31):
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We divide Kgreen(τ) into two subsets Ω1 and Ω2, where

Ω1 = {ω ∈ Ωgreen(τ);x⊕ kω 6∈ U(τ)},

Ω2 = {ω ∈ Ωgreen(τ);x⊕ kω ∈ U(τ)}, (32)

and denote
K1 = {k ∈ Kgreen(τ);x⊕ k 6∈ U(τ)}.

K2 = {k ∈ Kgreen(τ);x⊕ k ∈ U(τ)}. (33)

The sets Ω2 and K2 define another set W ⊆ {0, 1}n by

W = {Pω(x⊕ kω)⊕ kω;ω ∈ Ω2} = {Pτ (x⊕ k)⊕ k; k ∈ K2}.

Here, Pτ denotes the restriction of Pω to U(τ) which, by definition, is equal for
all ω ∈ Ω(τ).

Note that |W | ≤ |K2| = |U(τ)| ≤ j ≤M .
Let us now define an equivalence relation on K2.
For keys k, k′ ∈ K2 we define that k ≡ k′ if Pτ (x⊕ k)⊕ k = Pτ (x⊕ k′)⊕ k′.
Let L1, · · · , Ls denote the equivalence classes corresponding to the equiva-

lence relation ≡ on K2.
Clearly, s = |W | and for each class Lj , 1 ≤ j ≤ s, there is exactly one w ∈W

such that Pτ (x⊕ k)⊕ k = w for all k ∈ Lj .
Note that k ≡ k′ implies that x⊕ k ≡Pτ x⊕ k′ in the sense of Definition 11

and remember that, as τ is not black, that Max(Pτ , U(τ)) ≤ 5. This implies

Lemma 6. For all w ∈W , the number of keys k ∈ K2 for which Pτ (x⊕k)⊕k =
w is at most five. �

Note that PrΩgood(τ)[Pω(x⊕ kω)⊕ kω = ȳ] equals

PrΩgood(τ)[Ω1] · PrΩgood(τ)[Pω(x⊕ kω)⊕ kω = ȳ|Ω1]

+PrΩgood(τ)[Ω2] · PrΩgood(τ)[Pω(x⊕ kω)⊕ kω = ȳ|Ω2],

i.e.,
PrΩgood(τ)[Pω(x⊕ kω)⊕ kω = ȳ] ≤

PrΩgood(τ)[Pω(x⊕ kω)⊕ kω = ȳ|Ω1]

+PrΩgood(τ)[Ω2] · PrΩgood(τ)[Pω(x⊕ kω)⊕ kω = ȳ|Ω2]. (34)

For estimating PrΩgood(τ)[Pω(x⊕kω)⊕kω = ȳ|Ω1] note that if kω 6∈ U(τ) then
Pω(x⊕ kω) takes all values in {0, 1}n, which are outside of V (τ) ∪ (Ȳ (τ)⊕ kω),
with the same probability (see the proof of Lemma 2).

This implies that

PrΩgood(τ)[Pω(x⊕ kω)⊕ kω = ȳ|Ω1] ≤ 1

2n − (R+ n− 2)M
≤ 2−(n−1) (35)

if n is large enough.
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Observe next that by Relation (30) it holds that

PrΩgoodτ [Ω2] ≤ 2−(n−1) · |K2|. (36)

For estimating PrΩgood(τ)[Pω(x⊕ kω)⊕ kω = ȳ|Ω2] we consider first the case
that ȳ 6∈W . Then, by the definition of W , it holds that

PrΩgood(τ)[Pω(x⊕ kω)⊕ kω = ȳ|Ω2] = 0.

Assume now that ȳ ∈ W . From Lemma 6 and the Smoothness Lemma
(Lemma 5) it follows that

PrΩgood(τ)[Pω(x⊕ kω)⊕ kω = ȳ|Ω2] ≤
√

2
5

|K2|
≤ 8

|K2|
. (37)

Putting relations (35), (36), and (37) together yields

PrΩgood [Pω(x⊕ kω)⊕ kω = ȳ] ≤ 2−(n−1) + 2−(n−1) · |K2| ·
8

|K2|

= 9 · 2−(n−1). � (38)

Let us now prove part (c) of Corollary 2. We fix some x 6= x′ ∈ {0, 1}n, where
(w.l.o.g.) x 6∈ X(τ), and some number i, −(n− 1) ≤ i ≤ R+ n− 2. We have to
show

PrΩgreen(τ)[Ev(x, x′, i)] ≤ 11 · 2−(n−1), (39)

where the event Ev(x, x′, i) ⊆ Ωgreen(τ) is defined to be

Ev(x, x′, i) =
{
ω ∈ Ωgreen(τ);πi (Pω(x⊕ kω)⊕ kω) = Pω(x′ ⊕ kω)⊕ kω

}
.

Proof of Relation (39):

Let us first handle the case that x′ ∈ X∗(τ) and denote by y′ the unique
value for which (x′, y′) ∈ Coll(τ). Then, by the definition of EF-collisions, it
holds that

Pω(x′ ⊕ kω)⊕ kω = y′

for all ω ∈ Ωgreen(τ).
Consequently, for all ω ∈ Ωgreen(τ) it holds that ω ∈ Ev(x, x′, i) if and only

if

Pω(x⊕ kω)⊕ kω = π−i(y′).

From part (b) of Corollary 2 it follows that if x′ ∈ X∗(τ) then

PrΩgreen(τ)[Ev(x, x′, i)] ≤ 9 · 2−(n−1) < 11 · 2−(n−1).

Now let us consider the case that x′ ∈ X(τ) \X∗(τ).
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For arbitrary points z ∈ {0, 1}n we define

Ωgreen(τ, z) = {ω ∈ Ωgreen(τ);Pω(x⊕ kω)⊕ kω = z}

and,
Kgreen(τ, z) = {k ∈ {0, 1}n ;∃ω ∈ Ωgreen(τ, z) : kω = k}.

Moreover, for b ∈ {1, 2} we define

Ωb(z) = Ωgreen(τ, z) ∩Ωb,

and
Kb(z) = Kgreen(τ, z) ∩Kb,

where the sets Ω1 and Ω2 (and the sets K1 and K2) are defined as in relations
(32) and (33).

Let us clarify how the keys in elementary events in Ω1 and Ω2 and the keys
in K1(z) and K2(z) are looking like.

It can be easily checked that for all ω = (kω, Pω, Fω) ∈ Ω1 it holds ω ∈ Ω1(z)
if and only if z ⊕ kω 6∈ V (τ) and Pω(x⊕ kω) = z ⊕ kω.

Moreover, for all ω = (kω, Pω, Fω) ∈ Ω2 it holds ω ∈ Ω2(z) if and only if
Pτ (x⊕ kω)⊕ kω = z, which implies by Lemma 6 that

|K2(z)| ≤ 5. (40)

We obtain that

|Kgreen(τ, z)| ≥ |K1(z)| ≥ |K1| − |V (τ)| = |Kgreen(τ)| − |K2| − |V (τ)|

≥ |Kgreen(τ)| − 2 · |V (τ)| ≥ |Kgreen(τ)| − 2M ≥ 1√
2
· 2n (41)

if n is large enough.
By exactly the same arguments as in the Smoothness Lemma (Lemma 5) one

can show that for all k, k′ ∈ Kgreen(τ, z) it holds that

PrΩgreen(τ,z)[kω = k] ≤
√

2 · PrΩgreen(τ,z)[kω = k′]. (42)

if n is large enough.
Relations (41) and (42) imply directly that for all k ∈ Kgreen(τ, z) it holds

PrΩgreen(τ,z)[kω = k] ≤ 2−(n−1) (43)

if n is large enough.

Note that
PrΩgreen(τ)[Ev(x, x′, i)] =∑

z∈{0,1}n
PrΩgreen(τ)[Pω(x⊕ kω)⊕ kω = z] · PrΩgreen(τ,z)[Ev(x, x′, i)]. (44)
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For deriving an upper bound for PrΩgreen(τ,z)[Ev(x, x′, i)] we write

PrΩgreen(τ,z)[Ev(x, x′, i)] = PrΩgreen(τ,z)[Ω
green
1 (τ, z)] ·PrΩgreen1 (τ,z)[Ev(x, x′, i)]

+PrΩgreen(τ,z)[Ω
green
2 (τ, z)] · PrΩgreen2 (τ,z)[Ev(x, x′, i)].

≤ PrΩgreen1 (τ,z)[Ev(x, x′, i)] + PrΩgreen(τ,z)[Ω
green
2 (τ, z)]

≤ PrΩgreen1 (τ,z)[Ev(x, x′, i)] + 5 · 2−(n−1), (45)

where the last inequality follows from Relations (40) and (42).
We write K1(z) as

K1(z) = K3(z) ∪K4(z) ∪K5(z),

where

– K3(z) = {k ∈ K1(z);x′ ⊕ k ∈ U(τ), Pτ (x′ ⊕ k)⊕ k = πi(z)},
– K4(z) = {k ∈ K1(z);x′ ⊕ k ∈ U(τ), Pτ (x′ ⊕ k)⊕ k 6= πi(z)},
– K5(z) = {k ∈ K1(z);x′ ⊕ k 6∈ U(τ)}.

From Lemma 6 we know that |Kz
3 | ≤ 5 and that for all k ∈ Kz

4 it holds

PrΩgreen1 (τ,z)[Ev(x, x′, i) ∩ (kω ∈ K4(z))] = 0.

Consequently,

PrΩgreen1 (τ,z)[Ev(x, x′, i)] ≤ PrΩgreen1 (τ,z)[Ev(x, x′, i)∩(kω ∈ K5(z))]+5 ·2−(n−1)

≤ PrΩgreen5 (τ,z)[Ev(x, x′, i)] + 5 · 2−(n−1), (46)

where Ωgreen5 (τ, z) = {ω ∈ Ωgreen1 (τ, z); kω ∈ K5(z)}.
Note that for all ω ∈ Ωgreen5 (τ, z), the condition that ω ∈ Ev(x, x′, i) is

equivalent to
Pω(x′ ⊕ k) = πi(z)⊕ kω,

which has probability 0 if πi(z)⊕ kω ∈ V (τ) and probability at most

1

2n − (|V (τ |+ 1)− |Ȳ (τ)|
≤ 2−(n−1)

if πi(z) ⊕ kω 6∈ V (τ) and n is large enough, see relation (35) and the comment
before relation (35).

We obtain that

PrΩgreen5 (τ,z)[Ev(x, x′, i)] ≤ 2−(n−1) (47)

if n is large enough.
Putting Relations (47), (46), and (45) we obtain that for all z ∈ {0, 1}n

PrΩgreen(τ,z)[Ev(x, x′, i)] ≤ 11 · 2−(n−1),

which implies by Relations (44) that

PrΩgreen(τ)[Ev(x, x′, i)] ≤ 11 · 2−(n−1). �
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4.14 The Proof of the Smoothness Lemma (Lemma 5)

We fix an arbitrary number j, 1 ≤ j ≤M and a green transcript τ ∈ T jgreen. We
analyze the probability distribution PrΩ(τ) on Kgreen(τ) by showing that for all
k ∈ Kgreen(τ) it holds that this distribution is close to the uniform distribution
on Kgreen(τ).

PrΩ(τ)[k] ≤ δ · |Kgreen(τ)|−1,

where δ =

(
2n

2n − ((n+R+ 2)j +∆)

)2∆

. (48)

Note that relation (5) of Definition 4 implies δ ≤
√

2.
This is because we can write δ as

δ =

(
T

T − t

)2∆

=

(
1

1− t/T

)2∆

=

((
1

1− t/T

)T/t) 2∆t
T

≈ e 2∆t
T .

for t = (n+R+ 2)j +∆ and T = 2n.

Relation (4) of Definition 4 says that ∆ · t ≤ ln(2)·T
4 which is equivalent to

2∆t

T
≤ ln 2

2
.

The Proof of Relation (48)
The proof of Lemma 2 shows how, for keys k ∈ K(τ), completions P ′ of Pτ

on {0, 1}n \ U(τ) and F ′ of Fτ on {0, 1}n \ Y (τ) have to be constructed such
that (k, P ′, F ′) belongs to Ω(τ). In particular:

(1) The function values of P ′ on X∗(τ)⊕k, a set of size |X∗(τ)|, are determined.
(2) The function values of P ′ on the set ((X(τ)\X∗(τ))⊕k)\U(τ) are forbidden

to fall into the set ((Ȳ (τ) \ Ȳ ∗(τ))⊕ k) \ V (τ).
(3) The function values of F ′ are determined on a set of size |X(τ) \X∗(τ)|.

Note that for proving Lemma 5 it is sufficient to show that for all pairs
k, k′ ∈ Kgreen(τ)

PrΩ(τ)[k]

PrΩ(τ)[k′]
≤ δ.

For this purpose, let us denote by ConsPτ (k) the set of all completions P ′ of
Pτ on {0, 1}n\U(τ) for which there is some completion F ′ of Fτ on {0, 1}n\Y (τ)
such that the elementary event (k, P ′, F ′) belongs to Ω(τ).

The above statement (3) implies that for all k ∈ K(τ) and completions
P ′ ∈ ConsPτ (k), the number of such completions F ′ is the same, i.e., does not
depend on k.

This implies that
PrΩ(τ)[k]

PrΩ(τ)[k′]
=
|ConsPτ (k)|
|ConsPτ (k′)|

.
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Note that due to requirement (2) (see above), the size of ConsPτ (k) depends
on the sizes of the sets ((X(τ)\X∗(τ))⊕k)\U(τ) and (Ȳ (τ)\ Ȳ ∗(τ))⊕k)\V (τ),
which can vary between 0 and ∆.

Thus, for k ∈ Kgreen(τ), the value |ConsPτ (k)| is minimal if

|((X(τ) \X∗(τ))⊕ k) ∩ U(τ)| = |((Ȳ (τ) \ Ȳ ∗(τ))⊕ k) ∩ V (τ)| = 0, (49)

and maximal if

|((X(τ) \X∗(τ))⊕ k) ∩ U(τ)| = ∆, or (X(τ) \X∗(τ))⊕ k ⊆ U(τ)

and

|((Ȳ (τ) \ Ȳ ∗(τ))⊕ k) ∩ V (τ)| = ∆, or (Ȳ (τ) \ Ȳ ∗(τ))⊕ k ⊆ V (τ). (50)

Note here that the cases that (X(τ)\X∗(τ))⊕k ⊆ U(τ) and (Ȳ (τ)\Ȳ ∗(τ))⊕k ⊆

V (τ) can only occur if |(X(τ)\X∗(τ)| ≤ ∆ and |Ȳ (τ)\ Ȳ ∗(τ)| ≤ ∆, respectively.

We have now to distinguish four cases corresponding to if |(X(τ)\X∗(τ)| > ∆
or not and if |Ȳ (τ) \ Ȳ ∗(τ)| > ∆ or not.

Case 1: |(X(τ) \X∗(τ)| > ∆ and |Ȳ (τ) \ Ȳ ∗(τ)| > ∆.
In this case, it follows from (49) that |ConsPτ (k)| is at least

T ! · S(S − 1) · · · (S − (t− 1))

= T ! · S(S − 1) · · · (S − (t− 1) + 2∆)(S − (t− 1) + 2∆− 1) · · · (S − (t− 1)),

where we denote T = 2n − |U(τ)| − |X(τ)| and t = |X(τ) \ X∗(τ)| and S =
2n − |V (τ)| − |Ȳ (τ)| and s = |Ȳ (τ) \ Ȳ (τ)|.

Moreover, relation (50) yields that |ConsPτ (k)| is at most

(T +∆)! · (S +∆) · (S +∆− 1) · · · (S +∆− (t−∆− 1))

= (T + 1) · · · (T +∆) · T ! · (S + 1) · · · (S +∆) · S(S − 1) · · · (S − (t− 1) + 2∆).

This implies that the PrΩ(τ)-values of elements from Kgreen(τ) can differ by
a factor δ which is at most δ1 · δ2, where

δ1 =
(T + 1)(T + 2) · · · (T +∆)

(S − (t− 1))(S − (t− 1) + 1) · · · (S − (t− 1) +∆− 1)
,

δ2 =
(S + 1)(S + 2) · · · (S +∆)

(S − (t− 1) +∆)(S − (t− 1) +∆+ 1) · · · (S − (t− 1) + 2∆− 1)
.

Note that

δ2 ≤
(

S

S − t+∆

)∆
.

Here we used the fact that from a > b it follows that a
b >

a+1
b+1 .
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For upper bounding δ1 we have to distinguish the two cases S ≥ T and
S < T .

If S ≥ T then

δ1 ≤
(S + 1)(S + 2) · · · (S +∆)

(S − (t− 1))(S − (t− 1) + 1) · · · (S − (t− 1) +∆− 1)
≤
(

S

S − t

)∆
If S < T then observe that S ≥ T − (R + n− 1)j. This holds because |Ȳ (τ)| ≤
(R+ n− 1)j. Consequently,

δ1 ≤
(

T

T − t− n(R+ n− 1)j

)∆
≤
(

T

T − (R+ n− 1)j

)∆
.

With similar arguments, the other four cases can be handled.

Case 2: |(X(τ) \X∗(τ)| > ∆ and |Ȳ (τ) \ Ȳ ∗(τ)| ≤ ∆.
Here, relation (49) yields that |ConsPτ (k)| is at least

T !(T −∆+ 1) · · · (T −∆+ t)

and relation (49) yields that |ConsPτ (k)| is at most (T + t)!.
This implies that the PrΩ(τ)-values of elements from Kgreen(τ) can differ by

a factor

δ =
(T + 1)(T + 2) · · · (T + t)

(T −∆+ 1)(T −∆+ 2) · · · (T −∆+ t)

=
(T + t− (∆− 1)) · · · (T + t)

(T − (∆− 1)) · · ·T
≤
(
T + t−∆
T −∆

)∆
.

Case 3: |(X(τ) \X∗(τ)| ≤ ∆ and |Ȳ (τ) \ Ȳ ∗(τ)| > ∆.
Here, relation (49) yields that |ConsPτ (k)| is at least

(S + s−∆)!S(S − 1) · · · (S − (∆− 1))

and relation (50) yields that |ConsPτ (k)| is at most (S + s)!.
This implies that the PrΩ(τ)-values of elements from Kgreen(τ) can differ by

a factor

δ =
(S + s− (∆− 1)) · · · (S + s)

(S − (∆− 1)) · · · (S − 1)S
≤
(
S + s−∆
S −∆

)∆
.

Case 4: |(X(τ) \X∗(τ)| ≤ ∆ and |Ȳ (τ) \ Ȳ ∗(τ)| ≤ ∆.
Here, relation (49) yields that |ConsPτ (k)| is at least

S! · S · (S − 1) · · · (S − (∆− 1))

and relation (50) yields that |ConsPτ (k)| is at most (S +∆)!,
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This implies that the PrΩ(τ)-values of elements from Kgreen(τ) can differ by
a factor

δ =
(S + 1) · · · (S +∆)

(S − (∆− 1)) · · · (S − 1)S
≤
(

S

S −∆

)∆
.

Summarizing all four cases we obtain that

δ ≤
(

2n

2n − ((n+R+ 2)j +∆)

)2∆

. �

5 Concluding Remarks

In this paper, we introduced for the first time an ideal primitive model (IPM) for
KSG-based stream ciphers and proved a sharp asymptotic (2/3)n-bound on the
security of the Lizard-construction, which underlies the stream cipher Lizard
[14], against generic chosen-IV key recovery and packet prediction TMD tradeoff
attacks. We hope that the security model and the lower bound techniques deve-
loped in this paper help to prove similar sharp security bounds for other stream
cipher constructions like, e.g., the concatenation method underlying the state
initialization of Trivium and Grain (see relations (3) and (4)), or the Sprout-
construction (see [2]). We have further shown that for a packet length R > n,
where n denotes the inner state length of the underlying KSG, KSG-based stream
ciphers are only n/2-secure w.r.t. generic TMD tradeoff distinguishing attacks.
It would be interesting to analyze the case R = n. Our conjecture is that for
R = n, the Lizard-construction is (2/3)n-secure even against distinguishing at-
tacks. Clearly, this is a problem of rather theoretical nature as, from a technical
point of view, it may appear questionable if KSG-based stream ciphers of packet
length R = n make much sense, because the reinitialization effort per keystream
bit would be high. But in the context of the further development of security
lower bound proof techniques, this problem is interesting and should be solved.
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Auxiliary Supporting Material

A An O(2n/2) Distinguishing Attack against the
LIZARD-Construction

Let us first define an adequate distinguishing game between Alice and Eve. This
can be easily obtained by modifying the Definition 3 in the following points

Definition 17. (i) The game depends on the global parameters π, M , n, R,
where π denotes a fixed bijective state transition function π : {0, 1}n −→
{0, 1}n, M , n, R denote natural numbers, and n, R, π fulfill the conditions
[A1, A2]. The game is divided into a query phase and a decision phase.

(ii) At the beginning. Alice chooses randomly and w.r.t. the uniform distribution
a secret 5-tuple ω = (bω, kω, Pω, Fω, Eω), where
• bω ∈ {0, 1}
• kω ∈ {0, 1}n denotes the session secret key.
• Pω : {0, 1}n −→ {0, 1}n denotes a random permutation,
• Fω : {0, 1}n −→ {0, 1}n denotes a random π-iterative function.

• Eω : {0, 1}n −→ {0, 1}R denotes a random function.
We denote by Ω the corresponding probability space of all such triples toget-
her with the uniform distribution.

(iii) The adversary Eve is supposed to be a randomized oracle algorithm of poten-
tially unbounded computational power, who is allowed to pose component
oracle queries of type P (u) =?, or P−1(v) =?-, or F (y) =? for inputs
u, v ∈ {0, 1}n and y ∈ {0, 1}n, which are correctly answered by Alice by
Pω(u), (Pω)−1(v), or Fω(y), respectively.

(iv) Moreover, Eve can pose construction oracle queries of the form E(x) =?,
where x ∈ {0, 1}n.
If bω = 0 (the truly random case), Alice answers such questions with the
random packet Eω(x).
If bω = 1 (the pseudorandom case), Alice answers such questions in accor-
dance with Definition 3, i.e., with the keystream packet corresponding to the
initial state y := Pω(x ⊕ kω) ⊕ kω induced by the session key kω and the
initial value x. Note again that this keystream packet is the concatenation of
the R/n F -values

Fω(y)||Fω(πn(y))|| · · · ||Fω(πn(R/n−1)(y)).

(v) In the query phase, Eve is allowed to pose exactly M oracle queries. In the
decision phase, Eve has to submit some b ∈ {0, 1}n. Eve wins if b = bω.

(vi) Besides the running time and the number M of oracle queries, the essential
cost parameter is the advantage reached by Eve, which is defined to be the
absolute value of the difference of the probabilities that Eve outputs 1 under
the condition that bω = 0 and bω = 1, respectively. measured with respect to
the uniform distribution on Ω and the internal randomization of Eve.

Note that in the truly random case, Alice outputs keystream packets in de-
pendence of input initial values x ∈ {0, 1}n according to a truly random function,
and independently of kω and the ideal primitives Pω and Fω. We prove
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Theorem 4. If R > n, then Eve can reach advantage 1/4 with M = Θ(2n/2)
oracle queries and running time M = Θ(2n/2).

Proof: We only sketch the proof, which is quite straightforward. Using the
same idea as in the proof of Theorem 1, one can show that withΘ(2n/2) E-queries
and Θ(2n/2) F -queries, Eve can generate an EF-collision (x, y) with probability
greater 1/2. Here, a pair (x, y) ∈ {0, 1}n × {0, 1}n is called EF-collision, if and

only if the block the first n bits of z coincides with Fω(y), where z ∈ {0, 1}R
denotes the answer of the E-query with input x.

Alice outputs b = 1 (pseudorandom!) if zn+1 equals the last bit of Fω(π(y)).

Note that if bω = 1 (the pseudorandom scenario) the probability that Eve
outputs b = 1 is one. In the random scenario, this probability is exactly 1/2. �

B A Short Excursion to Chernov Bounds

At several places of our proof we have to apply a technique called Chernov
Bounds in the literature. The basic Chernov Bound argument is the following.

Theorem 5. Let N be a positive integer, p ∈ (0, 1), and A1, · · · , AN be a set
of mutually independent random variables, where, for all i = 1, · · · , N , it holds
that Pr[Ai = 1− p] = p and Pr[Ai = −p] = 1− p. Let A =

∑N
i=1Ai. Then

Pr[A > a] < e−
2a2

N (51)

for all a > 0.

For a proof see, e.g., Alon, Spencer, Erdos, The Probabilistic Method, Wiley
Interscience 1992, Theorem A4 on page 235. �

We derive from Theorem 5 a corresponding result for random {0, 1}-variables.

Lemma 7. Let p,N , and Ai for i = 1, · · · , N be defined as in Lemma 7, and
let Bi = Ai + p. Note that Bi ∈ {0, 1} and Pr[Bi = 1] = p. Let B =

∑N
i=1Bi.

Then, for all d > 0, it holds

Pr[B > (p+ d)N ] < e−2·d
2·N . (52)

Proof of Lemma 7: By definition, B = A+N · p. The proof is completed
by putting a = d ·N into the relation in Theorem 5. �

We will apply Chernov Bound arguments in the following modified scenario.
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Lemma 8. Let C1, · · · , CN denote a collection of (not necessarily independent)
random {0, 1}-variables fulfilling Pr[Ci = 1] = pi < p for all i, 1 ≤ i ≤ N , and

some p, 0 < p < 1. Let C =
∑N
i=1 Ci.

We suppose that, for i > 1, the probabilities pi depend deterministically on
(and can be computed from) the outcomes of the experiments E1, · · · , Ei−1 behind
C1, · · · , Ci−1.

Then, for all d > 0, it holds

Pr[C > (p+ d)N ] < e−2·d
2·N .

At several places we will take d =
√
D/(2N) and obtain

Pr[C > (p+ d)N ] = Pr

[
C > pN +

√
D ·N

2

]
< e−D. (53)

Proof of Lemma 8: We construct a collection of mutually independent
binary random variables B1, · · · , BN satisfying

– Ci = 1 implies Bi = 1,
– Pr[Bi = 1] = p

for all i, 1 ≤ i ≤ N .

This proves our Lemma 8, as
∑N
i=1 Ci ≤

∑N
i=1Bi with probability one, and

as Lemma 7 can be applied to B =
∑N
i=1Bi.

The experiments Ẽi behind Bi are for all i, 1 ≤ i ≤ N , defined as follows:

– Compute pi from the outcomes of the experiments E1, · · · , Ei−1.
– Perform Ei and output one (i.e., Bi = 1) if Ei is successful (i.e., if Ci = 1).
– If Ei is not successful (i.e., Ci = 0), then perform a completely independent

experiment E′i with success probability qi = p−pi
1−pi and output one (i.e., Bi =

1) if E′i is successful.

Note that Pr[Bi = 1] equals

Pr[Bi = 1|Ci = 1] · Pr[Ci = 1] + Pr[Bi = 1|Ci = 0] · Pr[Ci = 0]

= 1 · pi + qi · (1− pi) = p.

ut
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