Skip to main content
Log in

Upper bounds and constructions of complete Asynchronous channel hopping systems

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Asynchronous channel hopping (ACH) systems are widely used for the blind rendezvous among secondary users in cognitive radio networks without requirement for global synchronization and common control channels. We can view an ACH system with n channels as a set of sequences of a common period t on an alphabet of size n satisfying certain rotation closure properties. For any two distinct sequences u, v in an ACH system \(\mathcal {S}\), every l ∈{0,1,⋯ , t − 1} and any letter j in the alphabet, if there always exists i such that the i-th entries of u and Ll(v) are identical to j where Ll(v) denotes the cyclic shift of v by l, then we say that \(\mathcal {S}\) is a complete ACH system. Such a system can guarantee rendezvous between any two secondary users who share at least one common channel. It is well known that \(t\geqslant n^{2}\). When the equality holds, \(\mathcal {S}\) is called a perfect ACH system. By applying characters of cyclic groups, we obtain a new upper bound on the number of sequences in a perfect ACH system. Furthermore, when q is a prime power and n = q − 1, we present a construction of homogeneous complete ACH systems of period t = 2n2 + o(n2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beth, T., Jungnickel, D., Lenz, H.: Design theory. Vol. I, volume 69 of Encyclopedia of Mathematics and its Applications, 2nd edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Bian, K., Park, J.-M.: Asynchronous channel hopping for establishing rendezvous in cognitive radio networks. In: INFOCOM, 2011 proceedings IEEE, pp. 236–240. IEEE (2011)

  3. Bian, K., Park, J.-M.: Maximizing rendezvous diversity in rendezvous protocols for decentralized cognitive radio networks. IEEE Trans. Mob. Comput. 12(7), 1294–1307 (2013)

    Article  Google Scholar 

  4. Bian, K., Park, J.-M., Chen, R.: A quorum-based framework for establishing control channels in dynamic spectrum access networks. In: Proceedings of the 15th annual international conference on mobile computing and networking, MobiCom ’09, pp. 25–36, New York, NY, USA, 2009. ACM

  5. Bose, R.C.: An affine analogue of Singer’s theorem. J. Indian Math. Soc. 6, 1–15 (1942)

    MathSciNet  MATH  Google Scholar 

  6. Chen, X., Zhou, Y.: Asynchronous channel hopping systems from difference sets. Des. Codes Crypt. 83(1), 179–196 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cilleruelo, J.: Combinatorial problems in finite fields and Sidon sets. Combinatorica. An Int. J. Combinatorics Theory Comput. 32(5), 497–511 (2012)

    MATH  Google Scholar 

  8. Ćustić, A., Krčadinac, V., Zhou, Y.: Tiling groups with difference sets. Electron. J. Comb. 22(2), P2.56 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Elliott, J.E.H., Butson, A.T.: Relative difference sets. Ill. J. Math. 10, 517–531 (1966)

    MathSciNet  MATH  Google Scholar 

  10. Gu, Z., Hua, Q.-S., Wang, Y., Lau, F.: Nearly optimal asynchronous blind rendezvous algorithm for cognitive radio networks. In: 2013 10th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pp. 371–379 (2013)

  11. Hungerford, T.W.: Algebra. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  12. Jia, J., Zhang, Q., Shen, X.: HC-MAC: A hardware-constrained cognitive MAC for efficient spectrum management. IEEE J. Sel. Areas Commun. 26(1), 106–117 (2008)

    Article  Google Scholar 

  13. Jiang, J.-R., Tseng, Y.-C., Hsu, C.-S., Lai, T.-H.: Quorum-based asynchronous power-saving protocols for IEEE 802.11 ad hoc networks. In: 2003 International Conference on Parallel Processing, 2003. Proceedings, pp. 257–264 (2003)

  14. Jungnickel, D.: Finite fields: Structure and arithmetics. B.I. Wissenschaftsverlag (1993)

  15. Jungnickel, D., Schmidt, B.: Difference sets: an update. In: Geometry, combinatorial designs and related structures (Spetses, 1996), volume 245 of London mathematical society lecture note series, pp 89–112. Cambridge University Press, Cambridge (1997)

  16. Jungnickel, D., Schmidt, B.: Difference sets: a second update. Rendiconti del Circolo Matematico di Palermo. Serie II. Supplemento 53, 89–118 (1998). Combinatorics ’98 (Mondello)

    MathSciNet  MATH  Google Scholar 

  17. Kondareddy, Y., Agrawal, P., Sivalingam, K.: Cognitive radio network setup without a common control channel. In: IEEE Military Communications Conference, 2008. MILCOM, vol. 2008, pp. 1–6 (2008)

  18. Lander, E.S.: Symmetric designs: An algebraic approach. Cambridge University Press, Cambridge (1983)

    Book  MATH  Google Scholar 

  19. Lidl, R., Niederreiter, H.: Finite fields, volume 20 of encyclopedia of mathematics and its applications, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  20. Liu, H., Lin, Z., Chu, X., Leung, Y.-W.: Jump-stay rendezvous algorithm for cognitive radio networks. IEEE Trans. Parallel Distrib. Syst. 23(10), 1867–1881 (2012)

    Article  Google Scholar 

  21. Luk, W.-S., Wong, T.-T.: Two new quorum based algorithms for distributed mutual exclusion. In: Proceedings of the 17th international conference on distributed computing systems, vol. 1997, pp. 100–106 (1997)

  22. Ma, L., Han, X., Shen, C.-C.: Dynamic open spectrum sharing MAC protocol for wireless ad hoc networks. In: 2005 First, IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN, vol. 2005, pp. 203–213 (2005)

  23. Mullen, G.L., Panario, D.: Handbook of finite fields. Chapman and Hall/CRC, Boca Raton (2013)

    Book  MATH  Google Scholar 

  24. Perez-Romero, J., Sallent, O., Agusti, R., Giupponi, L.: A novel on-demand cognitive pilot channel enabling dynamic spectrum allocation. In: 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks, 2007. DySPAN 2007, pp. 46–54 (2007)

  25. Pott, A.: Finite geometry and character theory, volume 1601 of lecture notes in mathematics. Springer-Verlag, Berlin (1995)

    Google Scholar 

  26. Pott, A., Zhou, Y.: Cayley graphs of diameter two from difference sets. J. Graph Theory 85(2), 533–544 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Romaszko, S., Mahonen, P.: Torus quorum system and difference set-based rendezvous in cognitive radio ad hoc networks. In: 2012 7th international ICST conference on cognitive radio oriented wireless networks and communications, pp. 202–207. IEEE (2012)

  28. Rotman, J.: An introduction to the theory of groups. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  29. Schmidt, B.: Cyclotomic integers and finite geometry. J. Am. Math. Soc. 12(4), 929–952 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Theis, N., Thomas, R., DaSilva, L.: Rendezvous for cognitive radios. IEEE Trans. Mob. Comput. 10(2), 216–227 (2011)

    Article  Google Scholar 

  31. Wu, K., Han, F., Han, F., Kong, D.: Rendezvous sequence construction in Cognitive Radio Ad-Hoc networks based on difference sets. In: 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 1840–1845 (2013)

  32. Xiang, Q.: Recent progress in algebraic design theory. Finite Fields Appl. 11(3), 622–653 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhou, Y.: Multiple factorizations of cyclic groups. Discret. Math. 340(7), 1581–1583 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Key R&D Program of China (No. 2017YFB0802000) and the National Natural Science Foundation of China (No. 11771451). Yue Zhou is supported by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhou.

Additional information

This article is part of the Topical Collection on Special Issue on Sequences and Their Applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Li, C. & Zhou, Y. Upper bounds and constructions of complete Asynchronous channel hopping systems. Cryptogr. Commun. 11, 299–312 (2019). https://doi.org/10.1007/s12095-018-0295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-018-0295-4

Keywords

Mathematics Subject Classification (2010)

Navigation