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8 Singly even self-dual codes of length 24k + 10
and minimum weight 4k + 2

Masaaki Harada∗
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Abstract

Currently, the existence of an extremal singly even self-dual code
of length 24k + 10 is unknown for all nonnegative integers k. In this
note, we study singly even self-dual [24k + 10, 12k + 5, 4k + 2] codes.
We give some restrictions on the possible weight enumerators of singly
even self-dual [24k + 10, 12k + 5, 4k + 2] codes with shadows of min-
imum weight at least 5 for k = 2, 3, 4, 5. We discuss a method for
constructing singly even self-dual codes with minimal shadow. As an
example, a singly even self-dual [82, 41, 14] code with minimal shadow
is constructed for the first time. In addition, as neighbors of the code,
we construct singly even self-dual [82, 41, 14] codes with weight enu-
merator for which no singly even self-dual code was previously known
to exist.

1 Introduction

Extremal self-dual codes are an important class of linear codes for both the-
oretical and practical reasons. It is a fundamental problem to determine
the largest minimum weight among self-dual codes of that length, and much
work has been done concerning this problem.

A (binary) code C of length n is a vector subspace of Fn
2 , where F2 denotes

the finite field of order 2. All codes in this note are binary. The dual code
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C⊥ of C is defined as C⊥ = {x ∈ F
n
2 | x · y = 0 for all y ∈ C}, where x · y is

the standard inner product. A code C is called self-dual if C = C⊥. Self-dual
codes are divided into two classes. A self-dual code C is doubly even if all
codewords x of C have weight wt(x) ≡ 0 (mod 4), and singly even if there is
at least one codeword of weight ≡ 2 (mod 4). A doubly even self-dual code
of length n exists if and only if n ≡ 0 (mod 8), while a singly even self-dual
code of length n exists if and only if n is even.

Let C be a singly even self-dual code. Let C0 denote the subcode of C
consisting of codewords x having weight wt(x) ≡ 0 (mod 4). The shadow

S of C is defined to be C⊥
0 \ C. A singly even self-dual code of length n is

called a code with minimal shadow if the minimum weight of the shadow is
4, 1, 2 and 3 if n ≡ 0, 2, 4 and 6 (mod 8), respectively. The concept of singly
even self-dual codes with minimal shadow was introduced in [4].

Rains [14] showed that the minimum weight d of a self-dual code of length
n is bounded by d ≤ 4⌊n/24⌋+4 unless n ≡ 22 (mod 24) when d ≤ 4⌊n/24⌋+
6. A self-dual code meeting the upper bound is called extremal. We say that
a self-dual code is optimal if it has the largest minimum weight among all
self-dual codes of that length. For length 24k + 10 (k = 0, 1, . . . , 5), we give
the current information on the largest minimum weight d(24k + 10):

d(10) = 2, d(34) = 6, d(58) = 10, d(82) = 14 or 16,

d(106) = 16 or 18, d(130) = 20, 22 or 24,

(see [6, Table I], [7, Table VI], [11, Table I]). Currently, the existence of an
extremal singly even self-dual code of length 24k + 10 is unknown for all
nonnegative integers k. In addition, Han and Lee [9] conjecture that there is
no extremal singly even self-dual code of length 24k+ 10 for all nonnegative
integers k. It was shown in [5] that there is no extremal singly even self-dual
code with minimal shadow for length 24k + 10. These motivate our interest
in singly even self-dual [24k + 10, 12k + 5, 4k + 2] codes.

This note is organized as follows. In Section 2, the possible weight enu-
merators of singly even self-dual [82, 41, 14] codes are determined. In addi-
tion, in Section 3, we give some restrictions on the possible weight enumer-
ators of singly even self-dual [24k + 10, 12k + 5, 4k + 2] codes with shadows
of minimum weight at least 5 for k = 2, 3, 4, 5. In Section 4, we discuss a
method for constructing singly even self-dual codes with minimal shadow. As
an example, a singly even self-dual [82, 41, 14] code C82 with minimal shadow
is constructed for the first time. Finally, in Section 5, as neighbors of C82,
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we construct singly even self-dual [82, 41, 14] codes with weight enumerator
for which no singly even self-dual code was previously known to exist. It is
a fundamental problem to find which weight enumerators actually occur for
the possible weight enumerators. We emphasize that singly even self-dual
[82, 41, 14] codes with shadows of minimum weight 1, 5, 9 are constructed for
the first time.

All computer calculations in this note were done with the help of the
algebra software Magma [2] and the mathematical software Mathematica.

2 Weight enumerators of singly even self-dual

[82, 41, 14] codes

Let C be a singly even self-dual code of length n with shadow S. Let Ai

and Bi be the numbers of vectors of weight i in C and S, respectively. The
weight enumerators WC and WS of C and S are given by

∑n
i=0Aiy

i and
∑n−d(S)

i=d(S) Biy
i, respectively, where d(S) denotes the minimum weight of S. If

we write

WC =

⌊n/8⌋
∑

j=0

aj(1 + y2)n/2−4j(y2(1− y2)2)j,

for suitable integers aj , then

WS =

⌊n/8⌋
∑

j=0

(−1)jaj2
n/2−6jyn/2−4j(1− y4)2j ,

[6, (10), (11)]. Suppose that C is a singly even self-dual [82, 41, 14] code.
Since the minimum weight is 14, we have

a0 = 1, a1 = −41, a2 = 615, a3 = −4182,

a4 = 13161, a5 = −18040, a6 = 9512.

Then the weight enumerator of the shadow S is written as:

a10
524288

y +

(

−
a9

8192
−

5a10
131072

)

y5 +

(

a8
128

+
9a9
4096

+
95a10
262144

)

y9

+

(

−
a7
2

−
a8
8

−
153a9
8192

−
285a10
131072

)

y13 + · · · .
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• d(S) = 1: From [6, (6)], S has a unique vector of weight 1 and S has
no vector of weights 5 and 9. Hence, a10 = 524288, a9 = −163840 and
a8 = 21760. Since A14 = B13 by [10],

3280 + a7 = −800−
a7
2
.

Thus, we have that a7 = −2720. Therefore, we have the following
possible weight enumerators

WC
82,1 =1 + 560y14 + 60724y16 + 233545y18 + · · · ,

W S
82,1 =y + 560y13 + 294269y17 + 33367568y21 + · · · ,

respectively.

• d(S) = 5: From [6, (6)], we have a10 = 0 and a9 = −8192. Then we
have that a8 is divisible by 128, say a8 = 128α and a7 is divisible by
2, say a7 = 2β, where α and β are integers. Therefore, we have the
following possible weight enumerators

WC
82,2 =1 + (3280 + 2β)y14 + (36244 + 128α− 2β)y16

+ (506153− 896α− 26β)y18 + · · · ,

W S
82,2 =y5 + (−18 + α)y9 + (153− 16α− β)y13

+ (303568 + 120α+ 14β)y17 + · · · ,

respectively. Note that α ≥ 18 and β ≤ 153 − 16α ≤ −135. In
Section 3, it is shown that β is an even integer (see Proposition 2).

• d(S) ≥ 9: Then we have a10 = a9 = 0. We have that a8 is divisible
by 128, say a8 = 128α and a7 is divisible by 2, say a7 = 2β, where α
and β are integers. Therefore, we have the following possible weight
enumerators

WC
82,3 =1 + (3280 + 2β)y14 + (36244 + 128α− 2β)y16

+ (514345− 896α− 26β)y18 + · · · ,

W S
82,3 =αy9 + (−16α− β)y13 + (304384 + 120α+ 14β)y17

+ (33293312− 560α− 91β)y21 + · · · ,

respectively. Note that α ≥ 0 and β ≤ −16α ≤ 0. In Section 3, it is
shown that β is an even integer (see Proposition 2).
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It is unknown whether there is a singly even self-dual [82, 41, 16] code.
The first example of a singly even self-dual [82, 41, 14] code was found in [7,
Section V]. The weight enumerators of the code and its shadow were given,
however unfortunately the weight enumerator of the shadow was incorrectly
stated and the correct weight enumerator is

656y13 + 295200y17 + 33353008y21 + · · · .

This code has weight enumerator WC
82,3 with

(α, β) = (0,−656). (1)

The code was the only previously known singly even self-dual [82, 41, 14] code.
In Sections 4 and 5, we construct singly even self-dual [82, 41, 14] codes with
weight enumerator for which no singly even self-dual code was previously
known to exist.

3 Restrictions on weight enumerators of singly

even self-dual [24k + 10, 12k + 5, 4k + 2] codes

It was shown in [3] that the weight enumerator of a singly even self-dual
[24k+10, 12k+5, 4k+2] code with minimal shadow is uniquely determined.
In this section, we give some restrictions on the possible weight enumerators
of singly even self-dual [24k + 10, 12k + 5, 4k + 2] codes with shadows of
minimum weight at least 5 for k = 2, 3, 4, 5. It is a key idea to consider the
possible weight enumerator of C1.

3.1 Possible weight enumerators of C1

Let C be a singly even self-dual [24k + 10, 12k + 5, 4k + 2] code. Let W (1)

and W (3) denote the weight enumerators of C1 and C3, respectively. By [6,
Theorem 5, 5)], the possible weight enumerators W (1) −W (3) are written as:

W (1) −W (3) =

k−1
∑

i=0

bi(1 + 14y4 + y8)3k−1−3i(y4(1− y4)4)if(y) (2)

where f(y) = y−34y5+34y13−y17 and b0, b1, . . . , bk−1 are integers. Combined
with the possible weight enumerators of the shadow, using (2), the possible
weight enumerators of C1 are determined.
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3.2 Optimal singly even self-dual [58, 29, 10] codes with

shadows of minimum weight at least 5

The possible weight enumerators of optimal singly even self-dual [58, 29, 10]
codes with shadow of minimum weight at least 5 and the shadows are known
as follows:

WC
58 =1 + (319− 24β − 2γ)y10 + (3132 + 152β + 2γ)y12 + · · · ,

W S
58 =βy5 + γy9 + (24128− 54β − 10γ)y13

+ (1469952 + 320β + 45γ)y17 + · · · ,

respectively, where β, γ are integers [6]. If there is an optimal singly even
self-dual [58, 29, 10] code with weight enumerator WC

58, then β ∈ {0, 1, 2} [12].
An optimal singly even self-dual code with weight enumerator WC

58 is known
for

β = 0 and γ ∈ {2m | m = 0, 1, . . . , 65, 68, 71, 79},

β = 1 and γ ∈ {2m | m = 8, 9, . . . , 58, 63},

β = 2 and γ ∈ {2m | m = 0, 4, 6, . . . , 55}

(see [10]).

Theorem 1. If there is an optimal singly even self-dual [58, 29, 10] code with

weight enumerator WC
58, then γ must be an even integer.

Proof. Let C be an optimal singly even self-dual [58, 29, 10] code with weight
enumerator WC

58. From (2), we obtain

W (1) −W (3) =b0y + (36b0 + b1)y
5 + (−415b0 − 10b1)y

9

+ (−39056b0 − 724b1)y
13 + (−742131b0 − 3694b1)y

17 + · · · .

Since the shadow contains no vector of weight 1, we have that b0 = 0. Hence,
we have

W (1) =
1

2
(b1 + β)y5 +

(

−5b1 +
γ

2

)

y9 + (12064− 362b1 − 27β − 5γ)y13

+

(

734976− 1847b1 + 160β +
45γ

2

)

y17 + · · · .

The result follows.
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3.3 Singly even self-dual [82, 41, 14] codes with shadows

of minimum weight at least 5

Proposition 2. If there is a singly even self-dual [82, 41, 14] code with weight

enumerator WC
82,i, then β must be an even integer for i = 2, 3.

Proof. Let C be a singly even self-dual [82, 41, 14] code with shadow S of
minimum weight at least 5. From WC

82,i and W S
82,i (i = 2, 3), the possible

weight enumerators of C and S are written using integers a, b, c

WC
82 =1 + (3280 + 2c)y14 + (36244 + 128b− 2c)y16

+ (514345− 8192a− 896b− 26c)y18 + · · · ,

W S
82 =ay5 + (−18a + b)y9 + (153a− 16b− c)y13

+ (304384− 816a+ 120b+ 14c)y17 + · · · ,

respectively. From (2), we obtain

W (1) −W (3) =b0y + (78b0 + b1)y
5 + (1688b0 + 32b1 + b2)y

9

+ (−32382b0 − 553b1 − 14b2)y
13

+ (−2525349b0 − 37184b1 − 678b2)y
17 + · · · .

Since the shadow contains no vector of weight 1, we have that b0 = 0. Hence,
we have

W (1) =
a + b1

2
y5 +

(

−9a+ 16b1 +
b2 + b

2

)

y9

+

(

153a− 553b1 − c

2
− 7b2 − 8b

)

y13

+ (152192− 408a− 18592b1 − 339b2 + 60b+ 7c)y17 + · · · .

Since a + b1 is even, c must be an even integer. The result follows.

3.4 Singly even self-dual [106, 53, 18] codes with shad-

ows of minimum weight at least 5

By a method similar to that given in Section 2, the possible weight enumer-
ators of singly even self-dual [106, 53, 18] codes with shadows of minimum
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weight at least 5 and the shadows are determined as follows:

WC
106 =1 + (35245 + 2d)y18 + (416262 + 128c− 2d)y20

+ (6586310 + 8192b− 896c− 34d)y22

+ (86626645 + 524288a− 106496b+ 1024c+ 34d)y24 + · · · ,

W S
106 =ay5 + (−24a− b)y9 + (276a+ 22b+ c)y13

+ (−2024a− 231b− 20c− d)y17 + · · · ,

respectively, where a, b, c, d are integers. If a = 0, then −b ∈ {0, 1, 2} by [12,
Lemma 2].

Proposition 3. If there is a singly even self-dual [106, 53, 18] code with

weight enumerator WC
106, then d must be an even integer.

Proof. Let C be a singly even self-dual [106, 53, 18] code with weight enu-
merator WC

106. From (2), we obtain

W (1) −W (3) =b0y + (120b0 + b1)y
5 + (5555b0 + 74b1 + b2)y

9

+ (87440b0 + 1382b1 + 28b2 + b3)y
13

+ (−2666610b0 − 38670b1 − 675b2 − 18b3)y
17 + · · · .

Since the shadow has minimum weight at least 5, we have b0 = 0. Hence, we
have

W (1) =
a+ b1

2
y5 +

(

−12a + 37b1 +
b2 − b

2

)

y9

+

(

138a+ 691b1 + 14b2 + 11b+
b3 + c

2

)

y13

+

(

−1012a− 19335b1 − 9b3 − 10c−
675b2 + 231b+ d

2

)

y17 + · · · .

Since b2 − b is even, d must be even. The result follows.

It is unknown whether there is a singly even self-dual [106, 53, 18] code or
not (see [11, Table I]).
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3.5 Singly even self-dual [130, 65, 22] codes with shad-

ows of minimum weight at least 5

By a method similar to that given in Section 2, the possible weight enumer-
ators of singly even self-dual [130, 65, 22] codes with shadows of minimum
weight at least 5 and the shadows are determined as follows:

WC
130 =1 + (388700 + 2e)y22 + (4791150 + 128d− 2e)y24

+ (81082890 + 8192c− 896d− 42e)y26

+ (1200197180 + 524288b− 106496c+ 512d+ 42e)y28

+ (14196225992− 33554432a− 9961472b+ 532480c

+ 10752d+ 420e)y30 + · · · ,

W S
130 =ay5 + (−30a + b)y9 + (435a− 28b− c)y13

+ (−4060a+ 378b+ 26c+ d)y17

+ (27405a− 3276b− 325c− 24d− e)y21 + · · · ,

respectively, where a, b, c, d, e are integers.

Proposition 4. If there is a singly even self-dual [130, 65, 22] code with

weight enumerator WC
130, then e must be an even integer.

Proof. Let C be a singly even self-dual [130, 65, 22] code with weight enu-
merator WC

130. From (2), we obtain

W (1) −W (3) =b0y + (162b0 + b1)y
5 + (11186b0 + 116b1 + b2)y

9

+ (394498b0 + 5081b1 + 70b2 + b3)y
13

+ (4628826b0 + 65936b1 + 1092b2 + 24b3 + b4)y
17

+ (−226397710b0 − 2983519b1 − 43758b2 − 781b3 − 22b4)y
21

+ · · · .

Since the shadow has minimum weight at least 5, we have b0 = 0. Hence, we
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have

W (1) =
a+ b1

2
y5 +

(

−15a+ 58b1 +
b2
2
+

b

2

)

y9

+

(

435a

2
+

5081b1
2

+ 35b2 +
b3
2
− 14b−

c

2

)

y13

+

(

−2030a+ 32968b1 + 546b2 + 12b3 +
b4
2
+ 189b+ 13c+

d

2

)

y17

+

(

27405a

2
−

2983519b1
2

− 21879b2 −
781b3
2

− 11b4 − 1638b

−
325c

2
− 12d−

e

2

)

y21 + · · · .

From the coefficients of y13 and y21, e must be even. The result follows.

It is unknown whether there is a singly even self-dual [130, 65, 22] code or
not (see [11, Table I]).

4 Construction of singly even self-dual codes

with minimal shadow

The following method for constructing singly even self-dual codes was given
in [15]. Let C be a doubly even self-dual code of length 8t. Let x be a vector
of odd weight. Let C0 denote the subcode of C consisting of all codewords
which are orthogonal to x. Then there are cosets C1, C2, C3 of C0 such that
C0⊥ = C0 ∪ C1 ∪ C2 ∪ C3, where C = C0 ∪ C2 and x+ C = C1 ∪ C3. Then

C(x) = (0, 0, C0) ∪ (1, 1, C2) ∪ (1, 0, C1) ∪ (0, 1, C3) (3)

is a singly even self-dual code of length 8t + 2. Using this method, a singly
even self-dual code with minimal shadow was constructed in [15] for the
parameters [42, 21, 8] and [58, 29, 10]. This may be generalized as follows.

Theorem 5. Let C be an extremal doubly even self-dual code of length 8t
with covering radius R. Then there is a vector x of weight 2⌊R+1

2
⌋ − 1 such

that C(x) in (3) is a singly even self-dual [8t+2, 4t+1,min{4⌊ t
3
⌋+4, 2⌊R+1

2
⌋}]

code with minimal shadow.
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Proof. Since there is a coset of minimum weight R, there is a coset of min-
imum weight 2⌊R+1

2
⌋ − 1 (see [1, Fact 4]). We denote the coset by x + C,

where x has weight 2⌊R+1
2

⌋ − 1. Then the code C(x) in (3) is a self-dual
code of length 8t+ 2 [15]. The minimum weight of C0 ∪C2 is 4⌊ t

3
⌋+ 4. The

minimum weight of C1∪C3 is 2⌊R+1
2
⌋−1. Hence, C(x) has minimum weight

min{4⌊ t
3
⌋ + 4, 2⌊R+1

2
⌋}.

It remains to show that C(x) has shadow of minimum weight 1. Without
loss of generality, we may assume that x ∈ C1. Let v be a vector of C1. Then
v is written as x+ c, where c ∈ C0. Since c · x = 0, we obtain

wt(x+ c) ≡ wt(x) (mod 4). (4)

Let w be a vector of C3. Then w is written as x+ c + c′, where c ∈ C0 and
c′ ∈ C2. From (4) and (x+ c) · c′ = 1, we obtain

wt(x+ c + c′) ≡ wt(x) + 2 (mod 4).

Suppose that wt(x) ≡ 1 (mod 4) (resp. wt(x) ≡ 3 (mod 4)). Then (0, 0, C0)∪
(0, 1, C3) (resp. (0, 0, C0)∪ (1, 0, C1)) is the doubly even subcode of C(x). In
addition, the vector (1, 0, . . . , 0) (resp. (0, 1, 0, . . . , 0)) is orthogonal to any
vector of the doubly even subcode. This shows that the shadow has minimum
weight 1.

We concentrate on singly even self-dual [24k+10, 12k+5, 4k+2] codes with
minimal shadow. There is no extremal singly even self-dual code of length
24k + 10 with minimal shadow for any nonnegative integer k [5]. Hence, we
have the following proposition.

Proposition 6. If there is an extremal doubly even self-dual code of length

24k+8 with covering radius R ≥ 4k+1, then there is a singly even self-dual

[24k + 10, 12k + 5, 4k + 2] codes with minimal shadow.

The bordered double circulant extremal doubly even self-dual [80, 40, 16]
code B80,4 in [8] has generator matrix











0 1 · · · 1
1

I40
... R
1











,
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where I40 is the identity matrix of order 40 and R is the 39 × 39 circulant
matrix with first row

(111100000100101111101011101001101100011).

It was shown in [13] that B80,4 has covering radius 13, where a coset of
minimum weight 13 is given by x80+B80,4 and x80 has the following support:

{2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38}.

We denote the code B80,4(x80) by C82.

Proposition 7. The code C82 is a singly even self-dual [82, 41, 14] code with

minimal shadow.

For k ≥ 4, only the extended quadratic residue code QR104 of length 104
is the known extremal doubly even self-dual code of length 24k + 8. It is
not known whether QR104 has covering radius R ≥ 17. Our computer search
failed to find a coset of weight ≥ 17 in QR104.

5 New singly even self-dual [82, 41, 14] codes

In this section, we continue a search to find singly even self-dual [82, 41, 14]
codes with weight enumerator for which no singly even self-dual code was
previously known to exist.

Two self-dual codes C and C ′ of length n are said to be neighbors if
dim(C ∩ C ′) = n/2− 1. Any self-dual code of length n can be reached from
any other by taking successive neighbors (see [6]). By considering self-dual
neighbors of C82, we found 50 singly even self-dual [82, 41, 14] codes N82,i

(i = 1, 2, . . . , 50) with weight enumerator for which no singly even self-dual
code was previously known to exist. These codes are constructed as

〈(C82 ∩ 〈x〉⊥), x〉,

where the supports supp(x) of x are listed in Table 1. The weight enumerators
W and the values (α, β) are also listed in the table.

Combined with the known result in [7], the results in the previous section
and this section show the following:

Proposition 8. There is a singly even self-dual [82, 41, 14] code with shadow

of minimum weight s for s ∈ {1, 5, 9, 13}.
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Table 1: Singly even self-dual [82, 41, 14] neighbors N82,i

Code supp(x) W (α, β)
N82,1 {2, 7, 10, 14, 47, 51, 54, 56, 58, 59, 62, 64, 72, 79} WC

82,2 (18,−750)
N82,2 {2, 7, 12, 13, 14, 42, 47, 56, 57, 59, 61, 71, 73, 79} WC

82,3 (1,−650)
N82,3 {6, 9, 11, 42, 44, 47, 51, 56, 59, 61, 75, 77, 78, 79} WC

82,3 (1,−668)
N82,4 {5, 9, 45, 49, 55, 59, 61, 63, 66, 70, 71, 72, 75, 81} WC

82,3 (1,−680)
N82,5 {2, 3, 9, 13, 14, 39, 40, 47, 49, 56, 57, 64, 77, 82} WC

82,3 (1,−682)
N82,6 {2, 3, 9, 11, 12, 45, 46, 49, 53, 64, 72, 75, 77, 80} WC

82,3 (1,−686)
N82,7 {5, 43, 46, 49, 50, 51, 63, 65, 66, 71, 72, 73, 77, 81} WC

82,3 (1,−688)
N82,8 {3, 4, 5, 7, 9, 45, 48, 55, 56, 58, 61, 66, 73, 77} WC

82,3 (1,−692)
N82,9 {3, 7, 40, 46, 49, 52, 54, 57, 58, 59, 72, 74, 75, 79} WC

82,3 (1,−694)
N82,10 {3, 11, 14, 44, 45, 46, 49, 51, 59, 71, 72, 76, 77, 81} WC

82,3 (1,−696)
N82,11 {6, 7, 10, 12, 46, 51, 53, 55, 58, 70, 71, 73, 78, 82} WC

82,3 (1,−698)
N82,12 {5, 8, 47, 51, 52, 57, 61, 66, 67, 71, 72, 74, 79, 80} WC

82,3 (1,−700)
N82,13 {2, 3, 7, 8, 9, 11, 40, 44, 49, 52, 55, 63, 77, 82} WC

82,3 (1,−702)
N82,14 {11, 12, 45, 46, 49, 50, 52, 55, 60, 62, 66, 70, 71, 81} WC

82,3 (1,−704)
N82,15 {3, 44, 45, 46, 58, 60, 62, 64, 65, 67, 68, 73, 74, 77} WC

82,3 (1,−712)
N82,16 {2, 4, 10, 43, 45, 46, 49, 54, 64, 66, 76, 78, 80, 81} WC

82,3 (1,−722)
N82,17 {2, 4, 9, 10, 45, 56, 57, 59, 63, 64, 67, 68, 70, 76} WC

82,3 (1,−738)
N82,18 {3, 6, 9, 10, 40, 47, 53, 54, 55, 68, 73, 76, 80, 81} WC

82,3 (1,−748)
N82,19 {2, 11, 13, 37, 47, 51, 52, 55, 70, 77, 78, 79, 80, 82} WC

82,3 (2,−672)
N82,20 {3, 9, 11, 47, 49, 59, 60, 62, 67, 68, 74, 76, 81, 82} WC

82,3 (2,−720)
N82,21 {4, 8, 9, 40, 48, 49, 52, 54, 55, 66, 67, 68, 73, 81} WC

82,3 (2,−732)
N82,22 {5, 6, 8, 11, 44, 45, 53, 56, 57, 61, 62, 64, 65, 66} WC

82,3 (2,−734)
N82,23 {4, 7, 8, 9, 46, 57, 58, 61, 63, 68, 71, 73, 78, 81} WC

82,3 (0,−640)
N82,24 {2, 3, 5, 10, 40, 44, 57, 58, 60, 63, 65, 71, 76, 79} WC

82,3 (0,−650)
N82,25 {2, 5, 6, 8, 50, 51, 58, 63, 64, 66, 67, 71, 73, 81} WC

82,3 (0,−660)
N82,26 {2, 3, 9, 46, 54, 56, 59, 60, 61, 62, 67, 76, 78, 82} WC

82,3 (0,−662)
N82,27 {4, 5, 38, 40, 48, 53, 56, 57, 62, 64, 66, 69, 71, 76} WC

82,3 (0,−664)
N82,28 {3, 7, 8, 10, 39, 50, 51, 62, 66, 67, 70, 73, 77, 82} WC

82,3 (0,−668)
N82,29 {2, 43, 45, 46, 50, 51, 52, 53, 61, 69, 72, 74, 77, 81} WC

82,3 (0,−672)
N82,30 {6, 7, 9, 40, 58, 61, 63, 70, 73, 77, 79, 80, 81, 82} WC

82,3 (0,−676)
N82,31 {3, 4, 5, 7, 43, 45, 48, 50, 54, 59, 64, 70, 71, 81} WC

82,3 (0,−678)
N82,32 {6, 11, 50, 53, 54, 56, 59, 61, 64, 68, 69, 72, 74, 76} WC

82,3 (0,−680)
N82,33 {8, 11, 12, 35, 49, 50, 53, 56, 57, 58, 62, 72, 77, 82} WC

82,3 (0,−684)
N82,34 {5, 11, 46, 56, 57, 58, 60, 62, 63, 64, 65, 70, 71, 79} WC

82,3 (0,−686)
N82,35 {10, 11, 13, 14, 52, 54, 60, 64, 70, 71, 72, 76, 77, 80} WC

82,3 (0,−688)
N82,36 {5, 9, 45, 49, 56, 57, 61, 62, 63, 64, 67, 70, 75, 81} WC

82,3 (0,−690)
N82,37 {2, 6, 8, 9, 44, 45, 48, 56, 66, 68, 75, 77, 80, 81} WC

82,3 (0,−692)
N82,38 {4, 8, 10, 42, 44, 54, 58, 60, 63, 65, 68, 77, 79, 80} WC

82,3 (0,−694)
N82,39 {3, 9, 43, 44, 49, 50, 51, 52, 55, 61, 65, 71, 75, 81} WC

82,3 (0,−696)
N82,40 {6, 7, 13, 42, 44, 49, 50, 52, 54, 55, 57, 63, 72, 74} WC

82,3 (0,−698)
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Table 1: Singly even self-dual [82, 41, 14] neighbors N82,i (continued)

Code supp(x) W (α, β)
N82,41 {2, 4, 8, 13, 45, 46, 49, 51, 58, 65, 66, 73, 74, 80} WC

82,3 (0,−700)
N82,42 {3, 9, 12, 45, 54, 55, 59, 64, 66, 72, 74, 75, 78, 80} WC

82,3 (0,−706)
N82,43 {2, 4, 9, 10, 45, 55, 56, 57, 60, 64, 67, 69, 72, 74} WC

82,3 (0,−708)
N82,44 {4, 9, 11, 40, 45, 46, 55, 57, 63, 64, 65, 71, 72, 74} WC

82,3 (0,−710)
N82,45 {3, 44, 45, 46, 57, 60, 61, 62, 63, 70, 71, 74, 75, 77} WC

82,3 (0,−712)
N82,46 {7, 40, 44, 45, 52, 53, 55, 56, 67, 68, 71, 76, 79, 81} WC

82,3 (0,−716)
N82,47 {3, 5, 9, 12, 42, 45, 47, 51, 53, 55, 60, 64, 68, 75} WC

82,3 (0,−718)
N82,48 {6, 39, 44, 45, 54, 60, 62, 64, 65, 75, 77, 78, 79, 81} WC

82,3 (0,−720)
N82,49 {2, 5, 9, 43, 60, 61, 62, 64, 68, 71, 74, 76, 80, 81} WC

82,3 (0,−724)
N82,50 {3, 7, 9, 13, 43, 46, 48, 49, 50, 52, 58, 60, 63, 81} WC

82,3 (0,−728)

It remains to determine whether there is a singly even self-dual [82, 41, 14]
code with shadow of minimum weight 17.

At the end of this section, we summarize the current information on the
weight enumerators which actually occur for the possible weight enumera-
tors. A singly even self-dual [82, 41, 14] code with weight enumerator WC

82,1

is known (see Proposition 7). A singly even self-dual [82, 41, 14] code with
weight enumerator WC

82,2 is known for (α, β) = (18,−750) (see Table 1). A
singly even self-dual [82, 41, 14] code with weight enumerator WC

82,3 is known
for

α = 0 and β =− 640,−650,−656,−660,−662,−664,−668,−672,−676,

− 678,−680,−684,−686,−688,−690,−692,−694,−696,

− 698,

α = 1 and β =− 650,−668,−680,−682,−686,−688,−692,−694,−696,

− 698,−700,−702,−704,−712,−722,−738,−748,

α = 2 and β =− 672,−720,−732,−734

(see (1) and Table 1).
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