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Abstract In this paper we study the representation of periodically time-varying
convolutional codes by means of periodic input-state-output models. In particular,
we focus on period two and investigate under which conditions a given two-periodic
convolutional code (obtained by alternating two time-invariant encoders) can be
represented by a periodic input-state-output system. We first show that one cannot
expect, in general, to obtain a periodic input-state-output representation of a
periodic convolutional code by means of the individual realizations of each of the
associated time-invariant codes. We, however, provide sufficient conditions for this
to hold in terms of the column degrees of the associated column reduced generator
matrices. Moreover, we derive a sufficient condition to obtain a periodic state-
space realization that is minimal. Finally, examples to illustrate the results are
presented.

Keywords Convolutional codes · Periodically time-varying codes · Input-state-
output representations

1 Introduction

Convolutional codes [8] are an important type of error correcting codes that can be
represented as a time-invariant discrete linear system over a finite field [16]. They
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are used to achieve reliable data transfer, for instance, in mobile communications,
digital video and satellite communications [8,19].

Since the sixties it has been widely known that convolutional codes and linear sys-
tems defined over a finite field are essentially the same objects, see for instance [16]
and references therein. More recently, there has been a new and increased interest
in this connection and many advances have been derived from using the system the-
oretical framework, and in particular of input-state-output representations when
dealing with convolutional codes, see [10,14]. Most of the large body of literature
on convolutional codes and on the relation of these codes with linear systems has
been devoted to the “time-invariant” case.

In this work we aim at studying time-varying convolutional codes from a system
theoretical point of view. These codes have attracted much attention after Costello
conjectured in [4] that nonsystematic time-varying convolutional codes can attain
larger free distance than the nonsystematic time-invariant ones. Since then, several
researchers have investigated such codes [3,12,13,15]. Moreover, in combination
with wavelets [5] time-varying convolutional codes yield unique trellis structures
that resulted in fast and low computational complexity decoding algorithms.

On the other hand, the theory of periodic input-state-output linear systems has
been also an active area of research [2,11] and many interesting results have been
obtained in this context. However, little is known on the relation of time-varying
convolutional codes and time-varying input-state-output linear systems.

Here we aim at studying this relation and in particular to investigate how to build
periodic input-state-output representations for given periodically time-varying con-
volutional codes (for short, periodic codes). We first observe, and illustrate by
means of an example, that the periodic input-state-output representation obtained
from the realization of each of the convolutional encoders that define the periodic
code, does not necessarily correspond to the original periodic encoding map. We
show, however, that if such encoders possess the same column degrees, then the
former periodic realization does correspond to the same periodic encoding map.
Moreover, in the case of different columns degrees, we still provide a method to
obtain a periodic input-state-output representation for a given periodic code. A
sufficient condition for obtaining minimality in the realization is also provided.

2 Preliminaries

In the sequel we shall follow the system theory notation and consider column
vectors rather than row vectors.

2.1 Time-invariant convolutional codes

Let F be a finite field and let F[z] be the polynomial ring. In a module theoretic
point of view, we define a convolutional code as follows.
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Definition 1 Let F be a finite field and n, k be positive integers with k < n. A
time-invariant convolutional code C of rate k/n is a submodule Fn[z] described as

C = {v(z) ∈ Fn[z] : v(z) = G(z)u(z), u(z) ∈ Fk[z]}

where G(z) ∈ Fn×k[z] is a full column rank n× k polynomial matrix over F, called
the encoder, u(z) taking values in Fk[z] is the information vector and v(z) is the
codeword.

The encoders of a code C are not unique; however they only differ by right mul-
tiplication by unimodular matrices over F[z]. An encoder G(z) is called column

reduced if the sum of its column degrees attains the minimal possible value among
all the encoders of the same code. If G(z) ∈ Fn×k[z] has column degrees ν1, . . . , νk,
it can be written as

G(z) = Ghc


zν1

zν2

. . .

zνk

+Grem(z)

where Grem(z) is a polynomial matrix such that the degree of column i is less
than νi, i = 1, . . . , k, and Ghc ∈ Fn×k is a matrix whose i-th column contains
the coefficients of zνi in the i-th column of G(z). Ghc is called the leading column

coefficient matrix and G(z) is column reduced if and only if Ghc is full column rank.

We define the degree δ of a convolutional code as the sum of the column degrees of
one, and hence any, column reduced encoder. Note that the list of column degrees
(also known as Forney indices) of a column reduced encoder is unique up to a
permutation. A code C of rate k/n and degree δ is said to be an (n, k, δ) code.

2.2 Periodically time-varying convolutional codes

In this work we consider convolutional codes C with 2-periodic encoders. Next we
introduce the definition of such encoders (or encoding maps) together with the
definition of the corresponding 2-periodic (time-varying) convolutional codes, see
[4,15,18]. For the purposes of the paper, we present it in a polynomial fashion.

Definition 2 Given two polynomial matrices G0(z), G1(z) ∈ Fn×k[z], the periodic

encoding map induced by G0 and G1 is defined as

φG0G1 : Fk[z] −→ Fn[z]
u(z) 7−→ v(z)

where v(z) =
+∞∑
i=0

viz
i and v2`+t =

(
Gt(z)u(z)

)
2`+t

, t = 0, 1, ` ∈ N0, and, more-

over,
(
Gt(z)u(z)

)
2`+t

represents the (2`+t)-coefficient of the polynomial Gt(z)u(z).
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The corresponding periodic convolutional code Cp is

Cp = {v(z) ∈ Fn[z] : ∃u(z) ∈ Fk[z] s.t. (1) holds}

v(z) = φG0G1(u(z)). (1)

Such codes will be called 2-periodic convolutional codes.

Inspired by the ideas developed in [2] and [11] we consider the linear map

L2 : Fn(z)→ F2n(z)

defined by

L2(v(z)) = vL(z), where (vL(z))` =

([
In

z−1In

]
v(z)

)
2`

(2)

and we associate with Cp a time-invariant convolutional code CL, the lifted version
of Cp, defined as

CL =
{
ṽ ∈ F2n(z) : ṽ = L2v, v ∈ Cp

}
.

Note that, since (
Gt(z)u(z)

)
2`+t

=
(
z−tGt(z)u(z)

)
2`
,

the equation (1) can also be written as([
In

z−1In

]
v(z)

)
2`

=

([
G0(z)

z−1G1(z)

]
u(z)

)
2`

, ` ∈ N0.

Moreover, it is possible to make the decomposition[
G0(z)

z−1G1(z)

]
= GL

(
z2
)[

Ik
z−1Ik

]
where

GL (z) =
[
GL0 (z) | GL1 (z)

]
(3)

and the blocks GLt (z) have size 2n× k, t = 0, 1, and are given by

GL0(z) =
∑
i∈N0

[
G0

2i

G1
2i+1

]
zi,

GL1(z) =
∑
i∈N0

[
G0

2i−1

G1
2i

]
zi, with G0

−1 = 0,

where the Gtj ’s are obtained as the coefficients of Gt, i.e., Gt(z) =
∑
j∈N0

Gtjz
j .

Thus, the lifted code can be represented as

CL =
{
ṽ(z) : ṽ(z) = GL(z)ũ(z), ũ(z) ∈ F2k[z]

}
,

where ṽ = L2v and ũ = L2u.

In the following example we illustrate how to construct the matrix GL(z) given
the matrices G0(z) and G1(z).
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Example 1 Considere the field F2 and let

G0(z) =

z2 − z 1
z3 z

z + 1 z2

 and G1(z) =

 1− z z3 − z
z2 z − z2

z4 + z 1

 .
Applying the previous procedure we have that

[
G0(z)

z−1G1(z)

]
=


z2 − z 1
z3 z

z + 1 z2

z−1 − 1 z2 − 1
z 1− z

z3 + 1 z−1

 =


z2 1
0 0
1 z2

−1 z2 − 1
0 1
1 0

+


−z2 0
z4 z2

z2 0
1 0
z2 −z2

z4 1

 z
−1

and so

GL(z) =


z 1 −z 0
0 0 z2 z

1 z z 0
−1 z − 1 1 0
0 1 z −z
1 0 z2 1

 .

2.3 State-space realizations

In systems theory, input-state-output models are mainly used to describe the time
evolution of the system signals, which, in the discrete-time case, are time sequences.

Therefore, in the sequel, we sometimes identify an element a(z) =
N∑
i=0

aiz
i ∈ F[z]

with the finite support sequence a0 = (a(z))0, a1 = (a(z))1, . . . , aN = (a(z))N
formed by its coefficients, and also use the notation a(`) to denote a` = (a(z))`.
The same applies for vectors with components in F[z].

A state-space system {
x(`+ 1) = Ax(`) +Bu(`)

v(`) = Cx(`) +Du(`)
, ` ∈ N0,

denoted by (A,B,C,D), where A ∈ Fδ×δ, B ∈ Fδ×k, C ∈ Fn×δ and D ∈ Fn×k, is
said to be a state-space realization of the time-invariant (n, k, δ) convolutional code
C if C is the set of codewords v(z) ∈ Fn[z] identified with the finite support output
sequences v corresponding to finite support input sequences u (i.e., to information
sequences u(z) ∈ Fk[z]) and zero initial conditions, i.e., x(0) = 0.

This definition implicitly assumes that (A,B,C,D) is a minimal realization of C,
i.e., that A has the minimal possible dimension [17].
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State-space realizations of convolutional codes can be obtained as minimal state-
space realizations of column reduced encoders. If G(z) ∈ Fn×k[z] is an encoder of
C, (A,B,C,D) is a state-space realization of G(z) if

G(z) = C(I −Az)−1Bz +D.

If G(z) =
∑
i∈N0

Giz
i, with Gi ∈ Fn×k, then

G0 = D, Gi = CAi−1B, i ≥ 1. (4)

Note that G(z) admits many realizations. It is well-known that a state-space re-
alization (A,B,C,D) of G(z) has minimal dimension among all the realizations of
G(z) if (A,B) is controllable and (A,C) is observable, i.e., the polynomial matri-

ces
[
z−1I −A | B

]
and

[
z−1I −A

C

]
have, respectively, right and left polynomial

inverses (in z−1). The minimal dimension of a state-space realization of G(z) is
called the McMillan degree [9] of G(z) and it is represented as µ(G).
The next proposition, adapted from [6,7], provides a state-space realization for a
given (not necessarily column reduced) encoder.

Proposition 1 Let G(z) ∈ Fn×k[z] be a polynomial matrix with rank k and column

degrees ν1, . . . , νk. Consider δ̄ =
∑k
i=1 νi. Let G(z) have columns gi(z) =

∑νi
`=0 g`,iz

`,

i = 1, . . . , k where g`,i ∈ Fn. For i = 1, . . . , k define the matrices

Ai =


0 · · · · · · 0

1
...

. . .
...

1 0

 ∈ Fνi×νi , Bi =


1
0
...

0

 ∈ Fνi , Ci =
[
g1,i · · · gνi,i

]
∈ Fn×νi .

Then a state-space realization of G is given by the matrix quadruple (A,B,C,D) ∈
Fδ̄×δ̄ × Fδ̄×k × Fn×δ̄ × Fn×k where

A =

A1

. . .

Ak

 , B =

B1

. . .

Bk

 , C =
[
C1 · · · Ck

]
, D =

[
g0,1 · · · g0,k

]
= G(0).

In the case where νi = 0 the ith block is missing and in B a zero column occurs.

In this realization (A,B) is controllable and if G(z) is a column reduced encoder, (A,C)
is observable. Thus, the McMillan degree of a column reduced encoder is equal to the

sum of its column degrees.
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3 State-space realizations of periodic convolutional codes

Definition 3 Let Σt = (At, Bt, Ct, Dt), t = 0, 1, be two state-space systems with
the same dimension. We define a periodic state-space system Σp as{

x(`+ 1) = A(`)x(`) +B(`)u(`)

v(`) = C(`)x(`) +D(`)u(`)
, ` ∈ N0 (5)

where A(·), B(·), C(·), D(·) are periodic functions with period 2, such that for j ∈ N0(
A(2j), B(2j), C(2j), D(2j)

)
= (A0, B0, C0, D0)

and (
A(2j + 1), B(2j + 1), C(2j + 1), D(2j + 1)

)
= (A1, B1, C1, D1).

The dimension of Σp is defined as the dimension of the state vector x. In this case
we say that Σp is obtained from Σ0 and Σ1.

Moreover, Σp is a realization of a periodic encoding map φG0G1 if the output of
Σp that corresponds to an input u(z) is equal to φG0G1(u(z)), for all u(z) ∈ Fk[z].

Let Σ0 and Σ1 be two state-space realizations (of the same dimension) of two
encoders G0(z) and G1(z). In the following example we show that the 2-periodic
system Σp obtained from Σ0 and Σ1 is not, in general, a state-space realization of
φG0G1 (see also [1]).

Example 2 Consider the two convolutional codes over F2 with encoders

G0(z) = G0
0 +G0

1z +G0
2z

2 =


1 + z2 1 0
z2 1 + z 1

1 + z 1 1
1 1 1 + z


and

G1(z) = G1
0 +G1

1z +G1
2z

2 =


1 + z 1 0
1 + z2 1 + z 1

1 1 + z2 1
0 1 1

 .
Realizing G0(z) as in Proposition 1 we obtain the state-space realization Σ0 =
(A(0), B(0), C(0), D(0)) with

A(0) =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 B(0) =


1 0 0
0 0 0
0 1 0
0 0 1

 C(0) =


0 1 0 0
0 1 1 0
1 0 0 0
0 0 0 1

 D(0) =


1 1 0
0 1 1
1 1 1
1 1 1

 .
Proceeding the same way, we obtain a state-space realization of G1(z), Σ1 =
(A(1), B(1), C(1), D(1)), with
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A(1) =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 B(1) =


1 0 0
0 0 0
0 1 0
0 0 0

 C(1) =


1 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0

 D(1) =


1 1 0
1 1 1
1 1 1
0 1 1

 .

Let us consider u(z) = u0 + u1z with u0 =

0
0
1

 and u1 =

0
0
0

. From Definition 2

it follows that

v1 = G1
0u1 +G1

1u0 =


1 1 0
1 1 1
1 1 1
0 1 1

u1 +


1 0 0
0 1 0
0 0 0
0 0 0

u0 =


0
0
0
0


while from (5)

v1 = D(1)u1 + C(1)B(0)u0 =


1 1 0
1 1 1
1 1 1
0 1 1

u1 +


1 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0




1 0 0
0 0 0
0 1 0
0 0 1

u0 =


0
0
1
0

 ,
i.e., the output of the periodic state-space system Σp obtained from Σ0 and Σ1

corresponding to u(z) = u0 + u1z is different from φG0G1(u(z)).

In the next theorem we provide a sufficient condition for a periodic state-space
system to be a realization of a periodic encoding map .

Theorem 1 Consider two encoders G0(z) ∈ Fn×k[z] and G1(z) ∈ Fn×k[z] with the

same column degrees and let Σi be the realizations of Gi(z), i = 0, 1 obtained by Propo-

sition 1. Then, the periodic state-space system Σp obtained from Σ0 and Σ1 is a real-

ization of the periodic encoding map φG0G1 .

Proof Let us denote by Σ0 = (A0, B0, C0, D0) and by Σ1 = (A1, B1, C1, D1) the
state-space realizations of G0(z) and G1(z) as in Proposition 1. Since the structure
of the matrices A0, A1, B0 and B1 depends only of the column degrees of G0(z)
and G1(z), we have that A0 = A1 and B0 = B1. Then the 2-periodic state-space
system obtained from Σ0 and Σ1 has updating equations{

x(`+ 1) = Ax(`) +Bu(`)

v(`) = C`−2b `
2
cx(`) +D`−2b `

2
cu(`)

, ` ∈ N0,

where A = A0 = A1 and B = B0 = B1. Therefore, it follows from (4) that for any
u(z) ∈ Fk[z],

v(`) = D0u(`) +
∑̀
i=1

C0A
i−1Bu(`− i) = (G0(z)u(z))`, for ` = 2j
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and

v(`) = D1u(`) +
∑̀
i=1

C1A
i−1Bu(`− i) = (G1(z)u(z))`, for ` = 2j + 1,

for j ∈ N0, i.e., Σp is a 2-periodic realization of φG0G1 . ut

In case G0(z) and G1(z) have different column degrees the following procedure can
be applied in order to obtain a 2-periodic state-space realization of the periodic
encoding map from state-space realizations of G0(z) and G1(z):

1. Let νi be the maximum degree of the i-th columns of G0(z) and G1(z), i =
1, . . . , k;

2. Realize G0(z) and G1(z) as in Proposition 1 considering the columns of Gj(z)
as gji (z) =

∑νi
`=0 g

j
`,iz

`, i = 1, . . . , k, where some of the coefficients of higher
degree may be zero.

Using this and the same line of arguments as in the proof of Theorem 1 the
following theorem is immediate.

Theorem 2 Let G0(z), G1(z) ∈ Fn×k[z] be two encoders with state-space realizations

Σ0 and Σ1, respectively, obtained from the procedure above. Then the 2-periodic system

obtained from Σ0 and Σ1 is a state-space realization of the periodic encoding map

φG0G1 .

Example 3 Consider again the encoders of Example 2

G0(z) = G0
0 +G0

1z +G0
2z

2 =


1 + z2 1 0
z2 1 + z 1

1 + z 1 1
1 1 1 + z


and

G1(z) = G1
0 +G1

1z +G1
2z

2 =


1 + z 1 0
1 + z2 1 + z 1

1 1 + z2 1
0 1 1

 .
Let ν1 = 2, ν2 = 2, ν3 = 1 be the maximum degrees of the first, second and
third columns, respectively, of G0(z) and G1(z). The state-space realizations Σ0 =
(A,B,C(0), D(0)) and Σ1 = (A,B,C(1), D(1)) of G0(z) and G1(z), respectively,
obtained from the procedure above, are such that

A =


0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

 B =


1 0 0
0 0 0
0 1 0
0 0 0
0 0 1



C(0) =


0 1 0 0 0
0 1 1 0 0
1 0 0 0 0
0 0 0 0 1

 D(0) =


1 1 0
0 1 1
1 1 1
1 1 1


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C(1) =


1 0 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 0

 D(1) =


1 1 0
1 1 1
1 1 1
0 1 1

 .
The 2-periodic system obtained from Σ0 and Σ1 is a state-space realization of
φG0G1 .

Assume that Σ(·) = (A(·), B(·), C(·), D(·)) is a δ-dimensional state-space realiza-
tion of a periodic code Cp, as presented below:{

x(`+ 1) = A(`)x(`) +B(`)u(`)

v(`) = C(`)x(`) +D(`)u(`)
, ` ∈ N0

where (A(·), B(·), C(·), D(·)) ∈ Fδ×δ × Fδ×k × Fn×δ × Fn×k are periodic functions
with period 2. Letting w(`) = x(2`) and uL(z) and vL(z) be defined as in (2),
we obtain the following time-invariant δ-dimensional state-space realization ΣL =
(AL, BL, CL, DL) for the lifted code CL:{

w(`+ 1) = ALw(`) +BLuL(`)

vL(`) = CLw(`) +DLuL(`)
, (6)

with
AL = A(1)A(0) BL =

[
A(1)B(0) B(1)

]
CL =

[
C(0)

C(1)A(0)

]
DL =

[
D(0) 0

C(1)B(0) D(1)

]
.

Thus, given a periodic realization Σ(·) for Cp there always exist an invariant re-
alization ΣL for CL with the same dimension as Σ(·). This holds, in particular,
when Σ(·) is minimal; however the corresponding realization ΣL (with the same
dimension) is not necessarily a minimal one. Therefore the minimal dimension of
the realizations of Cp is greater or equal than the dimension of the (minimal) re-
alizations of the corresponding lifted code CL. As mentioned earlier, this latter is
equal to the McMillan degree of any column reduced encoder of CL.

In this context, it is natural to investigate when the two aforementioned minimal
dimensions coincide.

Let us then assume that Cp is the periodic code obtained by two column reduced
encoders G0(z), G1(z) ∈ Fn×k[z] with the same column degrees, i.e., Cp = imφG0G1

and that CL is the lifted version of Cp with encoder GL(z) ∈ F2n×2k[z] as defined
in (3). Moreover, let us consider state-space representations Σ0 and Σ1 of G0(z)
and G1(z), respectively, as in Proposition 1, the 2-periodic system Σp obtained
from Σ0 and Σ1 and the corresponding state-space representation ΣL of GL(z) as
defined in (6).

Let ν1, . . . , νk be the column degrees of G0(z) and G1(z) and g0
i (z) and g1

i (z) be
the i-th column of G0(z) and G1(z), respectively.
Write [

G0(z)
z−1G1(z)

]
=

[
GL0

0 (z2)

GL0
1 (z2)

]
+ z−1

[
GL1

0 (z2)

GL1
1 (z2)

]
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where GL0
0 (z2), GL0

1 (z2), GL1
0 (z2), GL1

1 (z2) ∈ Fn×k[z].

If νi = 2a is even, then the i-th column of

[
GL0

0 (z2)

GL0
1 (z2)

]
has degree 2a and leading

column coefficient matrix

[
(g0
i )hc

0

]
and the i-th column of

[
GL1

0 (z2)

GL1
1 (z2)

]
has also

degree 2a and leading column coefficient matrix

[
∗

(g1
i )hc

]
.

On the other hand, if νi = 2b + 1 is odd, then the i-th column of

[
GL1

0 (z2)

GL1
1 (z2)

]
has

degree 2b+ 2 and leading column coefficient matrix

[
(g0
i )hc

0

]
and the i-th column

degree of

[
GL0

0 (z2)

GL0
1 (z2)

]
is 2b and corresponding leading column coefficient matrix[

∗
(g1
i )hc

]
.

Since (G0)hc and (G1)hc are full column rank, it follows that also the leading
column coefficient matrix of

GL(z) =

[
GL0

0 (z) GL1
0 (z)

GL0
1 (z) GL1

1 (z)

]

is full column rank and therefore GL(z) is column reduced. Moreover, the sum of

the i-th column degrees of

[
GL0

0 (z)

GL0
1 (z)

]
and

[
GL1

0 (z)

GL1
1 (z)

]
is equal to νi, which means

that GL(z) is a column reduced encoder with sum of the column degrees equal to
the sum of the column degrees of Gi(z), i = 0, 1. Then µ(GL) = µ(G0) = µ(G1),
and the next theorem follows.

Theorem 3 Let G0(z), G1(z) ∈ Fn×k[z] be two column reduced encoders with the

same column degrees and let Σi be the state-space realizations of G0(z) and G1(z), re-

spectively, as in Proposition 1. Then the corresponding 2-periodic state-space realization

obtained from Σ0 and Σ1 is minimal.

4 Conclusions

In this paper we have studied the relation between periodic convolutional codes and
periodic input-state-output representations. We showed that this connection is not
as straightforward as it seems. In fact, input-state-output realizations of each one
of two reduced encoders does not necessarily yield a periodic input-state-output
realization of the associated periodic code. First we presented a direct method to
obtain an input-state-output realization under certain conditions. Then we gave a
procedure to still obtain such a realization even if these conditions are not satisfied.
Conditions for these realizations to be minimal were also investigated.
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