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Abstract

The set of linear structures of most known balanced Boolean functions is non-
trivial. In this paper, some balanced Boolean functions whose set of linear structures
is trivial are constructed. We show that any APN function in even dimension must
have a component whose set of linear structures is trivial. We determine a general form
for the number of bent components in quadratic APN functions in even dimension and
some bounds on the number are produced. We also count bent components in any
quadratic power functions.
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1 Introduction

Balancedness is an important property which is sometimes required in Boolean functions
since it is often desirable for cryptographic primitives to be unbiased in output. By recog-
nising such importance, a lot of papers have been written on construction of balanced
functions with cryptographic properties (see for example [7, 10, 12, 17]). One crypto-
graphic property which is mostly considered in constructing such functions is nonlinearity.
However, in this study we are interested in something different. We would like to consider
the set of linear structures of balanced functions. In this paper, the set of linear struc-
tures of a Boolean function is called linear space. We believe that most known balanced
functions do have non-trivial linear space. A typical example of a balanced function with
non-trivial linear space is g(x1, ..., xn−1)+xn, where n is positive integer. It is a well-known
balanced function and its linear space clearly includes the nonzero vector (0, ..., 0, 1). In
this paper we construct some balanced functions whose linear spaces are trivial and in
some cases we give a lower bound on their nonlinearities.

The nonlinearity and differential uniformity of a vectorial Boolean function (a mapping
from F

n
2 to F

n
2 ) are properties which are used to measure the resistance of a function to-

wards linear and differential attacks, respectively. APN and AB functions provide optimal
resistance against the said attacks. This gives a justification as to why there are many
studies regarding APN and also AB functions. In this paper, we show that the linear
spaces of some components of an APN function in even dimension must be trivial. In
particular, we show that the dimension of the linear space of any component in APN per-
mutation is at most 1. Some results on properties of quadratic APN functions are studied.
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It is well-known that in any quadratic APN functions there are some bent components.
So we provide a general form of the number of bent components in quadratic APN. From
[15], we know that there are at most 2n − 2n/2 bent components in any function from F

n
2

to itself. This motivated the authors to count bent components for any quadratic power
function and so a comparison with quadratic power APN is made.

This paper is organised as follows. In Section 2, known results are reported. In Section
3, some balanced functions are constructed and in Section 4 we provide conditions which
help to determine whether the balanced functions constructed in Section 3 have trivial
linear space. In Section 5, we show that there is component in any APN function in
even dimension whose linear space is trivial and we also present a general form for the
number of bent components in any quadratic APN functions. In Section 6, we count bent
components in any quadratic power functions.

2 Preliminaries

In this section, some definitions and well-known results are reported and for details, the
reader is referred to [1, 5, 8, 13, 18].

The field of two elements, 0 and 1, is denoted by F. A vector in the vector space F
n is

denoted by v. A vector whose ith coordinate is 1 and 0 elsewhere is denoted by ei. We
use ordinary addition + instead of XOR ⊕. For any set A, its size is denoted by |A|.

A Boolean function (B.f.) is any function f from F
n to F and a vectorial Boolean function

(v.B.f.) is any function F from F
n to F

m, with n,m ∈ N. However, in this paper we
consider v.B.f.’s from F

n to F
n. The B.f.’s in algebraic normal form, which is the n-

variable polynomial representation over F, is given by f(x1, ..., xn) =
∑

I⊆P aI
(
∏

i∈I xi
)

,
where P = {1, ..., n} and aI ∈ F. The algebraic degree or simply degree of f (denoted by
deg(f)) is maxI⊆P{|I| | aI 6= 0}. The set of all B.f.’s on n variables is denoted by Bn.

A B.f. f is linear if deg(f) = 1 and f(0) = 0, affine if deg(f) ≤ 1, quadratic if deg(f) = 2
and cubic if deg(f) = 3. The set of all affine functions is denoted by An. Given a v.B.f.
F = (f1, ..., fn), the functions f1, ..., fn are called coordinate functions and the functions
λ ·F , with λ 6= 0 ∈ F

n and “·” denoting dot product, are called a components of F and we
denote λ ·F by Fλ. A v.B.f. F is said to be a permutation if and only if all its components
are balanced. The degree of a v.B.f. F is given by deg(F ) = maxλ6=0∈Fn{deg(Fλ)}. If all
components of a v.B.f. F are quadratic, we say that F is pure quadratic.

The Hamming weight of f is given by w(f) = |{x ∈ F
n | f(x) = 1}|. A function f is

balanced if w(f) = 2n−1. The distance between f and g is d(f, g) = w(f + g) and the
nonlinearity of f is N (f) = minω∈An

d(f, ω).

For m < n, if f is in Bn but depends only on m variables, then its restriction to these m
variables is denoted by f↾Fm. Clearly, f↾Fm ∈ Bm.

The next result can be found in [13] on page 372.

Proposition 1. If g(x1, ..., xn−1) is an arbitrary B.f.on n − 1 variables, with a positive
integer n > 1, then f = g(x1, ..., xn−1) + xn is balanced.

The Walsh transform of a B.f. f is defined as the function Wf from F
n to Z:

Wf (a) =
∑

x∈Fn

(−1)f(x)+a·x ,
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for all a ∈ F
n. The set {Wf (a) | a ∈ F

n} is called the Walsh spectrum of a B.f. f . The
Walsh spectrum of a v.B.f F is given by {WFλ

(a) | a ∈ F
n, λ 6= 0 ∈ F

n}. Define F(f) as

F(f) = Wf (0) =
∑

x∈Fn

(−1)f(x) = 2n − 2w(f).

Note that f is balanced if and only if F(f) = 0.

The nonlinearity of a function f can be written in terms of Walsh transform as

N (f) = 2n−1 −
1

2
max
a∈Fn

|Wf (a)|.

The nonlinearity of a v.B.f F is defined as

N (F ) = min
λ6=0∈Fn

N (Fλ).

It well-known that for every B.f. f ∈ Bn, with n even, N (f) ≤ 2n−1 − 2
n

2
−1. A function

f ∈ Bn is said to be bent if N (f) = 2n−1 − 2
n

2
−1 and this can happen only in even

dimension. Note that the lowest possible value for Wf (a), with a ∈ F
n, is 2

n

2 and this
bound is achieved only for bent functions.

For n odd, a B.f. f is called semi-bent if N (f) = 2n−1 − 2
n−1

2 . In other words, f is

semi-bent if, for all a ∈ F
n, Wf (a) ∈ {0,±2

n+1

2 }. Semi-bent functions are sometimes
defined in even dimension. For n even, we say a function f is semi-bent if, for all a ∈ F

n,

Wf (a) ∈ {0,±2
n+2

2 }. A v.B.f. F in odd dimension is almost-bent (AB) if all its components
are semi-bent.

A B.f. is called plateaued if its Walsh transform takes at most three values: 0 and ±µ
where µ is some positive integer, called the amplitude of the plateaued function. So clearly
bent and semi-bent functions are plateaued.

We define the (first-order) derivative of f at a by Daf(x) = f(x+ a)+ f(x). A derivative
of f at 0 is the trivial derivative and at any other point, a 6= 0 ∈ F

n, we simply say a
derivative. An element a ∈ F

n is called a linear structure of f if Daf is constant, and
we denote the set of all linear structures of f by V (f). The set V (f) is called the linear
space of f . We say the linear space is trivial if it contains zero vector only and non-trial
otherwise.

Theorem 2. A B.f. f on n variables is bent if and only if Daf is balanced for any nonzero
a ∈ F

n.

Two B.f.’s f, g : Fn → F are said to be affine equivalent if there exist an affinity ϕ : Fn → F
n

such that f = g ◦ϕ. This relation is denoted by ∼A and written as f ∼A g. Observe that
the relation ∼A is equivalence relation. For i ∈ {1, ..., n} and l ∈ An−1, a basic affinity of
F
n maps xi 7→ xi + l(x1, ..., xi−1, xi+1, ..., xn) and fixes all other coordinates.

Proposition 3. Let f, g ∈ Bn be such that f ∼A g. Then w(f) = w(g) and so f is
balanced if and only if g is balanced.

Remark 4. From Proposition 3 and applying the fact that F(f) = 2n − 2w(f), we can
easily deduce that if f ∼A g then F(f) = F(g), that is, F(f) is invariant under affine
equivalence.

Theorem 5. Let f ∈ Bn be quadratic. Then

3



(i) f ∼A x1x2 + · · ·+ x2k−1x2k + x2k+1, with k ≤ ⌊n−1
2 ⌋ if f is balanced,

(ii) f ∼A x1x2 + · · ·+ x2k−1x2k + c, with k ≤ ⌊n2 ⌋ and c ∈ F if f is unbalanced.

Remark 6. By Theorem 5, it can be easily deduced that if n is even then the dimension
of the linear space of any quadratic function is even, and if n is odd then its dimension is
also odd.

The following corollary can be easily proved.

Corollary 7. Let f be a quadratic B.f. on n variables and c ∈ F. Then

1. for even n, f is bent if and only if

f ∼A x1x2 + · · ·+ xn−1xn + c

2. for even n, f is semi-bent if and only if f ∼A x1x2 + · · · + xn−3xn−2 + xn−1 or
f ∼A x1x2 + · · ·+ xn−3xn−2 + c.

3. for odd n, f is semi-bent if and only if f ∼A x1x2 + · · · + xn−2xn−1 + xn or f ∼A

x1x2 + · · · + xn−2xn−1 + c.

Lemma 8 ([9]). Two unbalanced quadratic B.f. g and h on n variables are affine equivalent
if and only if w(g) = w(h) and N (g) = N (h).

Theorem 9 ([6]). Let f ∈ Bn be a quadratic function. Then, for a ∈ F
n, we have

Wf (a) ∈ {0,±2
n+k

2 } and N (f) = 2n−1 − 2
n+k

2
−1, where k = dimV (f).

Definition 10. Define δF (a, b) = |{x ∈ F
n | DaF (x) = b}|, for a, b ∈ F

n and v.B.f.
F . The differential uniformity of F is δ(F ) = maxa6=0,b∈Fn δF (a, b) and always satisfies
δ(F ) ≥ 2. We call a function with δ(F ) = 2 Almost Perfect Nonlinear (APN).

Next we look at another representation of v.B.f., known as univariate polynomial repre-
sentation, which will be used in some sections. Consider the finite field F2n consisting of
2n elements. It is well-known that the set F

∗
2n = F2n \ {0} is a cyclic group which has

2n − 1 elements. An element in F2n which is a generator of the multiplicative group F
∗
2n

is called a primitive element. It is well explained in [5] that the vector space F
n can be

endowed with the structure of the finite field F2n . So any function F from F2n into F2n

admits a unique univariate polynomial representation over F2n , given as:

F (x) =

2n−1
∑

i=0

δix
i, (2.1)

where δi ∈ F2n and the degree of F is at most 2n − 1. Given the binary expansion
i =

∑n−1
s=0 is2

s, define w2(i) =
∑n−1

s=0 is. So F is a v.B.f. whose algebraic degree is given
by max{w2(i) | 0 ≤ i ≤ 2n − 1, δi 6= 0} (see [5]).

The (absolute) trace function Tr : F2n → F2 is defined as

Tr(x) = x+ x2 + x2
2

+ · · · + x2
n−1

,

where x ∈ F2n . For α ∈ F2n , a component Fα of F is defined as Fα(x) = Tr(αF ).

We call any function of the form F (x) = xd, for some non negative integer d, a power
function and if d = 2i + 2j , for some non negative integers i and j, with i 6= j, we say it
is quadratic power function.
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3 Balanced Boolean functions

In this section we determine some conditions for B.f.’s to be balanced and we also construct
some balanced functions.

If a B.f. is expressed in some particular form, its weight can be obtained from the weights
of other B.f.’s on vector spaces with lower dimension as we explain below. First, observe
that any B.f. f on n+ 1 variables can be expressed in the form

f = xn+1g(x1, ..., xn) + h(x1, ..., xn). (3.1)

We show that if the weights of the functions g and h on n variables are known, then the
weight of a B.f. on n+ 1 variables is obtained.

Theorem 11. Let f = xn+1g(x1, ..., xn) + h(x1, ..., xn), with f ∈ Bn+1 and
g, h ∈ Bn. Then
(i) w(f) = w((g + h)↾Fn) + w(h↾Fn),
(ii) f is balanced if both g + h and h are balanced,
(iii) f is unbalanced if one in {g + h, h} is balanced and the other is not.

Proof. In this proof we view h, g and g + h as functions in Bn.

(i) Let X = (x1, ..., xn). We have

F(f) =
∑

(X,xn+1)∈Fn×F

(−1)xn+1g(X)+h(X)

=
∑

X∈Fn

(−1)g(X)+h(X) +
∑

X∈Fn

(−1)h(X)

= F(g + h) + F(h) (3.2)

So

w(f) = 2n −
1

2
F(f)

= 2n −
1

2
[F(g + h) + F(h)] (3.3)

= 2n −
1

2
[2n − 2w(g + h) + 2n − 2w(h)]

= w(g + h) + w(h).

(ii) Observe that if g+h and h are balanced, we have F(g+h) = F(h) = 0 which implies
that w(f) = 2n, by Equation (3.3).

(iii) Without loss of generality, suppose that g+h is balanced while h not. Then F(g+h) =
0 and F(h) 6= 0. So, by Equation (3.3), we have w(f) = 2n − 1

2F(h) 6= 2n since F(h) 6= 0,
and so f is unbalanced.

Our first two constructions of balanced B.f.’s are based on the well-known fact in the
Proposition 1 and Theorem 11.

Proposition 12. Let f ∼A xn+1g(x1, ..., xn) + h(x1, ..., xn−1), where
g = g̃(x1, ..., xn−1) + xn and h = h̃(x1, ..., xn−2) + xn−1. Then f is balanced.
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Proof. By Proposition 1, both g + h and h are balanced and so, applying Theorem 11, f
is balanced.

Notice that the result which we present in the following proposition is partly an extension
of Proposition 12.

Proposition 13. Let gi = g̃i(xi+1, ..., xn−i) + xn−i+1 be a B.f. on n − 2i + 1 variables,
with integer n > 2 and 1 ≤ i ≤ ⌊n2 ⌋, and define the two functions on n variables as:

fℓ ∼A

ℓ−1
∑

i=1

xigi + gℓ (3.4)

and

f̄ℓ ∼A

ℓ
∑

i=1

xigi + c, (3.5)

with ℓ ≤ ⌊n2 ⌋ and c ∈ F. Then fℓ is balanced and f̄ℓ is unbalanced.

Proof. For a positive integer t ≤ ℓ− 1, define

ht =
ℓ−1
∑

i=t

xigi + gℓ and h̄t =
ℓ

∑

i=t

xigi + c,

with c ∈ F. Since F(fℓ) is invariant under affine equivalence (see Remark 4) then, by
Equation 3.2, we obtain

F(fℓ) =
ℓ−2
∑

i=1

F(gi + hi+1) + F(gℓ−1 + gℓ) + F(gℓ) (3.6)

and

F(f̄ℓ) =

ℓ−1
∑

i=1

F(gi + h̄i+1) +F(gℓ + c) +F(c). (3.7)

We conclude by Proposition 1 that gi+hi+1, gi+ h̄i+1, gℓ−1+gℓ and gℓ+c are all balanced.
So it implies that

F(gℓ + c) = F(gℓ−1 + gℓ) = F(gi + hi+1) = F(gi + h̄i+1) = 0.

It follows that Equation (3.6) becomes F(fℓ) = 0, implying that fℓ is balanced and
Equation (3.7) becomes F(f̄ℓ) = F(c) 6= 0 which implies that f̄ℓ is unbalanced.

Remark 14. All the quadratic B.f.’s are a special case of the functions constructed in
Proposition 13 since if we let g̃i = 0, for all 1 ≤ i ≤ ℓ, we obtain their classification via
affine equivalence as given in Theorem 5.

Any B.f. can also be expressed in the form

f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn). (3.8)

We call this form the convolutional product of g and h.

Next we completely classify the balanced cubic functions of the class f = xn+1g(x1, ..., xn)+
(1 + xn+1)h(x1, ..., xn), with deg(h),deg(g) ≤ 2.
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Theorem 15. Let f = xn+1g(x1, ..., xn) + (1+ xn+1)h(x1, ..., xn) on n+1 variables, with
deg(h),deg(g) ≤ 2, be cubic. Then f is balanced if and only if either both g and h are
balanced or g = h ◦ϕ+1, for some affinity ϕ and with both g and h unbalanced quadratic.

Proof. Recall that F(g) = 2n − 2w(g) and by Equation (3.2), we have F(f) = F(g↾Fn) +
F(h↾Fn). So f is balanced ⇐⇒ F(f) = 0 ⇐⇒ F(g↾Fn) = −F(h↾Fn) ⇐⇒ 2n −
2w(g↾Fn) = −2n + 2w(h↾Fn) ⇐⇒ w(g↾Fn) + w(h↾Fn) = 2n ⇐⇒ w(g↾Fn) = 2n −
w(h↾Fn) ⇐⇒ w(g↾Fn) = w(h↾Fn +1) ⇐⇒ either both g and h are balanced or both g and
h unbalanced quadratics related by g = h ◦ ϕ+ 1, for some affinity ϕ (see Lemma 8).

Observe that the forward direction of Theorem 15 holds in general but its converse might
not be necessarily always true.

In the next result we construct balanced functions based on bent functions.

Proposition 16. Let f = xn+1g(x1, ..., xn)+(1+xn+1)h(x1, ..., xn), with n even, be a B.f.
on F

n+1 such that g and h are both bent. Then f is balanced if and only if w(g) 6= w(h).

Proof. Since F(g) = Wg(0) = ±2
n

2 , so any bent function on F
n has the weight 2n−1±2

n

2
−1.

Since w(f) = w(g↾Fn) + w(h↾Fn), so w(f) = 2n ± 2
n

2 if w(g↾Fn) = w(h↾Fn) and w(f) = 2n

if w(g↾Fn) 6= w(h↾Fn). Hence f is balanced if and only if w(g) 6= w(h).

Next we show that the balanced function in Proposition 16 [also for the unbalanced, that
is, if w(g) = w(h)] are in fact plateaued.

Proposition 17. Let f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn), with n even, be a
B.f. on F

n+1 such that g and h are both bent. Then f is a plateaued function.

Proof. Let α = (a, an+1) ∈ F
n × F and z = (X,xn+1) ∈ F

n × F, where X = (x1, ..., xn).
Then we have

Wf (α) =
∑

z∈Fn+1

(−1)f(z)+α·z

=
∑

(xn+1,X)∈F×Fn

(−1)xn+1g(X)+(1+xn+1)h(X)+a·X+an+1·xn+1

=
∑

X∈Fn

(−1)h(X)+a·x +
∑

X∈Fn

(−1)g(X)+a·X+an+1

= Wh↾Fn
(a) + (−1)an+1Wg↾Fn (a). (3.9)

Since g and h are bent then, for any a ∈ F
n, the only possible values for Wh↾Fn

(a) and

Wg↾Fn (a) are ±2
n

2 . So, for any α = (a, an+1) ∈ F
n × F, Wf (α) takes one of the values 0 or

±2
n

2
+1. Hence f is plateaued.

4 Linear space of balanced Boolean functions

We present some conditions which help to determine whether a derivative of a B.f. is
constant and we utilise them to check the balanced B.f.’s, constructed in Section 3, whose
linear space is trivial.
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Proposition 18. Let f = xn+1g(x1, ..., xn)+h(x1, ..., xn), where g, h ∈ Bn and f ∈ Bn+1.
Let λ = (a, an+1) ∈ F

n × F. Then

Dλf ∼A xn+1Dag + an+1g +Dah.

Proof. Let X = (x1, ..., xn) ∈ F
n. Thus, we have f = xn+1g(X) + h(X). Let λ =

(a, an+1) ∈ F
n × F. So

Dλf = (xn+1 + an+1)g(X + a) + h(X + a) + xn+1g(X) + h(X)

= xn+1 [g(X + a) + g(X)] + an+1g(X + a) + h(X + a) + h(X)

= xn+1Dag(X) + an+1[Dag(X) + g(X)] +Dah(X)

∼A xn+1Dag(X) + an+1g(X) +Dah(X). (apply xn+1 7→ xn+1 + an+1)

For f ∈ Bn, we define the set which contains all a ∈ F
n such that Daf is balanced by

Γ(f), that is, Γ(f) = {a ∈ F
n | Daf is balanced} (see [4]).

We next show that the linear space of B.f. f and Γ(f) are both invariant under affine
equivalence.

Lemma 19. Let g1, g2 ∈ Bn be such that g1 ∼A g2. Then |V (g1)| = |V (g2)| and |Γ(g1)| =
|Γ(g2)|.

Proof. Let ϕ be the affinity of Fn associated with invertible M ∈ GLn(F) and w ∈ F
n,

that is, ϕ(y) = M · y + w, for all y ∈ F
n. For a ∈ F

n, we have

Dag1(x) = Da(g2 ◦ ϕ)(x)

= g2(ϕ(x + a)) + g2(ϕ(x))

= g2(M · (x+ a) + w) + g2(ϕ(x))

= g2(M · x+M · a+w) + g2(ϕ(x))

= g2(M · a+ ϕ(x)) + g2(ϕ(x))

= DM ·ag2(ϕ(x)) = (DM ·ag2 ◦ ϕ)(x). (4.1)

So it implies that Dag1 = (DM ·ag2) ◦ ϕ ∼A DM ·ag2. It follows by Proposition 3 that
w(Dag1) = w(DM ·ag2), so we conclude that Dag1 is balanced if and only if DM ·ag2 is
balanced, Dag1 = 0 if and only if DM ·ag2 ∼A 0, and Dag1 = 1 if and only if DM ·ag2 ∼A 1.
Hence we have |V (g1)| = |V (g2)| and |Γ(g1)| = |Γ(g2)|.

Proposition 20. Let f = xn+1g(x1, ..., xn)+h(x1, ..., xn), where g, h ∈ Bn and f ∈ Bn+1.
Let λ = (a, an+1) ∈ F

n × F. Then Dλf = c, with c ∈ F (i.e., Dλf is constant) if and only
if Dag = 0 and Dah = an+1g + c.

Proof. Dλf = c, with c ∈ F (i.e., Dλf is constant) if and only if

xn+1Dag + an+1g +Dah = c

(see Proposition 18) if and only if Dag = 0 and Dah = an+1g + c.

We can deduce from Proposition 20 that the following result holds.

Corollary 21. Let f = xn+1g(x1, ..., xn)+h(x1, ..., xn), where g, h ∈ Bn are non-constant
and f ∈ Bn+1. Let λ = (a, an+1) ∈ F

n × F. Then Dλf is non-constant if and only if one
of the following happens:
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(i) Dag 6= 0,

(ii) Dag = 0 and Dah 6= an+1g + c, with c ∈ F.

Proposition 22. If f = xn+1g(x1, ..., xn) + h(x1, ..., xn), with n even and g bent, then f
has a trivial linear space.

Proof. Suppose that g is a bent function and let λ = (a, an+1) ∈ F
n × F. By Proposition

18, we have Dλf ∼A xn+1Dag + an+1g + Dah. Observe that when λ = (0, 1) we have
Dλf ∼A g which is a non-constant function since g is bent. If we show that Dλf is non-
constant, for all λ = (a, an+1) ∈ (Fn × {0}) × F, then we are done. Since g is bent then
Dag is balanced (i.e. nonzero), for any a ∈ F

n \{0}, and so we conclude by Corollary 21(i)
that Dλf is non-constant, for all λ = (a, an+1) ∈ (Fn × {0}) × F.

In the next result, we apply Corollary 21 to show that some balanced functions constructed
in Proposition 12 have trivial linear space.

Proposition 23. Let f be as constructed in Proposition 12. If n ≥ 3 is odd and g̃ with
restriction to F

n−1 is bent, then the linear space of f is trivial.

Proof. Assume that g̃, with restriction to F
n−1, is bent and let λ = (a, an+1) ∈ F

n × F.
We know, by Proposition 18, that Dλf ∼A xn+1Dag + an+1g +Dah. Observe that when
λ = (0, 1) we have Dλf ∼A g which is clearly non-constant as g̃ is bent. Now we remain
to show that Dλf is non-constant, for all λ = (a, an+1) ∈ (Fn \ {0}) × F. We know from
Corollary 21 that if Dag is nonzero then Dλf is non-constant. So we can simply show
that Dag is nonzero, for all a ∈ F

n \ {0}.

Let a = (ã, an) ∈ F
n−1 × F, where ã = (a1, ..., an−1). If ã = (0, ..., 0) and an = 1,

then we have Dag = 1 which is nonzero. If a = (ã, 1), with ã ∈ F
n−1 \ {0}, we have

Dag = Dãg̃+1 which must be nonzero as Dãg̃ is balanced because g̃ is bent. If a = (ã, 0),
with ã ∈ F

n−1 \ {0}, we have Dag = Dãg̃ which is balanced as g̃ is bent. Thus, Dag is
nonzero, for all a ∈ F

n \ {0}. Hence the linear space of f is trivial.

Notice that we can apply similar arguments as in the proof of Proposition 23 to show
that the linear space for any function of the form given in Proposition 13, with g̃1 bent, is
trivial.

Example 24. For any positive odd integer n ≥ 3, a function of the form:

f = xn+1(x1x2 + · · ·+ xn−2xn−1 + xn) + h(x1, ..., xn−2) + xn−1

is balanced and its linear space is trivial.

Next we determine whether the linear space of any balanced cubic function of the form
(3.8) [i.e., f = xn+1g(x1, ..., xn)+(1+xn+1)h(x1, ..., xn), with deg(g),deg(h) ≤ 2] is trivial.
From Theorem 15, we know that such functions are balanced if and only if either both
g and h are balanced or g = h ◦ ϕ + 1, for some unbalanced quadratics g and h, and an
affinity ϕ.

Proposition 25. Let f = xn+1g(x1, ..., xn)+(1+xn+1)h(x1, ..., xn) on F
n+1, with n even,

be cubic such that g and h are quadratic bent related by g = h ◦ϕ+1, for some affinity ϕ.
Then the linear space of f is trivial.
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Proof. Suppose that both g and h, with restrictions to F
n, are bent. Let λ = (a, an+1) ∈

F
n × F. Observe that f = xn+1(g + h) + h, and so f is cubic if and only if g + h is a

quadratic function. So we assume that g + h is quadratic. By Proposition 18, we have
Dλf ∼A xn+1Da(g + h) + an+1(g + h) + Dah. Observe that when λ = (1, 0) we have
Dλf ∼A g + h which is non-constant as we assumed that g + h is quadratic.

Next we prove that Dλf is non-constant, for all λ = (a, an+1) ∈ (Fn \ {0}) × F. By
Corollary 21(i), we know that if Da(g + h) 6= 0, then Dλf is non-constant. Now we show
that Dλf is still non-constant if Da(g + h) = 0, for some a ∈ F

n \ {0}. Assume that
Da(g + h) = 0, for some a ∈ F

n \ {0}. Then we have Dλf ∼A an+1(g + h) + Dah. If
an+1 = 0 then Dλf ∼A Dah, and so it is non-constant since Dah has to be balanced as h
is bent. If an+1 = 1 then Dλf ∼A g + h+Dah which is also non-constant since g + h is a
quadratic and Dah has degree 1 as it is balanced.

Remark 26. Since the convolutional product of g and h can be reduced to f = xn+1(g +
h) + h, so either deg(f) = deg(h) [this happens when deg(g + h) < deg(h)] or deg(f) =
max{deg(g),deg(h)} + 1. Moreover, we can use Theorem 11, to deduce that w(f) =
w(g↾Fn) + w(h↾Fn) and f is balanced if g and h are balanced.

Finally, we determine some balanced functions constructed in Proposition 16 [i.e., f =
xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn), where g and h are both bent and w(g) 6= w(h)]
which have trivial linear space.

Proposition 27. Let f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn), with n even, be a
B.f. on n + 1 variables such that g and h are both bent. Then the linear space of f is
trivial if deg(f) = max{deg(g),deg(h)} + 1.

Proof. Recall that Dλf ∼A xn+1Da(g+h)+an+1(g+h)+Dah, for λ = (a, an+1) ∈ F
n×F

(see Proposition 25). Observe that f = xn+1(g + h) + h. We are given that deg(f) =
max{deg(g),deg(h)} + 1. So it follows that deg(g + h) = max{deg(g),deg(h)}, implying
that g+h is non-constant since g and h are bent. When λ = (0, 1), we have Dλf ∼A g+h
which is non-constant.

Now we prove that Dλf , for all λ = (a, an+1) ∈ (Fn \ {0}) × F, is non-constant. If
Da(g+h) 6= 0, then Dλf is non-constant, by Corollary 21(i). Suppose that Db(g+h) = 0,
for some b ∈ F

n \ {0}. We need to show that Dλf is still non-constant, for λ = (b, an+1) ∈
(Fn \ {0})×F. In this case we have Dλf ∼A an+1(g+ h) +Dbh. If an+1 = 0 then we have
Dλf ∼A Dbh which is non-constant since Dbh has to be balanced as h is bent. If an+1 = 1
then we have Dλf ∼A g + h+Dbh. Since deg(g + h) = max{deg(g),deg(h)}, so we have
deg(g + h) = max{deg(g),deg(h)} > deg(Dbh), implying that deg(Dλf) = deg(g + h) >
deg(Dbh). So Dλf must be non-constant. Hence the linear space of f is trivial.

Let α = (a, an+1) ∈ F
n × F. Observe that, from Equation (3.9), we obtain |Wf (α)| ≤

|Wg↾Fn |+ |Wh↾Fn
|. So it follow that the nonlinearity of f in Propositions 25 and 27 is

N (f) = 2n −
1

2
max

α∈Fn+1
|Wf (α)|

≥ 2n −
1

2
max

α∈Fn+1
(|Wg↾Fn |+ |Wh↾Fn

|)

≥ 2n−1 −
1

2
max

α∈Fn+1
|Wg↾Fn |+ 2n−1 −

1

2
max

α∈Fn+1
|Wh↾Fn

|

= N (g↾Fn) +N (h↾Fn) (4.2)
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This suggests a way of constructing B.f.’s with high nonlinearity. For instance, from the
relation (4.2), we deduce that the nonlinearity of the balanced function f constructed in

Propositions 25 and 27 is N (f) ≥ 2N−1 − 2
N−1

2 , with N = n+ 1.

Example 28. Let g = x1x2 + x3x4 + 1 and h = x1x4 + x2x3. The cubic function f =
x5g + (1 + x5)h is balanced and its linear space is trivial. It can be easily verified that
N (f) = 12, implying that f is semi-bent. Note that both g and h, with restriction to F

4,
are bent related by g = h ◦ ϕ+ 1, where ϕ = A(x1, x2, x3, x4)

T , with

A =









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0









.

5 APN functions in even dimension

In this section we study the linear spaces of components of APN functions in even dimen-
sion. We show that, for any APN function, there must be a component with trivial linear
space. We also provide a general form for the number of bent components in quadratic
APN function and show bounds on their number.

5.1 Linear space for components of APN functions in even dimension

We first give some definitions and results which are crucial in studying the linear spaces
of components of APN functions in even dimension.

Definition 29. A B.f. f on n variables is called a splitting function if we have f ∼A

g(x1, ..., xi) + h(xi+1, ..., xn), for some positive integer i, g ∈ Bi and h ∈ Bn−i. We say
that i is a splitting number of f and S(f) denotes the set of all splitting numbers of f .
We define a splitting index of f as the number σ(f) = minS(f).

Remark 30. Let f ∈ Bn be a splitting function. Then

1. i is a splitting number ⇐⇒ n− i is a splitting number,

2. clearly, σ(f) ∈ {1, ..., ⌊n/2⌋}.

Lemma 31. Let f ∈ Bn. Then σ(f) = 1 if and only if dimV (f) ≥ 1.

Proof. Suppose that σ(f) = 1, that is, f ∼A f̃ = g(x1) + h(x2, ..., xn). So we have
f̃ = f ◦ ϕ, where ϕ(y) = My + w, for some w ∈ F

n and invertible M ∈ GLn(F). Clearly
De1 f̃ is constant. By Equation (4.1) in the proof Lemma 19, we have De1 f̃ = (DMe1f)◦ϕ
and since w(De1 f̃) = w(DMe1f) (see Proposition 3), so (DMe1f)◦ϕ must also be constant.
Note that Me1 6= 0 since M is a linear isomorphism. Thus both 0 and Me1 are in V (f)
which implies that dimV (f) ≥ 1.

Conversely, suppose that dimV (f) ≥ 1, that is, ∃a 6= 0 ∈ V (f) such that Daf = c, with
c ∈ F. We can take the F-linear isomorphism E of Fn that sends e1 7→ Ee1 = a so that
we have f̃ = f ◦E and thus,

De1 f̃ = (DEe1f) ◦ E = (Daf) ◦ E = (c) ◦E = c

which implies that De1 f̃ is constant. Since we have De1 f̃ = c, so we can write f̃ =
cx1 + h(x2, ..., xn). Hence σ(f) = 1 as f ∼A f̃ .

11



Remark 32. If g(x1, ..., xs), with a positive integer s < n, is in Bn then we have w(g) =
2n−sw(g↾Fs).

The preceding remark is useful in the following.

Lemma 33. Let f ∈ Bn, with n even. If σ(f) = 1, then |Γ(f)| ≤ 2n − 4.

Proof. Suppose f ∈ F
n has σ(f) = 1, that is, f ∼A f̃ = cx1+h(x2, ..., xn), with c ∈ F. By

Lemma 19, we have |Γ(f)| = |Γ(f̃)|, so we can simply consider |Γ(f̃)|. It is clear that 0
and e1 are both not in Γ(f̃) since D0f̃ = 0 and De1 f̃ = c. Suppose that these are the only
ones, that is, |Γ(f̃)| = 2n − 2. This implies that, for all a ∈ F

n \ {0, e1}, Daf̃ is balanced.

Let W =< e2, ..., en > and denote W ∗ = W \{0}. Clearly, W ∗ is contained in F
n \{0, e1},

that is, W ∗ ⊂ Γ(f̃). So, for all a ∈ W ∗, Daf̃ is balanced. It is clear that W ≃ F
n−1.

Observe that, for any a = (0, b) ∈ {0} × (Fn−1 \ {0}) = W ∗, we have Daf̃ = Dbh as the
first coordinate of a is 0. Since Daf̃ does not depend on x1 then, by Remark 32, we have
2n−1 = w(Daf̃) = w(Dbh) = 2w(Dbh↾Fn−1) =⇒ w(Dbh↾Fn−1) = 2n−2, that is, Dbh↾Fn−1 is
balanced, for all b ∈ F

n−1 \ {0}. This implies that h, with restriction to F
n−1, is bent (see

Theorem 2).

But n− 1 is odd as n is even, so it implies that we have a bent function on F-vector space
of odd dimension, which is impossible. Thus, the assumption that |Γ(f̃)| = 2n − 2 is false,
and so we can say |Γ(f̃)| ≤ 2n − 3.

Suppose that d ∈ F
n \ {0, e1} is the other nonzero element such that Ddf̃ is unbalanced.

So Dd+e1 f̃(x) = De1 f̃(x)+Ddf(x+e1) = c+Ddf(x+e1) = (c+Ddf(x))◦ϕ, for c ∈ F and
ϕ(y) = Iy+e1, with I as an identity in GLn(F). That is, Dd+e1 f̃(x) ∼A Ddf(x)+c. Since
Ddf(x) is unbalanced then Ddf(x) + c must be unbalanced, implying that Dd+e1 f̃(x) is
also unbalanced. That is, {0, e1, d, d + e1} 6⊂ Γ(f̃). Hence we have |Γ(f̃)| ≤ 2n − 4.

Next we state a well-known result for characterization of APN function.

Theorem 34 ([1]). Let F be a v.B.f. from F
n into F

n. Then

∑

λ6=0∈Fn

∑

a∈Fn

F2(Da(Fλ)) ≥ 22n+1(2n − 1). (5.1)

Moreover, F is APN if and only if equality holds.

In the next results we discuss about the linear space for components of an APN function
in even dimension.

Theorem 35. Let a v.B.f. F from F
n to itself, with n even, be APN. Then there is

λ 6= 0 ∈ F
n such that the linear space of Fλ is trivial.

Proof. Since, by Lemma 31, a B.f. has a nonzero linear structure if and only if its splitting
index is 1, so we simply show that for any APN function F it is impossible to have
σ(Fλ) = 1, for all λ 6= 0 ∈ F

n.

Suppose, by contradiction, that F is APN and σ(Fλ) = 1, for all λ 6= 0 ∈ F
n. By

Lemma 33, we can suppose that, for any λ 6= 0 ∈ F
n, there are nonzero v, u and w not

Γ(Fλ) such that DvFλ is constant, DuFλ and DwFλ are both unbalanced. So we have
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F2(D0Fλ) = F2(DvFλ) = 22n, and both F2(DuFλ) and F2(DwFλ) are nonzero positive
integers (recall that, for any B.f. f , F(f) = 0 if and only if f is balanced). Thus, we have

∑

a∈Fn

F2(DaFλ) ≥ F2(D0Fλ) + F2(DvFλ) + F2(DuFλ) + F2(DwFλ)

= 22n + 22n + F2(DuFλ) + F2(DwFλ) > 22n+1

from which we deduce that

∑

λ6=0∈Fn

∑

a∈Fn

F2(DaFλ) > 22n+1(2n − 1).

Thus, by Theorem 34, it impossible for F to be an APN function. So it follows that if
F is an APN function in even dimension then there is a component whose linear space is
trivial.

Proposition 36 ([4]). Let F be an APN permutation over F
n, with n even. If there are

λ 6= 0, a 6= 0 ∈ F
n such that DaFλ is constant, then DaFλ = 1.

In the next result we talk about the maximum possible dimension for linear spaces of
components of APN permutation.

Theorem 37. If F is an APN permutation over F
n, with n even, then

dimV (Fλ) ≤ 1, for all λ 6= 0 ∈ F
n.

Proof. Suppose, by contradiction, that there is µ 6= 0 ∈ F
n such that dimV (Fµ) > 1.

It follows that V (Fµ) contains at least three nonzero elements. Let a, b ∈ V (Fµ) be
nonzero and distinct. Then, by Proposition 36, we have DaFλ = DbFλ = 1. Clearly,
a+ b is also a nonzero element in V (Fµ) different from a and b. Note that Da+bFµ(x) =
DaFµ(x)+DbFµ(x+a), x ∈ F

n. By Equation (4.1) in the proof Lemma 3, DbFµ(x+a) =
(DIbFµ) ◦ ϕ ∼A DbFµ, with ϕ(x) = Ix + a and I being the identity matrix of GLn(F).
Since DbFµ = 1, so we must have DbFµ(x + a) = 1. Thus, Da+bFµ(x) = 0, which is
impossible by Proposition 36. Thus, we must have dimV (Fλ) ≤ 1, for all λ 6= 0 ∈ F

n.

5.2 Quadratic APN functions

A quadratic v.B.f. from F
n to itself is denoted byQ, the linear space V (Qλ) of a component

Qλ is denoted by Vλ and we let V ∗
λ = Vλ \ {0}. It is well-known that any APN function

cannot contain linear components, so we assume that Q is pure quadratic. For quadratic
functions, it is clear from Theorem 5 that we have trivial linear space if and only if the
function is bent. So, by Theorem 35, any quadratic APN functions must have some bent
components. In this subsection we are mainly counting how many bent components are
in quadratic APN functions.

First we prove a result which relate the dimensions of linear spaces for components of Q
to quadratic APN functions.

Proposition 38. For any quadratic Q : Fn → F
n, we have

∑

λ6=0∈Fn

(2dimVλ − 1) ≥ 2n − 1. (5.2)

Moreover, equality holds if and only if Q is APN.
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Proof. Since F2(D0Qλ) = 22n, so we have

∑

λ6=0∈Fn

∑

a∈Fn

F2(DaQλ) =
∑

λ6=0∈Fn

[F2(D0Qλ) +
∑

a6=0∈Fn

F2(DaQλ)]

=
∑

λ6=0∈Fn

[22n +
∑

a6=0∈Fn

F2(DaQλ)]

= 22n(2n − 1) +
∑

λ6=0,∈Fn

∑

a6=0∈Fn

F2(DaQλ). (5.3)

By Theorem 34 and Equation (5.3), we deduce that

∑

λ6=0,∈Fn

∑

a6=0∈Fn

F2(DaQλ) ≥ 22n(2n − 1) (5.4)

and equality holds if and only if Q is APN.

For any quadratic Q, deg(DaQλ) = 0 if a ∈ Vλ and deg(DaQλ) = 1 if a /∈ Vλ. So we have
F2(DaQλ) = 22n if a ∈ Vλ and F2(DaQλ) = 0 if a /∈ Vλ. Thus, we have

∑

λ6=0∈Fn

∑

a6=0∈Fn

F2(DaQλ) =
∑

λ6=0∈Fn

∑

a∈V ∗

λ

F2(DaQλ)

=
∑

λ6=0∈Fn

22n|V ∗
λ |

= 22n
∑

λ6=0∈Fn

(2dimVλ − 1). (5.5)

We deduce, from the relation (5.4) and Equation (5.5), that

∑

λ6=0∈Fn

(2dim Vλ − 1) ≥ 2n − 1

and equality holds if and only if Q is APN.

It can be easily shown that for any quadratic B.f. f in odd dimension we have dimV (f) ≥ 1
and equality holds when f is a semi-bent. This implies that the equality in the rela-
tion (5.2) happens when Q is an AB function. Since in odd dimension all quadratic
functions have non-trivial linear space, then all components of any quadratic APN func-
tion in odd dimension have non-trivial linear space. Thus, it implies that the result in
Theorem 35 cannot be extended to APN function in odd dimension.

Now we focus on quadratic v.B.f. in even dimension. From Theorem 5, it is clear that any
quadratic B.f. in even dimension has a splitting index 1 or 2. By Corollary 7, we deduce
that quadratic is bent if and only if the splitting index is 2.

Definition 39. For any quadratic Q, define

∆i = {λ ∈ F
n | λ 6= 0, σ(Qλ) = i}, N = |∆1| and B = |∆2|.

Remark 40. From Definition 39, N is the number of non-bent compoments and B is the
number of bent components in Q and so we have N +B = 2n − 1.

Nyberg in [14], proved that bent functions exist only from F
n to F

m, with m ≤ n/2, so it
well-known that no v.B.f. from F

n to itself is bent.
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Remark 41. The maximum number of bent components in any v.B.f. from F
n to itself

is 2n − 2
n

2 (see [15]). So 0 ≤ B ≤ 2n − 2
n

2 . In [16], no plateaued APN function has
the maximum number of bent components. It is well-known that quadratic functions are
plateaued.

In the next result we wish to determine B when Q is an APN function and contains only
bent and semi-bent components.

Proposition 42. Let a quadratic Q : Fn → F
n, with n even, be such that Qλ, with λ 6= 0,

is bent or semi-bent. Then Q is APN if and only if there are exactly 2
3(2

n − 1) bent
components.

Proof. For any quadratic APN Q, by Theorem 35, we conclude that B > 0, that is, some
components of Q must be bent (as we require that the linear space of some components
must be trivial). Since n is even, so dimVλ is even (see Remark 6). From Theorem 5 and
Corollary 7, we can deduce that dimVλ = 0 if and only if Qλ is bent. That is, dimVλ 6= 0
if λ ∈ ∆1 and dimVλ = 0 if λ ∈ ∆2. For any quadratic APN Q, by Proposition 38, we
must have

∑

λ6=0∈Fn

(2dimVλ − 1) = 2n − 1. (5.6)

Since dimVλ = 0 if λ ∈ ∆2, then Equation (5.6) can be reduced to

∑

λ∈∆1

(2dimVλ − 1) = 2n − 1. (5.7)

That is, Q is APN if and only if Equation (5.7) holds.

If Q is such that Qλ, with λ 6= 0, is bent or semi-bent, then N is the number of semi-bent
(i.e., dimVλ = 2, for any λ ∈ ∆1). Thus, Equation (5.7) is true if and only if (22−1)|∆1| =
3N = 2n − 1 ⇐⇒ N = (2n − 1)/3. Since N +B = 2n − 1, so B = 2(2n − 1)/3.

It follows from Proposition 42 that any quadratic APN function in even dimension with

the set {0,±2
n

2 ,±2
n+2

2 } as its Walsh spectrum has 2(2n−1)/3 bent components . It is well-

known that theWalsh spectrum of any Gold function in even dimension is {0,±2
n

2 ,±2
n+2

2 },
so any Gold function has 2(2n − 1)/3 bent components.

Theorem 43. Let a quadratic Q : Fn → F
n, with n even, be APN. Then

2(2n − 1)/3 ≤ B ≤ 2n − 2n/2 − 2,

where B = 2(2n − 1)/3 + 4t, for some integer t ≥ 0.

Proof. Suppose that Q is APN. Since the dimension of the linear space of any quadratic
in even dimension is even (see Remark 6), so it follows that for any Qλ, with λ ∈ ∆1, we
have dimVλ ≥ 2. If, for any λ ∈ ∆1, Qλ is semi-bent then we are in Proposition 42, that
is, B = 2(2n − 1)/3. If some components are neither bent nor semi-bent, then we must
have B > 2(2n − 1)/3 for Equation (5.7) to be satisfied.
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If Q has a component Qµ, with µ ∈ ∆1, which is not semi-bent, then dimVµ = 2k, for
some k ≥ 2. So, for Equation (5.7) to be satisfied, the presence of Qµ in Q has to increase
the number of bent components by

22k − 1

22 − 1
− 1 =

22k − 4

3
= 4

(

22k−2 − 1

3

)

which clearly is divisible by 4. So it follows that B = 2(2n − 1)/3 + 4t, for some integer
t ≥ 0.

By Remark 41, we have B ≤ 2n − 2n/2. Now we show that it not possible to have
B = 2n − 2n/2. For some t ≥ 0, we have B = 2(2n − 1)/3 + 4t = 2[(2n − 1)/3 + 2t] 6≡ 0
(mod 4) since (2n − 1)/3 + 2t is odd. Thus, B 6= 2n − 2n/2 since 2n − 2n/2 ≡ 0 (mod 4).
Hence we must have B ≤ 2n − 2n/2 − 2.

For any quadratic APN Q in demension 4, by Theorem 43, we only have one possibility,
that is, B = 10 (this satisfies Proposition 42). We state this result in following.

Corollary 44. A pure quadratic Q : F4 → F
4 is APN if and only if B = 10.

Not long time ago, only quadratic APN functions with B = 2(2n − 1)/3 were known.
From Proposition 42, such functions contain only bent and semi-bent components. As
noted earlier Gold functions are example of such functions. It had been conjectured
that all quadratic APN functions are equivalent to Gold functions (i.e., all quadratic
APN functions have the same number of bent components) until Dillon in 2006 gave an
example of quadratic APN with different number of bent components and inequivalent to
Gold functions. The Dillon’s Example:

F (x) = x3 + z11x5 + z13x9 + x17 + z11x33 + x48

is defined over F26 , with z primitive. Using MAGMA, we found that F has 46 bent
components. That is, it is an example of quadratic APN with B = 2(2n − 1)/3 + 4 (i.e.,
t = 1 by Theorem 43). Also by computer search, we found the function:

G(x) = x3 + z53x10 + z41x18 + z59x33 + z43x34 + z31x48

over F26 , with z primitive, which has the same number of bent components as F , the
Dillon’s Example. From Theorem 43, we deduce that, in dimension 6, all the possibilities
for the number of bent components in any quadratic APN function are: 42, 46, 50 and 54.
So far we only know the existence of quadratic APN functions with 42 (Gold functions and
others) and 46 (Dillon’s example) bent components but we are uncertain whether those
with 50 and 54 exists.

In [19], some quadratic APN functions in dimension 8 with Walsh spectrum
{−64,−32,−16, 0, 16, 32, 64} (which is different from theWalsh spectrum of Gold function)
are found. These functions are further classified in terms of their distribution of Walsh
coefficients and two classes are found. One class has 487 functions and the other one has
12 functions. In a class of 487 functions, we considered the function:

G′(x) = z249x192 + z24x160 + z210x144 + z69x136 + z46x132 + z164x130 + z43x129

+ z31x96 + z30x80 + z115x72 + z228x68 + z16x66 + z228x65 + z217x48

+ z9x40 + z251x36 + z151x34 + z77x33 + z189x24 + z109x20 + z191x18

+ z249x17 + z175x12 + z130x10 + z91x9 + z59x6 + z60x5 + z121x3
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and by checking with MAGMA, we found that it contains 2(28 − 1)/3 + 4 = 174 bent
components (i.e., t = 1 by Theorem 43) and in the other class, we considered the function:

G′′(x) = z130x192 + z160x160 + z117x144 + z230x136 + z228x132 + z162x130

+ z25x129 + z79x96 + z204x80 + z83x72 + z159x68 + z234x66 + z36x65

+ z67x48 + z151x40 + z17x36 + z81x34 + z52x33 + z9x24 + z116x20

+ z102x18 + z97x17 + z74x12 + z48x10 + z144x9 + z58x6 + z146x5 + z123x3

which was found to have 2(28−1)/3+8 = 178 bent components (i.e., t = 2 by Theorem 43).
Thus, in dimension 8, we only know the existence of quadratic APN functions with 170,
174 and 178 bent components and it is yet to be known whether quadratic APN functions
having B = 2(28 − 1)/3 + 4t, with 3 ≤ t ≤ 17, bent components exist.

Proposition 45. Let Q : Fn → F
n be APN with B = 2(2n − 1)/3 + 4t, for some positive

integer t, as described in Theorem 43. Then

N (Q) =

{

2n−1 − 2n/2 if t = 0, n ≥ 4

2n−1 − 2n/2+1 if 1 ≤ t ≤ 4, n ≥ 6

Proof. We first need to recall from Remark 6, that for any quadratic B.f. on n vari-
ables, with even n, the dimension k of its linear space is even and the Walsh spectrum is
{0, 2(n+k)/2}.

If t = 0 then, by Proposition 42, all components of Q are bent and semi-bent, that is,
the Walsh spectrum of Q is {0,±2(n+2)/2,±2n/2}. So clearly, by Corollary 9, N (Q) =
2n−1 − 2n/2.

To prove that N (Q) = 2n−1 − 2n/2+1 if 1 ≤ t ≤ 4, we need to show that for this range
of t we have dimVλ ∈ {0, 2, 4}, for all λ 6= 0 ∈ F

n, that is, Walsh spectrum of Q is
{0,±2(n+4)/2,±2(n+2)/2,±2n/2}.

It is clear from Theorem 43 that for t ≥ 1, we have B > 2(2n−1)/3, and so Proposition 42
allows us to conclude that there must be λ 6= 0 ∈ F

n such that dimVλ > 2. We claim that
if 1 ≤ t ≤ 4, then we have dimVλ ∈ {0, 2, 4}, for λ 6= 0 ∈ F

n. Suppose, by contradiction,
that there is µ 6= 0 ∈ F

n such that dimVµ = 6. Then, as noted in the proof of Theorem 43,
the presence of Qµ increases the number of bent components by

4

(

26−2 − 1

3

)

= 4(5),

implying that B ≥ 2(2n − 1)/3 + 4(5). So it follows that if, for some λ 6= 0 ∈ F
n,

dimVλ = 6, then we have t ≥ 5. This implies that, if 1 ≤ t ≤ 4, then we must have
dimVλ ∈ {0, 2, 4}, for all λ 6= 0 ∈ Fn. So in this case the Walsh spectrum of Q is
{0,±2(n+4)/2,±2(n+2)/2,±2n/2} from which we deduce that N (Q) = 2n−1 − 2n/2+1.

From Proposition 45, it seems like the nonlinearity of any quadratic APN function de-
creases as the number of bent components increases and it is the highest when the number
of bent components is at the lowest possible.
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6 Quadratic power functions

Pott et al. in [15] say that the question to determine all monomial bent functions Tr(αxd)
on F2n , with α ∈ F

∗
2n and n even, has attracted quite a lot of research interest. In this

section we study the Walsh spectrum and enumerate bent components for any quadratic
power functions. Recall that a function F = xd is a quadratic power functions if d = 2j+2i,
with i 6= j and j > i ≥ 0. It is well-known that a function with the power d = 2i(2j−i+1)
is affine equivalent to the one with power d′ = 2j−i + 1. So we simply consider the power
2k + 1, for some positive integer k. For a function F , we denote its image by Im(F ).

We denote the greatest common divisor integers m and m′ by (m,m′). We begin with the
following well-known result which can be found in [11].

Lemma 46. For any positive integers n and k, we have

(a) (2n − 1, 2k − 1) = 2(n,k) − 1,

(b) (2n − 1, 2k + 1) =

{

1 if n/(n, k) is odd,

2(n,k) + 1 if n/(n, k) is even.

Theorem 47. Let F (x) = x2
k+1 be a function in F2n [x], with even n and some integer

k ≥ 1. Let m = (n, k), s = (n, 2k) and e = 1 if n/m is odd and e = 2m + 1 if n/m is
even. Then

(a) F is an e-to-1 function,

(b) Fα is bent if and only if α /∈ Im(F ).

(c) the number of bent components for F is (e−1)(2n−1)
e ,

(d) the Walsh spectrum of F is {0,±2(n+s)/2} if e = 1, and {0,±2(n+s)/2,±2n/2} if
e = 2m + 1.

Proof. Let S = Im(F ) \ {0} = {ξ2
k+1 | ξ ∈ F

∗
2n}. It can be easily shown that S is a

multiplicative subgroup of F∗
2n .

(a) Clearly, F maps F∗
2n onto S. So we only need to show that S has the order (2n−1)/e.

Now we need to find the order of S. First observe that every element ζ in S satisfies
ζ(2

n−1)/e = 1, where e = (2n − 1, 2k + 1). By Lemma 46, e = 1 if n/m is odd and

e = 2m+1 if n/m is even. If ν is a primitive element in F2n , then the order of ν2
k+1

is ord(ν2
k+1) = ord(νe) = (2n − 1)/e. Clearly, ν2

k+1 has the highest order in S. It
is well-known that F

∗
2n is cyclic group, so S being a subgroup must be cyclic with

ν2
k+1 as a generator. Thus, it follows that the order of S is (2n − 1)/e, implying

that F is an e-to-1 function.

(b) It is equivalent to show that Fα is non-bent if and only if α ∈ Im(F ). Fα is bent if
its linear space is trivial, so we need to prove that the dimension of the linear space
of Fα is non-trivial, that is, dimVα ≥ 1 if and only if α ∈ Im(F ).

A component Fα, with α ∈ F2n , is non-bent if there exists β in F
∗
2n such that DβFα

is constant. Suppose that Fα, with α ∈ F
∗
2n , is non-bent and DβFα is constant, with

β ∈ F2n . So we have
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DβFα(x) = Fα(x) + Fα(x+ β) = Tr
(

αx2
k+1

)

+ Tr
(

α(x+ β)2
k+1

)

= Tr
(

αx2
k+1

)

+ Tr
(

α(x2
k

+ β2k)(x+ β)
)

= Tr
(

αx2
k+1

)

+ Tr
(

α(x2
k+1 + βx2

k

+ β2kx+ β2k+1)
)

= Tr
(

αβx2
k
)

+ Tr
(

αβ2kx
)

+ Tr
(

αβ2k+1
)

= Tr
(

(αβ + α2kβ22k )x2
k
)

+ Tr
(

αβ2k+1
)

. (6.1)

Observe that DβFα is constant if and only if, in Equation (6.1), we have

Tr
(

(αβ + α2kβ22k)x2
k
)

= 0.

This happens if and only if

αβ + α2kβ22k = αβ
(

1 + α2k−1β22k−1
)

= 0.

So either β = 0 or

α2k−1β22k−1 = (αβℓ)2
k−1 = 1, (6.2)

with ℓ = 22k−1
2k−1

= 2k +1. Suppose that ζ is a primitive element in F2n . Then we can

write α = ζr and β = ζt, for some integers r and t. So it follows that Equation (6.2)

becomes ζ(r+tℓ)(2k−1) = 1 which implies that

(r + tℓ)(2k − 1) = r(2k − 1) + t(22k − 1) = c(2n − 1),

for some integer c. Thus, we have

r = c(2n−1)
2k−1

− t(22k−1)
2k−1

= c(2n−1)
2k−1

− t(2k + 1) = e
(

c(2n−1)
e(2k−1)

− t(2k+1)
e

)

.

Recall that e = (2n − 1, 2k + 1). So all α’s which satisfy (αβℓ)2
k−1 = 1 must be

those which satisfy α(2n−1)/e = 1. These are elements whose orders are divisors
of (2n − 1)/e. It implies that α ∈ S. Including α = 0, it follows that Fα has a
non-trivial linear space if and only if α ∈ Im(F ).

(c) By part (b), we deduce that the number of bent components is 2n − |Im(F )|. Since
|Im(F )| = 1 + |S| = 1 + (2n − 1)/e, then the number of bent components is

2n − |Im(F )| =
(e− 1)(2n − 1)

e
.

(d) We first determine Vα, for any α ∈ F
∗
2n , and then use Theorem 9 to deduce the

Walsh spectrum of F . In part (b), we showed that Vα = {0} if α /∈ Im(F ) (i.e., Fα

is bent) and |Vα| > 1 if α ∈ Im(F ). For any α ∈ S = Im(F )\{0}, we also showed, in

part (b), that DβFα is constant if either β is equal to 0 or satisfies (αβ2k+1)2
k−1 = 1.

Thus, we have β22k−1 = (α−1)2
k−1. If α = 1, then β ∈ F

∗
2s , with s = (2k, n) and if

α 6= 1, then β ∈ µF∗
2s , where µ is ℓ-th root of α−1. So it follows that |Vα| = 2s.
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Given that m = (n, k), by Lemma 46, we have e = 1 if n/m is odd and e = 2m + 1
if n/m is even. If e = 1 then, by part (a), F is a permutation which implies that
it has no bent components and so we have |Vα| = 2s, for all α ∈ F

∗
2n . This implies

that its Walsh spectrum of F is {0,±2(n+s)/2} (see Theorem 9). If e = 2m + 1,
then F contains bent components and as shown above, all the linear spaces of non-
bent components have the same order 2s, implying that the Walsh spectrum of F is
{0,±2(n+s)/2,±2n/2}.

Corollary 48. Let F (x) = x2
k+1 be a power polynomial in F2n [x], with positive integers

n and k ≥ 1 and let e = (2n − 1, 2k + 1) and s = (n, 2k). Then F is APN if and only if
e = 3 and s = 2. Equivalently, F is APN if and only if there are exactly 2(2n − 1)/3 bent
components and the rest semi-bent.

Proof. By Theorem 47, there are (2n − 1)/e (non-trivial) non-bent components for F and
their linear spaces have the same order 2s. Since n is even then s = 2t, where t = (k, n/2).
Thus, by Proposition 38, F is APN if and only if

(

2n − 1

e

)

(2s − 1) = 2n − 1. (6.3)

Since Equation (6.3) holds if and only if e = 2s−1, then we conclude that (2s−1)|(2k+1).
Since t|s then (2t − 1)|(2s − 1), implying that (2t − 1)|(2k + 1). But also (2t − 1)|(2k − 1)
(recall that t|k), so it implies that we must have t = 1 as clearly 2k − 1 and 2k + 1 are
relatively prime. Observe that t = 1 implies s = 2, so it follows that F is APN if and only
if s = 2 and e = 2s − 1 = 3. In other words, F is APN if and only if the number of bent
components is exactly 2(2n − 1)/3 and the other components are semi-bent.

From Theorem 47, we observe that a quadratic power function has some bent components
if e ≥ 3 and equality gives the lowest number of bent components we can get and also
when F is APN. So we state this in the following.

Corollary 49. If a quadratic power function, in even dimension, has some bent compo-
nents, then they are at least 2(2n − 1)/3.
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