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Abstract

While the classical differential uniformity (c = 1) is invariant under
the CCZ-equivalence, the newly defined [11] concept of c-differential
uniformity in general is not invariant under EA or CCZ-equivalence,
as was observed in [12]. In this paper, we find an intriguing behavior of
the inverse function, namely, that adding some appropriate linearized
monomials increases the c-differential uniformity (cDU) significantly,

for some c. For example, adding the linearized monomial x2
d

to x2
n
−2,

where d is the largest nontrivial divisor of n, increases the mentioned
c-differential uniformity from 2 or 3 (for c 6= 0, 1) to ≥ 2d + 2, which
in the case of the inverse function (as used in the AES) on F28 is a
significant value of 18. We consider the case of perturbations via more
general linearized polynomials and give bounds for the cDU based upon
character sums. We further provide some computational results on
other known Sboxes.

Keywords: Boolean and p-ary functions, c-differentials, differential unifor-
mity, perfect and almost perfect c-nonlinearity, perturbations, characters
MSC 2020: 06E30, 11T06, 94A60, 94C10.

1 Introduction and basic definitions

The authors of [4] modified/extended the differential attack on some ciphers
(for example, a variant of the IDEA cipher) that use modular multiplica-
tion as a primitive operation by using a new type of differential, namely
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(F (cx), F (x)) in lieu of (F (x+ a), F (x)). Those authors propose that one
should look at other types of differentials for a Boolean (vectorial) function
F , not only the usual (F (x+ a), F (x)).

Inspired by that challenge, we defined in [11] a multiplier differential and
difference distribution table (in any characteristic) and later we extended the
notion of boomerang connectivity table in [19]. We characterized some of
the known perfect nonlinear functions and the inverse function through this
new concept. We also characterized this concept via the Walsh transforms
as Li et al. [14] did for the classical boomerang uniformity. Several papers
have been written meanwhile on this concept of c-differential uniformity
(which, unbeknown to us in [11], generalized the recent [1] concept of quasi
planarity: a quasi planar function is simply a PcN function for c = −1) .

We will introduce here only some needed notation on Boolean (binary,
p = 2) and p-ary functions (where p is an odd prime), and the reader can
consult [6, 7, 8, 9, 16, 21] for more on these objects.

For a positive integer n and p a prime number, we let Fpn be the finite
field with pn elements, and F

∗
pn = Fpn \ {0} be the multiplicative group

(for a 6= 0, we often write 1
a to mean the inverse of a in the multiplicative

group). We let F
n
p be the n-dimensional vector space over Fp. We use #S

to denote the cardinality of a set S and z̄, for the complex conjugate. We
call a function from Fpn (or F

n
p) to Fp a p-ary function on n variables. For

positive integers n and m, any map F : Fpn → Fpm (or, F
n
p → F

m
p ) is

called a vectorial p-ary function, or (n,m)-function. When m = n, F can
be uniquely represented as a univariate polynomial over Fpn (using some
identification, via a basis, of the finite field with the vector space) of the
form F (x) =

∑pn−1
i=0 aix

i, ai ∈ Fpn, whose algebraic degree is then the largest
Hamming weight of the exponents i with ai 6= 0. We let Trn : Fpn → Fp be

the absolute trace function, given by Trn(x) =
n−1
∑

i=0

xp
i

(we will denote it by

Tr, if the dimension is clear from the context).
Given a p-ary function f , the derivative of f with respect to a ∈ Fpn is

the p-ary function Daf(x) = f(x+ a)− f(x), for all x ∈ Fpn , which can be
naturally extended to vectorial p-ary functions.

For an (n, n)-function F , and a, b ∈ Fpn , we let ∆F (a, b) = #{x ∈ Fpn :
F (x + a) − F (x) = b}. We call the quantity δF = max{∆F (a, b) : a, b ∈
Fpn , a 6= 0} the differential uniformity of F . If δF = δ, then we say that F is
differentially δ-uniform. If δ = 1, then F is called a perfect nonlinear (PN)
function, or planar function. If δ = 2, then F is called an almost perfect
nonlinear (APN) function. It is well known that PN functions do not exist
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if p = 2.
For a p-ary (n,m)-function F : Fpn → Fpm, and c ∈ Fpm, the (multi-

plicative) c-derivative of F with respect to a ∈ Fpn is the function

cDaF (x) = F (x+ a)− cF (x), for all x ∈ Fpn.

For an (n, n)-function F , and a, b ∈ Fpn, we let the entries of the c-
Difference Distribution Table (c-DDT) be defined by c∆F (a, b) = #{x ∈
Fpn : F (x+ a)− cF (x) = b}. We call the quantity

δF,c = max {c∆F (a, b) | a, b ∈ Fpn , and a 6= 0 if c = 1}

the c-differential uniformity of F . If δF,c = δ, then we say that F is dif-
ferentially (c, δ)-uniform (or that F has c-uniformity δ, or for short, F is
δ-uniform c-DDT). If δ = 1, then F is called a perfect c-nonlinear (PcN)
function (certainly, for c = 1, they only exist for odd characteristic p; how-
ever, as proven in [11], there exist PcN functions for p = 2, for all c 6= 1).
If δ = 2, then F is called an almost perfect c-nonlinear (APcN) function.
When we need to specify the constant c for which the function is PcN or
APcN, then we may use the notation c-PN, or c-APN. It is easy to see that
if F is an (n, n)-function, that is, F : Fpn → Fpn , then F is PcN if and only
if cDaF is a permutation polynomial.

In [11, 12, 18, 22] various characterizations of the c-differential unifor-
mity were found, and some of the known perfect and almost perfect non-
linear functions have been investigated. In [19], the concept of boomerang
uniformity was extended to c-boomerang uniformity and characterized via
Walsh transforms, and some of the known perfect nonlinear and the inverse
function in all characteristics was dealt with via the c-boomerang uniformity
concept.

The rest of the paper is organized as follows. Section 2 gives several
background lemmas needed for the remaining of the paper. Section 3 in-
vestigates c-differential uniformity for an EA-perturbation via a linearized
monomial of the inverse function. Section 4 considers a linearized polyno-
mial perturbation and finds some bounds in terms of characters on the finite
field. Section 5 provides a few computational results on some recognizable
cipher Sboxes. Section 6 concludes the paper.

2 Some lemmas

We will be using throughout Hilbert’s Theorem 90 (see [5]), which states that
if F →֒ K is a cyclic Galois extension and σ is a generator of the Galois group
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Gal(K/F), then for x ∈ K, the relative trace TrK/F(x) =

|Gal(K/F)|−1
∑

i=0

σi(x) =

0 if and only if x = σ(y) − y, for some y ∈ K. We also need the following
two lemmas.

Lemma 1. Let n be a positive integer. We have:

(i) The equation ax2 + bx + c = 0, with a, b, c ∈ F2n , ab 6= 0, has two
solutions in F2n if Tr

(

ac
b2

)

= 0, and zero solutions, otherwise. If a 6=
0, b = 0, the solution is unique (see [2]).

(ii) The equation ax2 + bx + c = 0, with 0 6= a, b ∈ Fpn, p odd, has
(two, respectively, one) solutions in Fpn if and only if the discriminant
b2 − 4ac is a (nonzero, respectively, zero) square in Fpn.

(iii) The equation x3 + ax+ b = 0, with a, b ∈ F2n, b 6= 0, has (denoting by
t1, t2 the roots of t2 + bt+ a3 = 0):

(i) three solutions in F2n if and only if Tr(a3/b2) = Tr(1) and t1, t2
are cubes in F2n for n even, and in F22n for n odd;

(ii) a unique solution in F2n if and only if Tr(a3/b2) 6= Tr(1);

(iii) no solutions in F2n if and only if Tr(a3/b2) = Tr(1) and t1, t2 are
not cubes in F2n (n even), F22n (n odd).

Lemma 2 ([11]). Let p, t, n be integers greater than or equal to 1 (we take
t ≤ n, though the result can be shown in general). Then

gcd(2t + 1, 2n − 1) =
2gcd(2t,n) − 1

2gcd(t,n) − 1
, and if p > 2, then,

gcd(pt + 1, pn − 1) = 2, if
n

gcd(n, t)
is odd,

gcd(pt + 1, pn − 1) = pgcd(k,n) + 1, if
n

gcd(n, t)
is even.

Consequently, if either n is odd, or n ≡ 2 (mod 4) and t is even, then
gcd(2t + 1, 2n − 1) = 1 and gcd(pt + 1, pn − 1) = 2, if p > 2.

3 The c-differential uniformity of some EA-perturbed

inverse function

We showed in [11] that the inverse function is PcN for c = 0, and it is 2 or 3
depending upon the parameter c 6= 1 (we found precisely those conditions).
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In our main result of this paper we see that performing a simple modifi-
cation of the inverse function increases significantly the maximum value in
its c-differential spectrum size. In the following, we take p prime, n ≥ 4 an
integer, and 1 ≤ t < n an integer such that gcd(t, n) = d ≥ 1, n ≥ 3d and
ap

t+1 +1 = 0 has a root (and consequently, gcd(pt +1, pn − 1) roots) in the
field Fpn ; this last condition will always happen if n/d is even (that can be
seen since gcd(pt + 1, pn − 1) divides pn−1

2 under the conditions). If p = 2,
this last condition is superfluous.

Theorem 3. Let p be a prime number, n ≥ 4, F (x) = xp
n−2 be the inverse

function on Fpn, and 1 6= c ∈ Fpn. Then, the c-differential uniformity, δG,c,

of G(x) = F (x) + xp
t
satisfies pgcd(n,t) + 2 ≤ δG,c ≤ pt + 4, if p = 2, or if

p > 2 and n
gcd(n,t) is even; and 4 ≤ δG,c ≤ pt+4, if p > 2 and n

gcd(n,t) is odd.

Proof. The c-differential uniformity equation for G for c ∈ Fpn at (a, b) ∈
Fpn × Fpn is

(x+ a)p
n−2 + (x+ a)p

t − cxp
n−2 − cxp

t

= b. (1)

We first assume that a 6= 0. We consider several cases.
Case (i). Let x = 0. Equation (1) becomes

1

a
+ ap

t

= b.

Thus, for any a 6= 0 and b = 1
a + ap

t
, we have a solution of (1), regardless of

the value of c.
Case (ii). Let x = −a. Equation (1) becomes

c

(

1

a
+ ap

t

)

= b,

and we have yet another solution to (1), for c given by the above displayed
equation. Surely, if a is such that ap

t+1+1 = 0; there are gcd(pt+1, pn− 1)

such a’s (which, by Lemma 1, is gcd(2t+1, 2n−1) = 2gcd(2t,n)−1
2gcd(t,n)−1

if p = 2, and

if p > 2, the number of such a’s is 2 when n
gcd(n,t) is odd, and pgcd(n,t) + 1,

when n
gcd(n,t) is even, all if t > 0; when t = 0, the value of gcd(pt+1, pn− 1)

is 1, respectively, 2, for p = 2, respectively, p > 2), then b must be zero and
again c can be taken arbitrary.

We make an observation here: the two solutions from Cases (i) and
(ii) cannot be combined unless b = 0, ap

t+1 + 1 = 0 (and arbitrary c), or
b = 1

a + ap
t
and c = 1.
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Case (iii). Let x 6= 0,−a. Equation (1) becomes

1

x+ a
+ (1− c)xp

t − c

x
= b− ap

t

, that is,

x+ (1− c)xp
t+1(x+ a)− c(x+ a) = (b− ap

t

)x(x+ a), or,

xp
t+2 + axp

t+1 +
b− ap

t

c− 1
x2 +

ab+ c− ap
t+1 − 1

c− 1
x+

ac

c− 1
= 0. (2)

We therefore infer that the maximum number of solutions for the c-differential
uniformity is δG,c ≤ pt + 4. To get a lower bound, we take a = 0, obtaining

xp
t+2 +

b

c− 1
x2 + x = 0,

with solution x = 0 and cofactor

xp
t+1 +

b

c− 1
x+ 1 = 0. (3)

Multiplying (3) by
(

b
c−1

)pt+1
and relabeling x 7→ 1−c

b x (if b 6= 0, otherwise,

we look at xp
t+1 + 1 = 0, which has gcd(pt + 1, pn − 1) ≤ pgcd(n,t) + 1

solutions), we obtain

xp
t+1 −Bx+B = 0, (4)

where B =
(

b
c−1

)pt+1
and we can apply [3, Theorem 5.6]. Using the no-

tations from [3], we let FQ = Fpn ∩ Fpt = Fpgcd(n,t) (so, Q = pgcd(n,t)),
m = [Fpn : FQ] =

n
gcd(n,t) . From [3, Theorem 5.6], we know that there are

Qm−1 −Q

Q2 − 1
,
Qm−1 − 1

Q2 − 1
, for m even, respectively odd, values of B such that

Equation (4) has Q + 1 solutions. Let T be the set of all such B. Thus,

|T |= Qm−1 −Q

Q2 − 1
, for m even, and |T |= Qm−1 − 1

Q2 − 1
, for m odd.

To get our claimed lower bound, we just need to argue that we can always
find b, c such that B ∈ T . Ifm = n

gcd(n,t) is odd, then gcd(pt+1, pn−1) = 1, 2,
for p = 2, respectively, p > 2, and we can take any B ∈ T , if p = 2, and
B = B̃2 ∈ T (such a B̃ does exists, for example, B̃ = 0) and a random c 6= 1,

and b = (c − 1)B̃
2

pt+1 , for p > 2. The number of solutions of (3) for these
parameters is thereforeQ+1. Ifm = n

gcd(n,t) is even, then gcd(pt+1, pn−1) =

Q + 1. We again use [3], by taking B = B̃Q+1 ∈ T (such a B̃ does exists,

for example, B̃ = 0) and a random c 6= 1, and b = (c− 1)B̃
Q+1

pt+1 .
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If a = 0, the c-differential equation becomes xp
n−2 + xp

t
= b. If b = 0,

this equation has x = 0 as a root and moreover, xp
n−pt−2 + 1 = 0, which is

equivalent to xp
t+1+1 = 0. We therefore have gcd(pt + 1, pn − 1) solutions.

If b 6= 0, the mentioned equation is equivalent to (multiplying by x 6= 0)

xp
t+1 − bx+ 1 = 0.

We argued above in Case (iii) that this equation has Q+ 1 solutions.
In the proof above, for p = 2, one could use [13], where it was shown

that an equation of the form x2
t+1 + x+A = 0 has Q+1 zeros for Qm−1−1

Q2−1
,

Qm−1−Q
Q2−1

, for m odd, respectively, even, values of the parameter A. Surely,

multiplying (3) by
(

b
c+1

)
1
2t (which always exists) and performing the substi-

tution x 7→ x
(

b
c+1

)
1
2t

gives us the equation x2
t+1 + x+

(

c+ 1

b

)1+ 1
2t

= 0,

and we can apply the same technique as in the proof above, though, the

existence of values b, c such that A =
(

c+1
b

)
2t+1
2t is not in question anymore

for any A 6= 0. The theorem is shown.

Remark 4. We could have taken a = b = 0 from the beginning to get the
lower bound, but we wanted to emphasize that there are many other entries
in the c-DDT table of G lower bounded by pgcd(n,t)+2 (under the mentioned
conditions on n, t).

The following corollary is immediate. It implies that if n = 8, for the
inverse function F (x) = x254 (which is one of the components of the Sbox
used in AES (Advanced Encryption Standard) [10], in addition to an affine
transformation), the c-differential uniformity of G(x) = x254+x2

4
has δG,c ≥

18, for some c (we confirmed computationally that it is exactly 18).

Corollary 5. Let n ≥ 4, F (x) = xp
n−2 be the inverse function on Fpn,

and t |n be the largest divisor of n such that n
gcd(n,t) is even, and G(x) =

xp
n−2 + xp

t
. Then, there exists c such that δG,c ≥ pt + 2.

Remark 1. We will see below that, if p = 2, in fact, any cube c 6= 1 satisfies
the conditions of the previous corollary.

Next, we find some values of t for which the upper bound pt + 4, or the
lower bound pgcd(t,n)+2 are attained by δG,c for some c. We will show that,
in fact, this will happen for p = 2, t = 0 and n even, respectively, n odd.
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Theorem 6. Let n ≥ 4, F (x) = x2
n−2 be the inverse function on F2n, and

1 6= c ∈ F2n. Then, if n is even, the c-differential uniformity of G(x) =
F (x) + x is δG,c = 5, for some c; if n is odd, there exists c such that
δG,c = 4. Moreover, if G(x) = F (x) + x2 and n is even, then there exists c

such that δG,c = 5; if n is odd and there exists a such that Tr
(

a2

a2+a+1

)

=

Tr
(

a4

(a+1)5

)

= 0, then δG,c = 5 for some c (for example, c = 1+ 1

(a3+a2+1)
1
2
).

Proof. Below, we will not go through the corresponding Cases (i) and (ii)
as in Theorem 3 since these arguments are independent of t, but we will
refer to them.

Let G(x) = F (x) + x. In that case, we must investigate the equation

x3 +

(

a+
b+ a2

t

1 + c

)

x2 +
1 + c+ ab+ a2

t+1

1 + c
x+

ac

1 + c
= 0. (5)

To achieve the maximum 5 number of solutions x, then b = 0, and a2
t+1 for

t = 0 must be equal to 1 (thus, a = 1), rendering

x3 +
c

1 + c
x2 +

c

1 + c
x+

c

1 + c
= 0. (6)

Replacing y = x+ c
c+1 , we get

y3 +
c

(c+ 1)2
y +

c

(c+ 1)2
= 0. (7)

By Lemma 1, this last equation has three solutions if and only if c 6= 0 and

Tr
(

c
(c+1)2

)

= Tr(1) and the roots t1, t2 of t2 + c
(c+1)2

t+
(

c
(c+1)2

)3
= 0 are

cubes in F2n , F22n , for n even, respectively, n odd. We quickly see that

Tr
(

c
(c+1)2

)

= Tr
(

c+1+1
(c+1)2

)

= Tr
(

1
c+1 +

1
(c+1)2

)

= 0 = Tr(1), via Hilbert’s

Theorem 90. Therefore, this can only be potentially achieved if n is even.
We would need to argue that for n even we can always find some c, such

that the solutions to t2+ c
(c+1)2

t+
(

c
(c+1)2

)3
= 0 are cubes in F2n . The roots

of this equation can be quickly found to be

t1 =
c

(c+ 1)3
, t2 =

c2

(c+ 1)3
.

We immediately see that if we take c to be a cube, then both of these roots
are cubes, and consequently we have three roots for (6). We need to argue
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that they are not repeated roots. Since we are working over binary, it is
sufficient to check that the coefficient of x2, namely c

c+1 is not a root, which
is easy since the left hand side of (6) at c

c+1 is exactly c
c+1 6= 0, because

c 6= 0.
For n odd, we cannot combine Cases (i) and (ii), but the same argument

reveals four solutions for (6) and our first claim is shown.
Let now t = 1. If b = 0, and a2

t+1 = a3 = 1 (for n even, we have two
options, either a = 1, or a2 + a+1 = 0; for n odd, we can only have a = 1).
Equation (2) becomes

x4 + ax3 +
a2

1 + c
x2 +

c

1 + c
x+

ac

1 + c
= 0.

If a = 1, the above equation becomes

x4 + x3 +
1

c+ 1
x2 +

c

1 + c
x+

c

1 + c
= 0,

which can be written as

(x2 + x+ 1)((c + 1)x2 + c) = 0,

therefore, we easily get 3 roots for the above equation, which combined with
the ones from Cases (i) and (ii), renders 5 altogether, for n even. There are
many values of c we can take: for example, for any x 6= 0, 1, a not a root of
x2+x+1, then we take c = x2

x2+1
. Surely, if not both Cases (i) and (ii) hold

simultaneously, then we still cannot get more than 5 solutions (we may still
get 5 solutions, though).

If n is odd, then a = 1 cannot give us more than 3 roots (since x2+x+1 6=
0, under n odd), so we assume that a 6= 1. Again, under n odd, if b = 0 and
c = 0, and Equation (2) becomes

x4 + ax3 + a2x2 + (1 + a3)x = 0,

with solutions x = 0, a + 1, and (x + a)2 + (x + a) + 1 = 0, but the last
equation cannot hold, for n odd. Next, we take 1

a + a2
t
= b (Case (i)), and

so,

x4 + ax3 +
1

a(c+ 1)
x2 +

c

c+ 1
x+

ac

c+ 1
= 0.

We will find some values of a, c such that the above polynomial can be
factored as

x4+ax3+
1

a(c+ 1)
x2+

c

c+ 1
x+

ac

c+ 1
= (x2+Ax+a)

(

x2 +Bx+
c

c+ 1

)

.
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Solving the obtained system, we find that

A =
a2(c+ 1) + c

a(c+ 1) + c
, B =

(a+ 1)c

a(c+ 1) + c
,

when c =

(

a3 + a2

a3 + a2 + 1

)1/2

= 1 +
1

(a3 + a2 + 1)
1
2

.

Moreover, each factor in the factorization above has two distinct roots (when

AB 6= 0) if Tr
(

a
A2

)

= Tr
(

a2

a2+a+1

)

= 0 and Tr
(

c
(c+1)B2

)

= Tr
(

a4

(a+1)5

)

= 0.

Under the assumption that there are values of a 6= 1 for n odd such that
both of these traces are 0 (computation reveals that it always happens, but
we have been unable to show that in general), the claim is shown.

Remark 7. There are many values of c such that the c-differential unifor-
mity is maximum, that is, δG,c = 5, G(x) = x2

n−2 + x2: for example, for
n even, any cube 1 6= c in F2n will do; if n is odd, we gave some examples,
and computation reveals that there are additional c’s.

4 Perturbations of the inverse function via lin-

earized polynomials

As one of the referees suggested, one might wonder what happens if we
perturb the inverse function via some other functions. Surely, equations
over finite fields can be very difficult to handle. However, we can get a
general result, albeit not as clean as the ones we have already shown, if we
perturb the inverse function via a linearized polynomial.

We will need below some more definitions [15]. Let G be the Gauss’

sum G(ψ,χ) =
∑

z∈F∗

q

ψ(z)χ(z), where χ,ψ, are additive, respectively, multi-

plicative characters of Fq, q = pn. Below, we let χ1(a) = exp
(

2πiTrn(a)
q

)

be the principal additive character, and ψk

(

gℓ
)

= exp
(

2πikℓ
q−1

)

be the k-th

multiplicative character of Fq, 0 ≤ k ≤ q − 2.
We take s1, . . . , sk to be the indices i where ai 6= 0 in the linearized

polynomial L and δ = gcd(s1, . . . , sk, n); also, p
δγα is the number of solutions

of Tn(w) = 0, defined in (9); as customary, we denote divisibility by a
vertical bar. The lower bound of the theorem below holds under the following
technical condition (see [17, Thms. 1.5 and 1.6]):

n = 2m,n/δ is even, 2δ | si − sj, 4 < pδ + 1|psi + 1. (8)
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Theorem 8. Let p be an odd prime number, n ≥ 4, F (x) = xp
n−2 be the

inverse function on Fpn, and 1 6= c ∈ Fpn. Let L(x) =
∑n−1

i=0 aix
pi be a

linearized polynomial. Then, the c-differential uniformity, δG,c, of G(x) =
F (x) + L(x) satisfies:

(i) δG,c ≤ (pN)
n
2 , where N = maxα∈Fq{Nα}, and Nα is the number of

solutions w to

Tn(w) = 2αa0w +
n−1
∑

i=1

(

(αai)
p−i

wpi + (αai)
p−2i

wp−i
)

= 0. (9)

In fact, Nα = pδγα , for some nonnegative integer γα.

(ii) δG,c ≥
1

pn

∑

α∈Fq

χ1(α)µαp
δγα
2 , under the same conditions of (8), where

γα is defined in (i) and µα = ±1 is the sign of the Weil sum from
Equation (12). Even more precisely,

δG,c ≥ (−1)
m
δ p−m

∑

α∈Fq

Nα=1

χ1(α) + (−1)
m
δ p−m

∑

α∈Fq

Nα>1

χ1(α)(−1)
γα
2 p

δγα
2 .

Proof. One might wonder if the argument of Theorem 3 will go similarly in
this case. We will quickly go through Cases (i) and (ii), but the method of
Theorem 3 will fail after that. The c-differential equation is now

(x+ a)p
n−2 + L(x+ a)− cxp

n−2 − cL(x) = b. (10)

If a 6= 0, x = 0, then Equation (10) becomes a−1 + L(a) = b. Therefore,
for any c, and b = a−1 + L(a), we have a solution of (10). If x = −a 6= 0,
then Equation (10) transforms into c

(

a−1 + L(a)
)

= b, which gives us one
more solution of (10), when aL(a) + 1 = 0 and b = 0 (c is arbitrary). If
0 6= x 6= −a, then Equation (10) becomes

(1− c)x(x+ a)L(x)− (b− L(a))x(x+ a) + (1− c)x− ca = 0,

which has at most degL+ 2 solutions.
Take now a = 0, and obtain

x

(

xL(x)− b

1− c
x+ 1

)

= 0. (11)

Unfortunately, this is the point where the method of Theorem 3 stops be-
ing useful, since we do not have any simple method to find the number of
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solutions of an equation involving a more general Dembowski-Ostrom (DO)
polynomial. We have, however, found a way to get meaningful results by
moving into the world of characters as we did in [20] for the boomerang
uniformity and the extended c-boomerang uniformity.

As done in [20], the number N(b) of of solutions (x1, . . . , xn) ∈ F
n
q (b is

fixed) of an equation f(x1, . . . , xn) = b is

N (b) =
1

q

∑

x1,...,xn∈Fq

∑

α∈Fq

χ1 (α (f(x1, . . . , xn)− b)) .

Thus, in addition to x = 0, the number of solutions Nb;c of Equation (11) is
given by

qNb;c =
∑

α∈Fq

∑

x∈Fq

χ1

(

α(xL(x) +
b

c− 1
x+ 1)

)

.

We can perhaps treat the b 6= 0 case (under some conditions – and we already
did consider such instances in Theorem 3, for a monomial L), as well, but
for our purpose we do not need to, since we are interested in the maximum
value in the c-DDT, so we simply take b = 0. The equation above becomes

qNb;c =
∑

α∈Fq

χ1(α)
∑

x∈Fq

χ1 (αxL(x)) .

We now use [17] where it was shown that the Weil sum of a DO polynomial
∑n−1

i=0 aix
pi+1 (we simplify his notations, taking αi = 0, βi = 0, to match

our DO polynomial xL(x)) is
∣

∣

∣

∣

∣

∣

∑

x∈Fq

χ1

(

n−1
∑

i=0

aix
pi+1

)

∣

∣

∣

∣

∣

∣

=
√

qNα, (12)

where Nα is the number of solutions for Tn(w) = 0, where

Tn(w) = 2A0w +

n−1
∑

i=1

(

Aiw
pi + (Aiw)

pn−i
)

,

with Ai = (αai)
pn−i

. In fact, more precisely, given ǫ = gcd1≤i≤n−1{2s0, s0+
si, s0 + n − si, n}, the number of solutions to Tn(w) = 0 is pγαǫ, for some
nonnegative integer γα. Applying this to our DO polynomial αxL(x) we get
we first claim, that is, δG,c ≤

√
qN , N = maxα∈Fq{Nα}.

We now assume that L(x) =
∑n−1

i=0 aix
pi and conditions (8) hold. It

was also shown in [17, Theorem 1.5] that if n is even, δ = gcd(s1, . . . , sk)

12



and pδ + 1 = p + 1 divides (pi + 1), then the above Weil sum is real and
consequently, it is equal to µα

√

pn+γ , where µα = ±1 and γ is a nonnegative
integer. Therefore,

δG,c ≥
1

pn

∑

α∈Fq

χ1(α)µαp
γα
2 .

We can be more precise and describe µα. Let Sα =
∑

x∈Fq
χ1

(

∑n−1
i=0 aix

pi+1
)

.

By [17, Theorem 1.6], for every α, if γα = 0, then Sα = (−1)
m
δ pm, and if

γα > 0, then γα is even and Sα = (−1)
m
δ
+ γα

2 pm+ δγα
2 . Thus,

δG,c ≥ (−1)
m
δ p−m

∑

α∈Fq,Nα=1

χ1(α)+(−1)
m
δ p−m

∑

α∈Fq,Nα>1

χ1(α)(−1)
γα
2 p

δγα
2 .

Our theorem is shown.

5 Some computations on other Sboxes

Using SageMath, we recovered the univariate representation of several known
cipher Sboxes and ran some computations to see how the c-differential uni-
formity (cDU) would change under linearized monomial perturbations. The
“cDU” column gives the maximum value for c 6= 1 and the “cDU w/ lin-
earized monomial” column represents the maximum value when a monomial
of the form x2

i
for 0 ≤ i ≤ n−1 is added to the univariate Sbox polynomial.

Sbox (n-bits) DU cDU cDU w/ linearized monomial

Rectangle (4) 4 5 7
Serpent-3 (4) 4 6 5
APN (6) 2 6 9
Fides (6) 2 7 7
AES (8) 4 9 9

Skipjack (8) 12 8 9

While perhaps not as pronounced as Theorem 3 on the inverse function,
the results are interesting in several ways. In some cases adding a linearized
monomial can increase the c-differential uniformity to values more than 4
times the regular differential uniformity (see the “DU” column) (e.g., to a
nontrivial 9/64 bits in APN 6). In others, adding a monomial keeps the
c-differential uniformity the same (e.g., Fides 6) or even drops (e.g., Sbox
#3 of Serpent).
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6 Concluding remarks

In this paper we investigate the c-differential uniformity of some inverse
EA-equivalent functions. We show that their c-differential uniformity spec-
trum tends to increase significantly for some c, which we believe is not a
desirable feature as it indicates some degree of non-randomness. We also
consider arbitrary linearized polynomials and provide some bounds based
upon character sums. We also provide some computations on some known
cipher Sboxes. Surely, it would be interesting to continue this investigation
into more general affine transformations or to consider other functions under
EA perturbations and investigate their c-differential uniformity.

Acknowledgments. The authors would like to express their sincere ap-
preciation for the reviewers careful reading, beneficial comments and sug-
gestions, and to the editors for the prompt handling of our paper.

References

[1] D. Bartoli, M. Timpanella On a generaliza-
tion of planar functions, J. Algebr. Comb.(2019),
https://doi.org/10.1007/s10801-019-00899-2.

[2] E. R. Berlekamp, H. Rumsey, G. Solomon, On the solutions of algebraic
equations over finite fields, Information and Control 10 (1967), 553–564.

[3] A.W. Bluher, On xq+1 + ax + b, Finite Fields Appl. 10 (3) (2004),
285–305.

[4] N. Borisov, M. Chew, R. Johnson, D. Wagner, Multiplicative Differen-
tials, In: Daemen J., Rijmen V. (eds.), Fast Software Encryption, FSE
2002, LNCS 2365, pp. 17–33, Springer, Berlin, Heidelberg, 2002.

[5] N. Bourbaki, Elements of Mathematics, Algebra II (translated by P.
M. Cohn and J. Howie), Springer, Berlin, 1990.

[6] L. Budaghyan, Construction and Analysis of Cryptographic Functions,
Springer-Verlag, 2014.

[7] C. Carlet, Boolean functions for cryptography and error correcting
codes, In: Y. Crama, P. Hammer (eds.), Boolean Methods and Models,
Cambridge Univ. Press, Cambridge, pp. 257–397, 2010.

14

https://doi.org/10.1007/s10801-019-00899-2


[8] C. Carlet, Vectorial Boolean Functions for Cryptography, In: Y. Crama,
P. Hammer (eds.), Boolean Methods and Models, Cambridge Univ.
Press, Cambridge, pp. 398–472, 2010.
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