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1 Department of Mathematics and Informatics, University of Perugia,

Via Vanvitelli, 1, 06123, Perugia;

daniele.bartoli@unipg.it
2 Department of Informatics, University of Bergen

Postboks 7803, N-5020, Bergen, Norway;

Marco.Calderini@uib.no
3Department of Computer Science,

Electrical Engineering and Mathematical Sciences,

Western Norway University of Applied Sciences,

5020 Bergen, Norway; csr@hvl.no
4Applied Mathematics Department,

Naval Postgraduate School,

Monterey, CA 93943, USA; pstanica@nps.edu

December 7, 2021

Abstract

In this paper, we construct some piecewise defined functions, and
study their c-differential uniformity. As a by-product, we improve upon
several prior results. Further, we look at concatenations of functions
with low differential uniformity and show several results. For example,
we prove that given βi (a basis of Fqn over Fq), some functions fi of
c-differential uniformities δi, and Li (specific linearized polynomials
defined in terms of βi), 1 ≤ i ≤ n, then F (x) =

∑n

i=1
βifi(Li(x)) has

c-differential uniformity equal to
∏n

i=1
δi.

Keywords: Boolean and p-ary functions, c-differentials, differential unifor-
mity, perfect and almost perfect c-nonlinearity
MSC 2020: 06E30, 11T06, 94A60, 94D10.

1

http://arxiv.org/abs/2112.02987v1


1 Introduction and basic definitions

Let p be a prime number and n be a positive integer. We let Fpn be the
finite field with pn elements, and F⋆

pn = Fpn \{0} be its multiplicative group.
We call a function from Fpn (or Fn

p ) to Fp a p-ary function on n variables.
For positive integers n and m, any map F : Fpn → Fpm (or Fn

p → Fm
p ) is

called a vectorial p-ary function, or an (n,m)-function. When m = n, F
can be uniquely represented as a univariate polynomial over Fpn of the form

F (x) =
∑pn−1

i=0 aix
i, ai ∈ Fpn, whose algebraic degree is then the largest

weight in the p-ary expansion of i (that is, the sum of the digits of the
exponents i) with ai 6= 0.

Motivated by [4], who extended the differential attack on some ciphers
by using a new type of differential, in [10], the authors introduced a new dif-
ferential and Difference Distribution Table, in any characteristic, along with
the corresponding perfect/almost perfect c-nonlinear functions and other
notions (this was also developed independently in [2] where the authors in-
troduce the concept of quasi planarity). In [1, 10, 11, 15], various character-
izations of the c-differential uniformity were found, and some of the known
perfect and almost perfect nonlinear functions have been investigated.

For a p-ary (n,m)-function F : Fpn → Fpm, and c ∈ Fpm, the (multi-
plicative) c-derivative of F with respect to a ∈ Fpn is the function

cDaF (x) = F (x+ a)− cF (x), for all x ∈ Fpn.

For an (n, n)-function F , and a, b ∈ Fpn, we let the entries of the c-
Difference Distribution Table (c-DDT) be defined by c∆F (a, b) = #{x ∈
Fpn : F (x+ a)− cF (x) = b}. We call the quantity

δF,c = max {c∆F (a, b) : a, b ∈ Fpn , and a 6= 0 if c = 1} ,

the c-differential uniformity of F . If δF,c = δ, then we say that F is differ-
entially (c, δ)-uniform (or that F has c-uniformity δ). If δ = 1, then F is
called a perfect c-nonlinear (PcN) function (certainly, for c = 1, they only
exist for odd characteristic p; however, as proven in [10], there exist PcN
functions for p = 2, for all c 6= 1). If δ = 2, then F is called an almost perfect
c-nonlinear (APcN) function. It is easy to see that if F is an (n, n)-function,
that is, F : Fpn → Fpn , then F is PcN if and only if cDaF is a permutation
polynomial.

For c = 1, we recover the classical derivative, PN, APN, differential
uniformity and DDT.
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In the last years, several constructions of low differentially uniform per-
mutations have been introduced by modifying some functions on a subfield
(see for instance [6, 14, 21, 22]). In this work we will extend some of the
results given in [6] to the case of the c-differential uniformity. From this
generalization, we are also able to improve the upper bound obtained in [18]
for the case of a Gold APN function in even characteristics.

2 An upper bound on the differential uniformity

of a piecewise defined function

Here, we shall give a general result concerning an upper bound for the c-
differential uniformity of a piecewise defined function, thus generalizing a
result of [6].

Before considering the case of the c-differential uniformity, we will give
a property for some functions having δF,1 = 4 when p = 2. Indeed, recently
in [8], Carlet noticed that for an APN function F ∈ F2s [x] defined on an
extension F2ms , with m odd, we have that the equation F (x+a)+F (x) = b
does not admit solutions x /∈ F2s , whenever a ∈ F⋆

2s and b ∈ F2s . This result
can be extended to the case of differentially 4-uniform functions.

Proposition 2.1. Let n = sm, with m odd, and let F ∈ F2s [x] be a differ-
entially (1, 4)-uniform function over F2n. Then, F (x + a) + F (x) = b does
not admit solutions x ∈ F2n \ F2s, whenever a, b ∈ F2s , a 6= 0.

Proof. Let us consider a, b ∈ F2s , a 6= 0. Let us denote by x1, x1 + a, x2,
and x2 + a the four solutions of F (x+ a) + F (x) = b.

Suppose that one of this solutions is not in F2s . Let us assume x1 /∈ F2s .
Note that the polynomial F (x+ a) +F (x) + b has all coefficients in F2s ,

so if x is a zero of the polynomial, so is x2
s

. That means that x2
s

1 is equal
to x1, x1 + a, x2, or x2 + a.

Suppose x2
s

1 = x1. Then, x1 ∈ F2s , reaching a contradiction.
Suppose x2

s

1 = x1+a. Then, we have x2
2s

1 = x2
s

1 +a = x1, implying that
x1 ∈ F22s ∩ F2n = F2s (since m is odd), which gives us a contradiction.

Consider, now, the case x2
s

1 = x2 (x2
s

1 = x2+a is similar). Then, we can
have 4 different cases.
Case 1. x2

s

2 = x2: This would imply x2
s

1 ∈ F2s , which is not possible.
Case 2. x2

s

2 = x1: We would have x2
2s

1 = x1 and thus x1 ∈ F2s , not possible.
Case 3. x2

s

2 = x2 + a: From this, we obtain x2
2s

2 = x2 and thus x2
s

1 = x2 ∈
F2s , which is not possible.
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Case 4. x2
s

2 = x1 + a: In this case, we get that x2
2s

2 = x2
s

1 + a = x2 + a,
so we have x2

4s

2 = x2
2s

2 + a = x2, implying x2 ∈ F2s which gives us a
contradiction.

In the same way, we can prove the following generalization:

Proposition 2.2. Let n = sm, where s and m are integers, and let F ∈
F2s [x] be a differentially (1, 2k)-uniform function over F2n, with k ≥ 2. If
m is not divisible by any integer 2 ≤ t ≤ k, then F (x + a) + F (x) = b does
not admit solutions x ∈ F2n \ F2s, whenever a, b ∈ F2s , a 6= 0.

Remark 2.3. We restrict to k ≥ 2 for ease of notation with the constrain
2 ≤ t ≤ k, but the result is true for k = 1 if m is odd, as proven in [8].

Proof. Let us consider a, b ∈ F2s , a 6= 0. Without loss of generality, we can
suppose that the equation F (x)+F (x+a) = b admits 2k solutions, that can
be denoted by x1, . . . , xk, x1 + a, . . . , xk + a. Suppose x1 /∈ F2s and consider
the set Ox1 = {x2

is

1 : 0 ≤ i ≤ m− 1} = {x2
is

1 : 0 ≤ i ≤ 2k − 1}. This last
equality holds since the polynomial F (x) + F (x+ a) + b has all coefficients
in F2s , if x is a solution, then also x2

s

is a solution.
Now, if |Ox1 |≤ k, then there exists 0 < i ≤ k such that x2

is

1 = x1,
implying x1 ∈ F2s , which gives us a contradiction.

If |Ox1 |> k, consider J = {j : xj, xj + a ∈ Ox1}. We have J 6= ∅,
and there must exists j ∈ J for which there exist 0 < i ≤ k such that
x2

is

j = xj + a. Indeed, consider the sequence

x1, x
2s

1 , . . .

and suppose that for all the pairs xj , xj +a in this sequence we cannot have

x2
is

j = xj +a, for i ≤ k. Then, up to relabeling the solutions, we would have
that the first k elements of the sequence are

x1, x2(= x2
s

1 ), . . . , xk.

Now, for the next element we need to have one among x1 + a, . . . , xk + a.
So, we would obtain a pair xj, xj + a for which there exists i ≤ k such that

x2
is

j = xj+a. Therefore, x2
2is

j = xj for some i ≤ k and so xj ∈ F2s , implying
x1 ∈ F2s , contradiction.

From Proposition 2.2, we can simplify Theorem 4.1. from [6] for some
dimensions.
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Theorem 2.4. Let n = sm, where s and m are integers. Let f and g be two
polynomials with coefficients in F2s , that is, f, g ∈ F2s [x], and g permuting
F2s . Suppose that f is a δf,1-uniform function over F2s and g is a δg,1-
uniform function over F2n, and m is not divisible by any integer 2 ≤ t ≤ k,
where k =

δg,1
2 . Then, the function

F (x) = f(x) + (f(x) + g(x))(x2
s

+ x)2
n
−1 =

{

f(x), if x ∈ F2s,

g(x), if x /∈ F2s,

is such that

1∆F (a, b) ≤

{

max{δf,1, δg,1}, if a ∈ F2s ,

δg,1 + 2, if a /∈ F2s .

From Theorem 2.4, we have that all the results given in [6] for the dif-
ferentially 4-uniform Gold and Bracken-Leander functions can be extended
to other functions, such as the differentially 4-uniform Kasami function. In-
deed, the assumption on the solutions of the derivatives of the modified
function is needed for applying Theorem 4.1 in [6]. In particular, we have
the following.

Theorem 2.5. Let n = sm, with s even such that s/2 and m are odd. Let k
be such that gcd(k, n) = 2 and f(x) = A1 ◦Inv ◦A2(x), where Inv(x) = x−1

and A1, A2 are affine permutations over F2s. Then

F (x) = f(x) + (f(x)+ x2
2k

−2k+1)(x2
s

+ x)2
n
−1 =

{

f(x), if x ∈ F2s ,

x2
2k

−2k+1, if x /∈ F2s,

is a differentially (1, 6)-uniform permutation over F2n . Moreover, if s > 2
then the algebraic degree of F is n − 1. Moreover, the nonlinearity of F is
at least 2n−1 − 2

s
2
+1 − 2

n
2 .

Proof. The proof follows in a similar way as in [6, Theorem 4.2, Proposi-
tion 4.1].

Theorem 4.1 in [6] can be extended to the case of p-ary functions and c 6=
1. In the following result, we do not request any condition on the solutions
of the derivatives of our functions. Furthermore, we shall consider piecing
more than two functions, but we prefer to state the result for two functions
separately since it is the usual subfield modification, and the general case
will be more evident.
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Theorem 2.6. Let p is a prime, n > 2 be an integer, s be a divisor of n,
1 6= c ∈ Fpn fixed, and F : Fpn → Fpn be a p-ary (n, n)-function defined by

F (x) =

{

f(x), if x ∈ Fps ,

g(x), if x /∈ Fps ,

where f is an (s, s)-function of c′-differential uniformity δf,c′ (for all c
′) and

g ∈ Fpn [x] is an (n, n)-function of c′-differential uniformity δg,c′ (for all c′).
Then, the c-differential uniformity of F is

δF,c ≤

{

δf,0 + δg,0, if c = 0,

max {δf,c1 + δg,c, δg,c + 2psδg,0} , if c 6= 0,

where c =
∑m

i=1 cigi, with ci ∈ Fps and {g1 = 1, g2, . . . , gm} is a basis of the
extension Fpn over Fps.

More generally, let t ≥ 2, ki | ki+1, 1 ≤ i ≤ t−1, kt = n, be a sequence of
integer divisors, and fi, 1 ≤ i ≤ t, be some (ki, ki)-functions of c

′-differential
uniformity δfi,c′ (for all c

′). Further, let c ∈ Fpn be fixed, and Ft : Fpn → Fpn

be a p-ary (n, n)-function defined by

Ft(x) =























f1(x), if x ∈ Fpk1 ,

f2(x), if x ∈ Fpk2 \ Fpk1 ,

· · · · · · · · · · · ·

ft(x), if x ∈ Fpkt \ Fpkt−1 .

Then, the c-differential uniformity of f is

δFt,c ≤ δfn,c +

t−1
∑

i=1

max







δfi,c(i) , 2p
ki

t−i−1
∑

j=1

δfj ,0







,

where c(i) are the projections of c onto Fpki , via some bases of Fpn over Fpki .

NB: Note that, if c ∈ Fps , we have c = c1, and δf,c1 = δf,c.

Proof. We first observe that the polynomial representation of F is F (x) =
f(x) + (g(x) − f(x))(xp

s

− x)p
n
−1 (here, we consider the embedding of f

as an (n, n)-function, by taking f(x) = 0 for x /∈ F2s). We consider the
c-differential equation, F (x+ a)− cF (x) = b, of F at (a, b) ∈ Fpn × Fpn ,

f(x+ a) + (g(x + a)− f(x+ a))
(

xp
s

− x+ ap
s

− a
)pn−1

− cf(x)− c(g(x) − f(x))(xp
s

− x)p
n
−1 = b.

(1)

6



If c = 0, the equation is either f(x + a) = b, or g(x + a) = b, depending
upon x+ a being in Fps or not. The first claim follows.

If c 6= 0, we consider several cases.
Case 1. Let a ∈ Fps . If x ∈ Fps , Equation (1) becomes

f(x+ a)− cf(x) = b.

Since Fpn is an extension of degreem over Fps , we can write c =
∑m

i=1 cigi
and b =

∑m
i=1 bigi, where bi, ci ∈ F2s and {g1 = 1, g2, . . . , gm} is a basis of

the extension. Then, the equation above becomes

f(x+ a)−

(

m
∑

i=1

cigi

)

f(x) =

m
∑

i=1

bigi,

which implies

f(x+ a)− c1f(x) = b1 and cif(x) = bi ∀i = 2, . . . ,m.

This gives a (probably loose, though the bi, and therefore the bi
ci
, go through

all values) bound for the number of solutions given by δf,c1 .
NB: Note that, if c ∈ Fps , we have c = c1, and this bound becomes δf,c.
If x /∈ Fps , Equation (1) transforms into

g(x+ a)− cg(x) = b,

which has at most δg,c solutions. Therefore, in this case we get at most
δf,c1 + δg,c solutions for (1).
Case 2. Let a /∈ Fps . If x+ a ∈ Fps , x /∈ Fps , then Equation (1) becomes

f(x+ a)− cg(x) = b. (2)

We raise Equation (2) to the power ps and get (using the fact that (f(x+
a))p

s

= f(x+ a), since x + a ∈ Fps and f is an (s, s)-function), f(x+ a)−
cp

s

g(x)p
s

= bp
s

, which combined with (2) renders

g(x)− cp
s
−1g(x)p

s

=
bp

s

− b

c
. (3)

The polynomial cp
s
−1Xps − X is a linearized polynomial whose kernel is

of dimension s. Thus, there are at most psδg,0 (since for any root X0 of

cp
s
−1Xps−X+ bp

s
−b
c , there are at most δg,0 values of x such that g(x) = X0)

solutions to Equation (3).
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Next, if x+a /∈ Fps , x ∈ Fps , then (1) becomes g(x+a)− cf(x) = b, and
an argument similar to the one above gives

g(x+ a)p
s

− cp
s
−1g(x + a) = bp

s

− cp
s
−1b,

with at most psδg,0 solutions.
It remains to consider x, x + a /∈ Fps . In this case, Equation (1) trans-

forms into g(x + a) − cg(x) = b, which has at most δg,c solutions. Putting
these counts together, we obtain the first claim of the theorem.

For the general case, we use induction on t. The case of t = 2 was treated
in the first part of the proof, and the general case follows similarly.

If c = 0, the same argument as before will show that δFt,0 ≤
∑t

i=1 δfi,0.
Using the notation

Ft−i+1(x) =























fi(x), if x ∈ Fpki ,

fi+1(x), if x ∈ Fpki+1 \ Fpki ,

· · · · · · · · · · · ·

ft(x), if x ∈ Fpkt \ Ft−1,

and applying the induction assumption, we find that

δFt,c ≤ δFt−1,c +max{δf1,c(1), 2p
k1δFt−1,0},

if c 6= 0. By the first part of the proof, δFt−1,0 ≤
∑t−1

i=1 δfi,0. Moreover,

δFt−1,c ≤ δFt−2,c+max{δf2,c(2) , 2p
k2
∑t−2

i=1 δfi,0}, and by iteration we see that

δFt,c ≤ δfn,c +

t−1
∑

i=1

max







δfi,c(i) , 2p
ki

t−i−1
∑

j=1

δfj ,0







.

The proof is done.

Remark 2.7. In the proof above, if g ∈ Fps[x], when a /∈ Fps we can get:
for the case x + a ∈ Fps at most δg,1/cps−1 = δg,cps−1 solutions; and for the
case x ∈ Fps, we get at most δg,cps−1 solutions. Indeed, from Equation (2)
we would have (recalling that x+ a ∈ Fps)

g(x)p
s

−
1

cps−1
g(x) = g(x+ a− ap

s

)−
1

cps−1
g(x) =

b− bp
s

cps
.

The number of solutions x /∈ Fps such that x+ a ∈ Fps is upper bounded by
δg,1/cps−1 = δg,cps−1 . The same for the case x ∈ Fps and x+ a /∈ Fps. So, we

have that for c 6= 0, δF,c ≤ max
{

δf,c1 + δg,c, δg,c + 2δg,cps−1

}

.
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Surely, there are other ways of piecing a function together, and we look
at such a way below.

Theorem 2.8. Let p is a prime, n > 2 be an integer, n = st, and gcd(s, t) =
1. Let 1 6= c ∈ Fpn fixed, and F : Fpn → Fpn be a p-ary (n, n)-function
defined by

F (x) =











f(x), if x ∈ Fpt,

g(x), if x ∈ Fps \ Fpt,

h(x), if x /∈ (Fps ∪ Fpt),

where f is a (t, t)-function of c′-differential uniformity δf,c′ (for all c′), g
is an (s, s)-function of c′-differential uniformity δg,c′ (for all c′), and h is
an (n, n)-function of c′-differential uniformity δh,c′ (for all c′). Then, the
c-differential uniformity of F is

δF,c ≤















δf,0 + δg,0 + δg,0, if c = 0,

max
{

δf,c1 + δg,c′1 + δh,c, δf,c1 + 2psδh,0 + δh,c, 1 + ptδh,0+

min{ptδg,0, p
sδf,0}+ δg,c′1 + δh,c, (2p

t + 2ps)δh,0 + δh,c

}

, if c 6= 0,

where c =
∑s

i=1 cigi =
∑t

i=1 c
′

ig
′

i, with ci ∈ F2t , c
′

i ∈ F2s , and {g1 =
1, g2, . . . , gs}, {g′1 = 1, g′2, . . . , g

′

t} are bases of the extension Fpn over Fpt,
respectively, Fpn over Fps.

Proof. We need to investigate the number of solutions of

F (x+ a)− cF (x) = b.

If c = 0, for any a, b, the equation is either f(x + a) = b, g(x + a) = b or
h(x+ a) = b. The first claim follows.

Let now c 6= 0 and a = 0. In this case, F (x+ a)− cF (x) = (1− c)F (x),
and we distinguish three cases:
Case 1. x ∈ Fpt: In this case, the equation is

(1− c)f(x) = b.

As in the proof of Theorem 2.4, this implies that the number of solutions
is upper bounded by δf,c1 , where c =

∑s
i=1 cigi, where ci ∈ F2t and {g1 =

1, g2, . . . , gs} is a basis of the extension of Fpn over Fpt.
Case 2. x ∈ Fps \ Fp: In this case, the equation is

(1− c)g(x) = b.

9



Similarly as in case 1), the number of solutions is upper bounded by δg,c′1 ,

where c =
∑t

i=1 c
′

ig
′

i, where c
′

i ∈ F2s and {g′1 = 1, g′2, . . . , g
′

t} is a basis of the
extension of Fpn over Fps.
Case 3. x ∈ Fpn \ (Fpt ∪ Fps): In this case, the equation is

(1− c)h(x) = b.

The upper bound is here δh,c.
Let now c 6= 0 and a ∈ F∗

pt. We can distinguish four cases:
Case 1. x ∈ Fpt, x+ a ∈ Fpt : In this case the equation is

f(x+ a)− cf(x) = b.

As in the proof of Theorem 2.4, this implies that the number of solutions
is upper bounded by δf,c1 , where c =

∑s
i=1 cigi, where ci ∈ F2t and {g1 =

1, g2, . . . , gs} is a basis of the extension of Fpn over Fpt.
Case 2. x ∈ Fps \ Fp, x+ a ∈ Fpn \ (Fpt ∪ Fps): In this case, the equation is

h(x+ a)− cg(x) = b.

Raising to the power ps and subtracting, we obtain the equation

(h(x+ a))p
s

− cp
s
−1h(x) = bp

s

− cp
s
−1b,

which has as a solution set b + Fps (note that, if c ∈ Fps, c
ps−1 = 1, and,

if b ∈ Fps, b + Fps = Fps, so this covers all cases (with nonzero c)). The
number of solutions is thus upper-bounded by psδh,0.
Case 3. x ∈ Fpn \ (Fpt ∪ Fps), x+ a ∈ Fps \ Fp: In this case, the equation is

g(x+ a)− ch(x) = b.

By similar arguments as the previous case, we obtain the bound psδh,0.
Case 4. x, x+ a ∈ Fpn \ (Fpt ∪ Fps): In this case, the equation is

h(x+ a)− ch(x) = b,

so we have at most δh,c.
Let now c 6= 0, a ∈ Fps \ Fp. We have now five cases:

Case 1. x = 0, x+ a ∈ Fps \ Fp. In this case, the equation is

g(a)− cf(0) = b,

which will be true for some b.
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Case 2. x ∈ F∗

pt, x+ a ∈ Fpn \ (Fpt ∪ Fps): In this case, the equation is

h(x+ a)− cf(x) = b,

so we have at most ptδh,0 solutions.
Case 3. x ∈ Fps \ Fp, x + a ∈ Fpt: this case is only possible if x + a ∈ Fp.
Here the equation is

f(x+ a)− cg(x) = b.

If we raise to pt, we see that the number of solutions is upper-bounded by
ptδg,0. However, raising to ps, we obtain an upper bound of psδf,0. From
this case, then, we get min{ptδg,0, p

sδf,0}.
Case 4. x, x+ a ∈ Fps \ Fp: Here the equation is

g(x+ a)− cg(x) = b,

which gives an upper bound of δg,c′1 for the number of solutions, where c =
∑t

i=1 c
′

ig
′

i, with c′i ∈ F2s and {g′1 = 1, g′2, . . . , g
′

t} is a basis of the extension
of Fpn over Fps.
Case 5. x, x+ a ∈ Fpn \ (Fpt ∪ Fps). In this case, the equation is

h(x+ a)− ch(x) = b,

which gives an upper bound of δh,c.
Now, let us consider the case c 6= 0, a ∈ Fpn \ (Fpt ∪ Fps). We consider

here five cases:
Case 1. x ∈ Fpt, x+ a ∈ Fpn \ (Fpt ∪ Fps). Here the equation is

h(x+ a)− cf(x) = b,

which gives an upper bound of ptδh,0 for the number of solutions.
Case 2. x ∈ Fps \ Fp, x+ a ∈ Fpn \ (Fpt ∪ Fps). Here the equation is

h(x+ a)− cg(x) = b,

which gives an upper bound of psδh,0, for the count.
Case 3. x ∈ Fpn \ (Fpt ∪ Fps), x+ a ∈ Fpt. Here the equation is

f(x+ a)− ch(x) = b,

which gives an upper bound of ptδh,0, the number of solutions.
Case 4. x ∈ Fpn \ (Fpt ∪ Fps), x+ a ∈ Fps \ Fp. Here the equation is

g(x+ a)− ch(x) = b,

11



which gives an upper bound of psδh,0, for the count of solutions.
Case 5. x, x+ a ∈ Fpn \ (Fpt ∪ Fps). Here the equation is

h(x+ a)− ch(x) = b,

which gives an upper bound of δh,c.

Remark 2.9. Note that, if c ∈ F∗

ps and h ∈ Fps [x] or c ∈ F∗

pt and h ∈ Fpt[x]
we can reduce the bound, in a similar way as in Remark 2.7.

If we introduce some extra conditions on the solutions of the derivatives
of the function g, we can obtain another upper bound on the c-differential
uniformity of the modified function.

Theorem 2.10. Let p be a prime, n > 2 be an integer, s be a divisor of n,
1 6= c ∈ Fps fixed, and F : Fpn → Fpn be a p-ary (n, n)-function defined by

F (x) =

{

f(x), if x ∈ Fps ,

g(x), if x /∈ Fps ,

where f is an (s, s)-function of c-differential uniformity δf,c and g ∈ Fps [x]
is an (n, n)-function of c-differential uniformity, δg,c. Suppose that:

(H1) for any a ∈ F⋆
ps and b ∈ Fps the equation g(x + a) − g(x) = b has no

solution in Fpn \ Fps.

(H2) for any a ∈ Fps and b ∈ Fps the equation g(x+ a)− cg(x) = b has no
solution in Fpn \ Fps.

Then, the c-differential uniformity of F is

c∆F (a, b) ≤

{

max{δf,c, δg,c}, if a ∈ Fps ,

δg,c + 2 · δg,0, if a /∈ Fps ,

Proof. In order to get the c-differential uniformity of F , we need to check
the number of solutions of the equation

F (x+ a)− cF (x) = b. (4)

Let us consider a ∈ Fps. Then, for a solution x, we can have that both x
and x+ a are in Fps or none is in Fps . In the first case, (4) becomes

f(x+ a)− cf(x) = b,

12



which has at most δf,c solutions if b ∈ Fps and none when b /∈ Fps .
In the second case, we obtain

g(x+ a)− cg(x) = b.

From (H2) we have no solution in Fpn \ Fps if b ∈ Fps. If b /∈ Fps, the
number of solutions is at most δg,c. Then, for a ∈ Fps we can have at most
δ = max{δf,c, δg,c}.

Let a /∈ Fps . Given a solution x of (4), we can have the following cases:

1. x /∈ Fps and x+ a ∈ Fps ;

2. x ∈ Fps and x+ a /∈ Fps ;

3. both x and x+ a are not in Fps .

Let us consider Case 1. Then, (4) becomes

f(x+ a)− cg(x) = b. (5)

Let us note that b /∈ Fps , otherwise we cannot have a solution of this type
since g(x) /∈ Fps , which is derived from (H2) with a = 0.

From this, raising (5) by ps and substracting (5), we obtain

g(x)p
s

− g(x) = −

(

b

c

)ps

+
b

c
.

Denoting by y = g(x) and by b′ = − b
c , we obtain

yp
s

− y = b′
ps

− b′.

The solutions of this last equation are the elements of the coset b′+Fps .
Now, x ∈ a+ Fps. Therefore, we need to check how many elements we have
in g(a+Fps)∩ (b′ + Fps), where g(a+Fps) := {g(x) : x ∈ a+Fps}. Suppose
that |g(a+ Fps) ∩ (b′ + Fps)| ≥ 2. Then, there exist x1, x2, y1, y2 ∈ Fps such
that b+ y1 = g(a+ x1), b+ y2 = g(a + x2) and x1 6= x2, y1 6= y2. Thus,

g(a + x1)− g(a + x2) = y1 − y2.

Denoting by x′ = a+ x2 /∈ Fps and a′ = x1 − x2 ∈ Fps, we obtain that

g(x′ + a′)− g(x′) = y1 − y2.

13



This is not possible by (H1). Therefore, |g(a+ Fps) ∩ (b′ + Fps)| ≤ 1, im-
plying that we have at most δg,0 solutions in Case (1), since for any element
y in g(a+ Fps) we have |g−1(y)|≤ δg,0.

For Case 2, we obtain, in a similar way, that |g(a+ Fps)∩ (b+ Fps)|≤ 1,
which implies that we have at most δg,0 solutions.

In the last case, we obtain the equation

g(x+ a)− cg(x) = b,

which admits at most δg,c solutions for any b. Then, for a /∈ Fps , Equation (4)
admits at most δg,c + 2 · δg,0 solutions.

Remark 2.11. We can note that if we remove condition (H2) in Theorem
2.10, we would obtain that

c∆F (a, b) ≤

{

δf,c + δg,c if a ∈ Fps

δg,c + 2 · δg,0 if a /∈ Fps .

Moreover, if g permutes Fps then we have also that δg,0 = 1.

For PcN and APcN functions we have a similar result as in Proposi-
tion 2.1.

Proposition 2.12. Let n = sm, with s and m positive integers. Let c ∈ Fps

and F ∈ Fps [x]. Then,

i) if F is PcN, F (x+a)−cF (x) = b does not admit solution x ∈ Fpn\Fps,
whenever a, b ∈ Fps.

ii) if F is APcN and m is odd, F (x + a) − cF (x) = b does not admit
solution x ∈ Fpn \ Fps, whenever a, b ∈ Fps.

Proof. Suppose that F is APcN and m is odd. We have then that the
polynomial F (x + a) − cF (x) − b admits at most 2 roots for any a and
b. Then, if a, b ∈ Fps, we have that if x1 is a solution so is xp

s

1 , since
F (x+ a)− cF (x) − b is a polynomial with coefficients over Fps.

Suppose next that x1 /∈ Fps. Then, xp
s

1 = x2, where x2 is the second

root. So, xp
s

2 must be equal to x1, implying xp
2s

1 = x1. Therefore x1 ∈
Fp2s ∩ Fpn = Fps , which gives us a contradiction.

For the PcN case, we have no restriction on m since we have only one
root x1 of F (x+ a)− cF (x) − b, and thus xp

s

1 must be equal to x1.
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As for the case of the differential uniformity we can extend the previous
result as follows.

Proposition 2.13. let n = sm, c ∈ Fps, and F is a δF,c c-differentially
uniform function over Fpn, with coefficients on the subfield Fps. Then, if for
any prime q ≤ δF,c, q ∤ m, the equation F (x+a)− cF (x) = b does not admit
solution x ∈ Fpn \ Fps, whenever a, b ∈ Fps.

Proof. Let x be a solution of F (x+ a)− cF (x) = b. Then, all the elements
in Ox = {xp

is

: 0 ≤ i ≤ m − 1} are solutions of this equation. Moreover,
since |Ox|≤ δF,c, for some integer j ≤ δF,c we have xp

js

= x, implying that
x ∈ Fpgcd(js,n) = Fps .

2.1 Shifting Gold-like functions on a subfield

In [18], the author studied the c-differential uniformity of the modified Gold
function. In particular he obtained the following result.

Theorem 2.14. Let n = sm. Let

G(x) = x2
k+1 + α(x2

s

+ x)2
n
−1 + α =

{

x2
k+1 + α, if x ∈ F2s ,

x2
k+1, if x /∈ F2s ,

where 1 ≤ k < n, gcd(k, n) = 1, α ∈ F⋆
2s. Then, for c 6= 1, the c- differential

uniformity of G is δG,c ≤ 9.

Remark 2.15. The c-differential uniformity of a Gold function g(x) =

x2
k+1 has been characterized in [15, Theorem 4]. In particular, for c 6= 1 we

have δg,c ≤ 2gcd(k,n) + 1. Applying Theorem 2.6 and Remark 2.7 we obtain

that the c-differential uniformity of G(x) = x2
k+1 + α(x2

s

+ x)2
n
−1 + α

satisfies

δG,c ≤

{

2 · (2gcd(k,n) + 1) if c = 0

3 · (2gcd(k,n) + 1) if c 6= 0.

Therefore, the upper bound in Theorem 2.14 can be obtained applying The-
orem 2.6 and Remark 2.7. Indeed, for gcd(k, n) = 1 we have

δG,c ≤

{

6 if c = 0

9 if c 6= 0.

For a Gold-like function defined over F2n , we can observe the following.
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Proposition 2.16. Let n = sm, with m odd. For a Gold function g(x) =

x2
k+1 with gcd(n, k) = t such that F2t ⊂ F2s, we have that

g(x+ a) + g(x) = b

does not admit solutions in F2n \ F2s, whenever a ∈ F⋆
2s and b ∈ F2s.

Proof. The proof follows in a similar way as Lemma 4.1 in [6]. Indeed, we
can consider just the equation

x2
k

+ x = b.

If b ∈ F2s we obtain that (x2
k

+x)2
s

= x2
k

+x, which implies x2
s

+x ∈ F2k .
Therefore, x2

s

+ x ∈ F2t ⊂ F2s . Then, (x2
s

+ x)2
s

+ x2
s

+ x = 0 implies
x2

2s
= x, and thus x ∈ F22s ∩ F2n = F2s .

Remark 2.17. Note that the above proposition cannot be derived directly
from Proposition 2.2, for t ≥ 2. Indeed, the Gold-like function g(x) = x2

k+1

with gcd(n, k) = t has differential uniformity equal to 2t. So, for applying
Proposition 2.2 we need i ∤ m for any 2 ≤ i ≤ 2t−1, while in Proposition 2.16
we just require 2 ∤ m. For t = 1, the result follows from [8].

Theorem 2.18. Let n = sm, with m odd. For a Gold function g(x) =

x2
k+1, with gcd(n, k) = t such that F2t ⊂ F2s, and n/t odd. Then, for any

fixed α ∈ F⋆
2s, G(x) = x2

k+1 + α(x2
s

+ x)2
n
−1 + α is such that δG,c ≤ 3, for

any c ∈ F2t \ {1}.

Proof. From Proposition 2.16, we have that g(x) = x2
k+1 satisfies (H1) in

Theorem 2.10.
Since n/t is odd we have that g is a permutation of F2n , so δg,0 = 1.

Moreover, from Theorem 3.1 in [1] we have that g is PcN for c ∈ F2t \ {1}.
From Proposition 2.12 we have that (H2) holds. Therefore, δG,c ≤ 3 by

Theorem 2.10.

Theorem 2.19. Let n = sm, with n odd. Given the Gold function g(x) =

x2
k+1 with gcd(n, k) = 1, then, for any fixed α ∈ F⋆

2s, G(x) = x2
k+1 + α +

α(x2
s

+ x)2
n
−1 is such that δG,c ≤ 6, for any c ∈ F2s \ {1}. Moreover, if

3 ∤ m, then δG,c ≤ 5.

Proof. If 3 ∤ m, then since the map is 3 c-differentially uniform from Propo-
sition 2.13 we have that (H2) in Theorem 2.10 is satisfied. The same for (H1)
by Proposition 2.1. Therefore, from Theorem 2.10 we have that δG,c ≤ 5
(δg,0 = 1).

If 3 | m, then we cannot guarantee that (H2) in Theorem 2.10 is satisfied,
but applying Remark 2.11 we have δG,c ≤ 6.
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Remark 2.20. Theorem 2.19 improves the upper bound obtained by Stănică
in [18], when c is restricted to the subfield F2s.

3 Concatenating functions with low c-differential

uniformity

In this section we will show how it is possible to obtain a function over Fqn ,
with low c-differential uniformity, concatenating n functions defined over Fq.

Let {β1, . . . , βn} be a basis of Fqn as vector space over Fq. Let

A =













β1 βq
1 · · · βqn−1

1

β2 βq
2 · · · βqn−1

2
...

...

βn βq
n · · · βqn−1

n













.

The matrix A is non-singular, so we let A−1 = (ai,j)i,j .
Let us denote by ek the column vector composed by all zeros but one in

position k, for 1 ≤ k ≤ n. We define the linear polynomial

Lk(x) =

n
∑

i=1

ai,kx
qi−1

= (x, xq, . . . , xq
n−1

) · A−1 · ek.

Any element x ∈ Fqn can be written as x = β1x1 + · · · + βnxn, with
xi ∈ Fq. So, we have

Lk(x) =

(

n
∑

i=1

βixi, . . . ,
n
∑

i=1

βqn−1

i xi

)

·A−1 ·ek = (x1, . . . , xn)·A·A−1 ·ek = xk.

That is, Lk is the projection of the k-th component of x.
So we obtain the following result.

Theorem 3.1. Let c ∈ Fq \ {1} and let f1, . . . , fn be n functions over Fq

with c-differential uniformity δ1, . . . , δn, respectively. Let β1, . . . , βn, Lk be
defined as before. Then F (x) =

∑n
k=1 βkfk(Lk(x)) has c-differential unifor-

mity equal to
∏n

i=1 δi.

Proof. For any a ∈ Fqn , with a = β1a1 + · · ·+ βnan, we have

F (x+ a)− cF (x) =

n
∑

k=1

βkfk(xk + ak)− c

n
∑

k=1

βkfk(xk)

=

n
∑

k=1

βk(fk(xk + ak)− cfk(xk)).
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So if we consider b = β1b1 + · · ·+ βnbn we have

F (x+ a)− cF (x) = b, that is, fk(xk + ak)− cfk(xk) = bk, for all k.

The equation fk(xk + ak) − cfk(xk) = bk admits at most δk solutions for
any ak and bk in Fq, and there exist some ak and bk for which we have δk
solutions. So, we obtain that F (x+ a)− cF (x) = b admits at most

∏n
i=1 δi

solutions and we can find a, and b for which we obtain exactly
∏n

i=1 δi
solutions.

Using the previous result, we can construct a PcN function over Fqn

from n PcN functions over Fq.

Corollary 3.2. Let c ∈ Fq \ {1} and let f1, . . . , fn be n functions over Fq

that are PcN. Then F (x) =
∑n

k=1 βkfk(Lk(x)) is PcN.

4 Concluding remarks

In this work we extended some of the results given in [6] to the case of the
c-differential uniformity. We piece together (in several ways) subfunctions
and provide upper bounds for the c-differential uniformity of the obtained
function. As a byproduct, we improve some prior results of [18]. Further,
we look at concatenations of functions with low differential uniformity and
check how their c-differential uniformity changes. In particular, we prove
that given βi (a basis of Fqn over Fq), some functions fi of c-differential uni-
formities δi, and some specific linearized polynomials Li defined in terms of

βi, 1 ≤ i ≤ n, then F (x) =
n
∑

i=1

βifi(Li(x)) has c-differential uniformity equal

to

n
∏

i=1

δi. We believe, it would be of interest to investigate these construc-

tions for the case of the newly defined generalized boomerang uniformity, as
in [16] (see also [17], for other characterizations).
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[17] P. Stănică, Using double Weil sums in finding the Boomerang
and the c-Boomerang Connectivity Table for monomial func-
tions on finite fields, Appl. Alg. Eng. Communic. Comput.,
https://doi.org/10.1007/s00200-021-00520-9, 2021.

[18] P. Stănică, Low c-differential uniformity for the Gold function modi-
fied on a subfield, Proc. International Conf. on Security and Privacy,
Springer (ICSP 2020), LNEE 744, Springer 2021, pp. 131–137.
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