Skip to main content
Log in

A new fair multi-secret sharing scheme based on asymmetric bivariate polynomial

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

In a (t, n) secret sharing scheme, cheating identification provides a very effective way to protect the security of the secret. In this paper, we propose a fair multi-secret deception identification sharing scheme. The binary polynomials are used to generate k secrets and establish pairs of keys between groups, respectively. During the reconstruction phase, the attackers can be identified and eliminated in a black box by deception verification based on the characteristic equation of n-order matrix with multiple roots. Participants in our scheme cannot directly own useful information, only those who are verified as honest by the black box can get necessary values encrypted by the key, and then multi-secret can be reconstructed successfully. The analysis results show that our scheme can resist both external and internal attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  2. Blakley, G.R.: Safeguarding cryptographic keys. IEEE Computer Society, 313–317 (1979)

  3. Chor, B., Goldwassser, S, Macalis, et al.: Verifiable secret sharing and achieving simultanrity in presence of fault. In: Proceeding of IEEE 26th Symposium on Foudation of Computer Science(FOCS), 383–395 (1985)

  4. Liu, Y., Yang, C., Wang, Y., et al.: Cheating identifiable secret sharing scheme using symmetric bivariate polynomial. Inform. Sci., 453 (2018)

  5. Harn, L.: Secure secret reconstruction and multi-secret sharing schemes with unconditional security. Secur. Commun. Netw. 7(3), 567–573 (2014)

    Article  Google Scholar 

  6. Harn, L., Hsu, C.F.: (T,n) multi-secret sharing scheme based on bivariate polynomial. Wirel. Pers. Commun. 95(2), 1–10 (2017)

    Article  Google Scholar 

  7. Harn, L., Lin, C., Li, Y.: Fair secret reconstruction in (t,n) secret sharing. J. Inf. Secur. Appl. 23, 1–7 (2015)

    Google Scholar 

  8. Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptol. 1(3), 133–138 (1989)

    Article  MathSciNet  Google Scholar 

  9. Y Tian, J, Ma, C, et al.: Peng Fair (t,n) threshold secret sharing scheme. IET Inf. Secur. 7(2), 106–122 (2013)

    Article  Google Scholar 

  10. William Gilbert Strang, G.S.: Introduction to Linear Algebra. Harper and Row (1963)

  11. Peled, D., Vardi, Y., Yannakakis, M.: Black box checking. Formal Methods for Protocol Engineering and Distributed Systems Springer US (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayun Yan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Natural Science Foundation of China (No.61972168, No.U21A20428, No.12171134)

Appendix

Appendix

In this part, an example is used to simulate the secret reconstruction process (Table 1). (2,3) cheating identification multi-secret sharing scheme is adopted, where t = 2,n = 3, that is, we have U1,U2 two sets, where U1 = {P11,P12}, U2 = {P21}, n1 = |U1| = 2,n2 = |U2| = 1. The concrete steps are shown in the Table as follows:

Table 1 An example about the whole procession of secret sharing

Notation 1

A 6-order invertible matrix X generated by black box, like that:

$$X=\left( \begin{array}{cccccc} 0&0&1&0&0&0\\ 0&1&0&0&0&0\\ 1&0&0&0&1&0\\ 0&0&0&0&1&0\\ 0&0&0&1&0&0\\ 0&1&0&0&0&1 \end{array}\right)$$

We can obtain the matrix A,

$$A=X^{-1}{\Lambda} X= \left( \begin{array}{cccccc} 0&0&1&-1&0&0\\ 0&1&0&0&0&0\\ 1&0&0&0&0&0\\ 0&0&0&0&1&0\\ 0&0&0&1&0&0\\ 0&-1&0&0&0&1 \end{array}\right) \left( \begin{array}{cccccc} 6&0&0&0&0&0\\ 0&6&0&0&0&0\\ 0&0&6&0&0&0\\ 0&0&0&6&0&0\\ 0&0&0&0&9&0\\ 0&0&0&0&0&9 \end{array} \right) \left( \begin{array}{cccccc} 0&0&1&0&0&0\\ 0&1&0&0&0&0\\ 1&0&0&0&1&0\\ 0&0&0&0&1&0\\ 0&0&0&1&0&0\\ 0&1&0&0&0&1 \end{array}\right)$$

\(=\left (\begin {array}{cccccc} 6&0&0&0&0&0\\ 0&6&0&0&0&0\\ 0&0&6&0&0&0\\ 0&0&0&9&0&0\\ 0&0&0&0&6&0\\ 0&2&0&0&0&9 \end {array} \right )\)

The eigenvalue ω1 = 6 of matrix A corresponds to four independent eigenvectors, denoted by

$$x_{11}=\left( \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right),x_{12}=\left( \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ -1 \end{array} \right),x_{13}=\left( \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array} \right),x_{14}=\left( \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array} \right)$$

ω2 = 9 corresponds to two independently eigenvectors, denoted by

$$x_{21}=\left( \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array} \right),x_{22}=\left( \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} \right).$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Liu, Y., Yan, J. et al. A new fair multi-secret sharing scheme based on asymmetric bivariate polynomial. Cryptogr. Commun. 14, 1039–1053 (2022). https://doi.org/10.1007/s12095-022-00576-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-022-00576-5

Keywords

Navigation