
Grid implementation of the Weather Research and

Forecasting model

Centre for informatics and computing

Zagreb, Croatia

davor.davidovic@irb.hr

-Prtenjak

Department of Geophysics

Faculty of Science, University of Zagreb

Zagreb, Croatia

dbelusic@irb.hr, telisman@irb.hr

Abstract Atmospheric science is advancing towards very

complex phenomena at ever smaller temporal and spatial scales.

One of the principal tools utilized in atmospheric science are

weather prediction models. These models usually demands large

execution times and resource allocation like CPU time and

storage space. The main goal of our research is porting of the

Weather Research and Forecasting model to the grid

infrastructure. Porting has been done through bash scripts that

are using existing grid tools for job and data management,

authentification mechanisms, and other application level services

produced within the SEEGRID project. In this paper, through a

few model runs on the Grid we describe certain benefits not only

in overall execution time but also in ability of concurrent runs of

the same model especially for scientific purposes. During the

execution, we have also faced some drawbacks in data

bandwidth, unreliability of some grid services and relatively hard

control of the model execution flow. The final conclusion is that

there is big need and justification for porting the WRF model to

the grid, although it takes a lot of effort to be properly

implemented.

I. INTRODUCTION (HEADING 1)

Atmospheric science of today is advancing towards very

complex phenomena at ever smaller temporal and spatial

scales. These phenomena have large impacts on both scientific

research and operational weather forecast. One of the principal

tools utilized in these efforts are numerical weather prediction

models. These numerical models usually demand large

execution times and resource allocations; therefore, we need

large parallel systems in order to execute them. One of such

numerical prediction models is the WRF-ARW model

(Weather Research and Forecasting model Advanced

Research WRF).

The WRF-ARW model is a next-generation numerical

weather prediction system designed to serve both operational

forecasting and atmospheric research needs. It features a

software architecture allowing for computational parallelism

and system extensibility. WRF-ARW is suitable for a broad

spectrum of applications across scales ranging from meters to

thousands of kilometers.

Our research aims at reproduction/forecasting of the airflow

over complex terrain (e.g. mountain ranges, coastal area) in

Croatia. We are faced with the problem of the lack of

computing resources due to the high-resolution model grids,

necessary for more accurate and detailed results. Using high

model resolution results in two natural consequences: an

enlargement of the number of computational grid points, so to

keep the total domain size sufficiently large; and reduction of

the integration time step in order to avoid numerical

instabilities. Both effects result in larger CPU and memory

demands and a big storage space that cannot be provided.

Even with enough processors, we still do not have the storage

to save all the data that the model can generate per run (can be

about a hundred GBs).

Till today, not much effort has been done in adopting WRF

model to the grid infrastructure. The model has mostly been

adopted, with relatively good success, for the execution on

local clusters and, with great success, on supercomputers like

in NCEP (National Centers for Environmental Predictions) or

NCAR (National Center for Atmospheric Research). Due to

the lack of financial resources and user access to such large

supercomputers we have investigated other options for

deploying our model and found that the grid can be a suitable

choice. The grid infrastructure has already been utilized for

other purposes and is ready to be exploited by numerous

different science applications from different user communities.

Within the SEE-GRID-SCI project we have started

deploying the WRF-ARW model on the grid infrastructure.

We have adapted the WRF-ARW model for the grid usage in a

way that hides the grid complexity from the end user as much

as possible. Bash scripts that include different gLite and LCG

tools are taking care of all the grid processes needed for the

WRF model execution and data flow, such as: storing the data

on the grid storage elements (through the LFC file catalog),

automatic downloading and executing the appropriate binaries

(the model executables stored on different storage elements),

retrieving the data after a job has completed, and checking the

submitted job status. We have achieved that the model

execution time is not only less than before, but even

submitting a WRF job on the grid (preprocessing, main

application run, post-processing) is fairly easier that on a local

PC or a cluster. This is done by developing new execution

scripts that take control of local model execution process.

From our previous work and results obtained from starting
the WRF-ARW model on the grid, we will show that certain
important benefits and improvements from using the grid
infrastructure can be acquired. One can see that the main
benefit is not only in the speedup of the model execution, but
also in the ability to start multi-instances of the same model

will also report on the current status of the WRF model in

Bosnia and Herzegovina, Georgia and Armenia.

II. GRID COMPUTING BASICS

Grid computing is the combination of computer resources

from multiple administrative domains applied to a common

task, usually to a scientific, technical or business problem that

requires a great number of computer processing power or the

need to process large amount of data. A typical Grid

infrastructure includes: knowledge management resources,

data and computing resources, and the appropriate network to

accommodate interactions.

The users of a Grid infrastructure are divided into Virtual

Organizations (VOs), abstract entities grouping users,

institutions and resources in the same administrative domain.

A VO typically corresponds to a particular organization or

group of people in the real world, like meteo VO for people

working in the field of meteorology. Membership of a VO

grants privileges to users like ability to use special resources

or equipment. In the next paragraph we describe some most

important grid resources and services that are used in this

paper:

 User interface (UI) is the access point to any grid

infrastructure, for example SEEGRID. This can be

any machine where users have a personal account

and user certificate installed. From a UI, user can be

authenticated and authorized to user grid resources,

and can access the functionalities offered by the

information, workload and data management

systems. From UI user can perform grid operations

like: submit job for execution, cancel jobs, retrieve

the output of finished jobs, show the status of the

submitted jobs, copy, replicate and delete file form

the Grid etc.

 A Computing Element (CE), in Grid terminology, is

some set of computing resources localized at a site

(i.e. cluster).

 A Storage Element (SE) provides uniform access to

data storage resources. The Storage Element may

control simple disk servers, large disk arrays or tape-

based mass storage systems.

 The Information Service (IS) provides information

about the Grid resources and their status. This

information is essential for the operations of the

whole Grid.

 The purpose of the Workload Management Systems

is to accept user jobs, to assign them to the most

appropriate Computing Element, to record their status

and retrieve their output.

 Job to be submitted are described using the Job

Description Language (JDL), which specifies, for

example, which executable to run and its parameters,

files to be moved to and from the CE on which the

job is run, input Grid files needed, and any

requirements on the CE.

III. GRID IMPLEMENTATION OF THE WRF MODEL

A. Implementation idea

The primary idea is to develop scripts that hide grid

complexity from the end users. The WRF execution on the

grid is divided into three different stages: pre-processing, core

model execution and post-processing.

The first one incorporates downloading and preparing the

model input data, which consist of the terrestrial data and the

initial and boundary conditions data. The second one enables

running of the model on a grid Computing Element, and the

third one deals with managing of the model output data.

The basic scheme is to store all the WRF model data,

including binaries and input and output model files, on the

grid storage elements, while the execution scripts are installed

submission process, the execution scripts are sent to the grid

CE, the necessary model input files and binaries are

downloaded and the model execution is started. After the

model execution is finished all the results are stored on the

grid storage elements from where users can download them

directly to the UI node or local computers using DM-Web

application.

B. Storage structure

Storage scheme is, together with the model grid operating
scripts, the most important part of the model grid
implementation, so we will describe it in more details.

Users who want to use the WRF model on the grid must be
members of the meteo VO. As a part of the meteo VO, WRF is

using tools for data management provided by this VO. The tool
for the data management and replica file system is the LFC
catalog. The root folder for the meteo VO within the LFC
catalog is:

/grid/meteo.see-grid-sci.eu/

In this folder all members of the VO have permission to
write, read and modify all files and folders. We have decided to
make a root folder for the WRF-ARW model within the meteo
VO root folder called WRF-ARW, so that the full path to the
model root folder is:

/grid/meteo.see-grid-sci.eu/WRF-ARW/

-ARW
in the LFC file catalog.

/WRF-ARW/
 /bin
 /input_data
 /output_data

As the project involves a number of different users of the
WRF model, the users are divided into regions of interest. The
users are usually separated by regional affiliation; therefore we
have 6 different regions: Armenia, BiH (Bosnia and
Herzegovina), Croatia, Georgia, and SEEurope as the default
region for all users.

1) Bin folder

In the the binaries and auxiliary files for
pre-processing (), the main WRF binaries (the
core application) (), and the post-processing
binaries and visualization tools (folder). All
binaries, depending on the version, are stored in this folder.

/bin
 /WPS
 /WPSV<version_number>_<arch>.tar.gz
 /WRF
 /WRFV<version_number>_<arch>.tar.gz
 /postproc

2) Input_data folder

In the the input data for WRF pre-
processor (WPS). There are the static terrestrial data that are
not changing between different runs, stored in the
folder, and the time-dependent initial and boundary conditions

(which are the input for the ungrib.exe
application in the WPS pre-processing system). The initial and
boundary conditions are divided between regions of interest
because these data are region-specific and to prevent
unnecessary mixing of data between different users and
regions. The structure of the folder is:

/input_data
 /boundary/

 /<REGION>
 /terrain

3) Output_data folder

The structure of output data folder is:

/output_data
 /<REGION>
 /sci
 /oper

In the folder are all the outputs after the
model has finished its execution on the grid. Data are separated
depending on the region of interest and depending on whether
the model was run for operational or scientific purposes.

C. Model workflow

The model workflow . The main

entrance gate to the grid is UI node where are all the scripts

that help users to operate the WRF model on the grid are

installed.

The concept in a nutshell is that the user, working on UI

node, submits model to the grid WMS (Workload

Management System). WMS allocates the grid CE i.e. grid

cluster, and before the model start to execute on the allocated

CE, the input terrestrial and initial/boundary conditions data,

as well as the WRF binaries, are downloaded on CE from the

grid SE (Storage Element). When all input data and binaries

are downloaded to CE, the model starts with the execution

using the MPI (Message Passing Interface) [5] runtime

environment.

The model execution starts with the pre-processing system

WPS. WPS consists of the geogrid application that prepares

the terrestrial data, the ungrib applications that extracts the

input initial/boundary conditions data, and after these

applications are finished, the metgrid application horizontally

interpolates the intermediate-format meteorological data that

are extracted by the ungrib program onto the simulation

domains defined by the geogrid program.

When the pre-processing is finished the core application

starts first with the real application which sets up vertical

model levels for the model input and boundary files and

finally the wrf application for numerical integration. Only the

wrf application is run using MPI on multiple CPUs/cores.

WRF workflow on a grid CE is illustrated in

After successful completion, the output data are stored on a

pre-defined grid SE. User can download model output data

from SE using the LCG-tools, DM-Web application service

developed within SEEGRID project or using developed scripts

.

Submission of a job is the process that sets all model

parameters, describes the job using JDL (Job Description

Language), updates the WRF model namelist files (model

descriptions files for domains, physics, etc.) and submit model

to the grid using gLite-tools. Regarding the job described,

WMS allocates a

executed. The main script for submitting model on the grid is

wrf-submit. The script is responsible for defining and setting

almost all parameters needed for the model execution. Based

on the user command line parameters the script sets model

execution type (scientific or operational), number of

processors the model will run on, model input files and some

other model specific parameters.

The main model execution scripts on the grid CE is the

model_run.sh script. The script is sent from the user UI node

together with the job submission. This is the main script on

CE responsible for all model operations. The first step is to

download and extract model binaries, set file structure,

download the static (terrestrial) data from the LFC catalogue

and the time-dependent (initial/boundary conditions) data

from the LFC catalogue or the NCEP server, depending on the

execution mode (will be described in the paragraph D.

).

Figure 1. WRF grid workflow

D. Starting the model

There are two different WRF model modes then users can

use: scientific and operational mode. The scientific mode is

intended to be used for research purposes, where the users

have full control over all settings and relevant model

parameters while the operational mode is intended to be used

for daily operational forecast with most of the model settings

already pre-defined.

1) Scientific mode

As said before, the scientific mode is used for the research

purposes when the users do not need current boundary

conditions data downloaded from NCEP, ECMWF (European

Centre for Medium-Range Weather Forecasts) or any other

large-scale forecasting center. Users are expected to manually

upload and save their initial/boundary conditions data at the

LFC catalog in the input data folder for their region. For

example, a user from Croatia who wishes to run the model in

the scientific mode must save all his initial/boundary

conditions data in the folder:

 /WRF-ARW/input_data/boundary/CROATIA/raw/,

where the used for storing the data in the

GRIB file format, typical for describing meteorological data.

As in a serial, non-grid execution of the model, user has to

describe his model using the WRF files, namelist.wps and

namelist.input. The user needs to define all relevant variables

in these two files so that the model can execute normally.

The model is executing the by starting wrf-submit

command. An example of how to the submit model in the

scientific mode, with the

using 16 CPUs would be:

$wrf-submit m s r CROATIA p 16

This command automatically checks for the namelist files

in the current folder, sets the environment variables, generates

JDL job description files and submits the jobs using glite-

wms-job-submit command from the gLite tools. The output of

the wrf-submit command is a

required to check the job status and to retrieve the output when

the job finishes. After the execution has finished, the model

output data are stored using the LCG-tools in the LFC file

scheme in the folder /WRF-

ARW/output_data/<REGION>/sci/<output_filename>.tar.gz.

The user can retrieve the output data on the UI node using

the lcg-cp tool (which is the standard LFC tool to copy grid

files to UI) or the program wrf-get-data that collects the output

of the finished jobs and download the model output results

from the grid CE (LFC) to UI. The other option is to directly

download the data from the grid CE to the local computer by

using the DM-Web server that can be run from web browser

2) Operational mode

The operational mode is designed and adjusted to be as

simple as possible and not to require much of user intervention

for everyday automatic executing. Users have to adjust all

model variables in the namelist files, while the start and end

date of the simulation are set automatically (the start date is set

to the current date). When executing in the operational mode,

the input initial/boundary conditions data are downloaded

automatically from the NCEP server on the grid CE and the

example of starting the operational forecast, using 8

processors, with the simulation time of 48 hours (2 days

wea would be:

$wrf-submit m o r BIH p 8 l 48

The output of the command is, again, a file containing the

job ID. In the operational forecast, most of the parameters are

set by default, e.g. simulation time period (in the example was

it 48 h) or number of processors.

Figure 2. WRF model workflow on a grid CE

During the operational forecast we have faced problems

that many jobs have stayed in the queue of the local batch

system on CE for a longer time. As operational forecast has to

be finished at certain times of the day we have arranged

explicit resource reservation on two grid CE in Bulgaria

(BG03-NGCC and BG04-ACAD, part of the SEEGRID grid

infrastructure). After the resource reservation, the problem

with the execution time was solved.

The users who need to run operational forecast on the

earmarked resources have to be members of the group

/meteo.see-grid-sci.eu/HR/App/WRF-ARW/ with the roles

, because the reservation is made for this group

within the meteo VO.

The Cron job scheduler (other job schedulers are also

possible) is required on the UI to automatically submit the

model on the Grid daily.

The tools for retrieving the model results and the output

data are the same as for the scientific mode.

IV. MODEL CURRENT STATUS

The porting of the WRF model on the SEEGRID

infrastructure has started in July 2008. At the beginning of the

project, only two partner countries were involved: Croatia and

BiH. Now 4 partners are participating in the porting, testing

and running the WRF model on the Grid. Two new partners

are Georgia and Armenia, but also some other countries show

their interest in using WRF model, e.g. Moldova.

The model is in production phase for both the scientific and

the operational mode. The currently active version installed on

the grid is the WRF version 3.0.1.1, released on August 22,

2008. At the moment, we are updating to a newer version

3.1.1, released on July 31, 2009.

In Croatia, some daily forecasts in the operational mode are

run, while most of the jobs are in the scientific mode. Most of

the jobs using the older version of WRF have finished without

error, while some execution problems have occurred with the

newest version.

The current status of model usage in BiH is that the users

from BiH mostly use the model for weather prediction in the

operational mode. Two institutions are using the model for

now: the Federal Hydro Meteorological Institute, Sarajevo,

and the Republic Hydro Meteorological Institute, Banja Luka.

The model is set for their needs to start daily at 4 am, running

a 3-day forecast for BiH on 16 CPUs. Also, some manually

submitted jobs are run during the day from both institutions,

also in the operational mode.

Georgia and Armenia are currently in the phase of

acquainting with the full model capabilities and the grid usage,

although they have also started, particularly Georgia, with

submitting jobs in the operational mode.

V. RESULTS

Here we will presented model results for a few model runs

in both the scientific and operational mode. We will show that

there are certain problems in running the model on a larger

number of CPUs (more that 16 CPUs) because of the

communication between processes that is slowed down by the

low LAN bandwidth.

In the operational mode we have made test for 72-hours

weather forecast from 29th September 2009 to 2nd October

2009 over BiH, with a nested domain over Sarajevo. The

model has two domains with the horizontal resolution between

grid points of 18 km for the main domain and 6 km for the

nested domain, 27 vertical grid levels and the time step of 2

min.

The test was made on the BG03-NGCC. The CE has the

Scientific Linux 4.6 operating system with the gLite 3.1 and

torque 2.1.9 batch system installed. Single worker node is 2 x

Intel Xeon x86_64 processor with 8 cores total, 16384MB of

RAM memory and 250GB storage space. Interconnection

between worker nodes is 1Gbps network switch.

Tests were run on 2 to 12 CPUs in steps of 2, and from 12

CPUs to 24 in steps of 4. In is the total time of the

model execution. The total time includes the download and

extraction of model binaries, download of the terrestrial and

initial/boundary conditions data, pre-processing (WPS), model

execution (main program) and storing the results on the LFC

(grid storage elements).

Figure 3. WRF job total time

One can see the fluctuation of the overall execution time.

The fluctuation happens because a lot of copying,

downloading and extracting of large data sets is made, which

can easily interfere with current network occupancy, number

of jobs already running, disk usage etc. The overall progress

shows that we have gain speedup up to 16 CPUs, but

afterward the speedup decreases.

On we can analyze in more details the execution

time of the main application (wrf.exe) which is the most time-

and storage-consuming part of the model. We have measured

three different times: real, user and system time. Real time is

the elapsed real (wall clock) time used by the program, user

time is the total number of CPU-seconds that the program

used directly, and finally the system time is the total number

of CPU-seconds used by the system on behalf of the process.

The most important and relevant time for testing is the real

time, because it is the overall time that the application

(wrf.exe) spends on the grid CE. As one can see on ,

the real time is decreasing till 16 CPUs and afterward starts to

increase, while the user time continues to decrease. We can

see that the system time is more or less static; it is slowly

decreasing with the number of the CPUs. The gap between the

real and user time is the communication or, better to say, the

idle time of the program waiting for the communication to

finish. With the larger number of CPUs the pressure on the

local NFS and simultaneous write of all processors to the

shared file system results in the slowdown of the entire local

network and the overall computing time drastically increases.

By analyzing the user time we can see that there is a

potential for further speedup, but it mostly depends on the

bandwidth and the speed of the local network.

An example of the results in the scientific mode is shown in

the following. We have simulated a bora event on the northern

Adriatic.

Fig 5 shows very well formed bora jets at 10 m above

ground on 29 June 2004 at 15 UTC: the primary bora jet

through the Vratnik Pass with a width of 25 km, and the

second, weaker bora jet through Gornje Jelenje with a width of

15 km. Both narrow jets join together over the Kvarner Bay,

forming one broad bora jet about 50 km wide near the surface,

several kilometers downstream of the coast. This merged bora

jet stretches from the middle of the peninsula to the island of

bora jets, several simultaneous enlarged areas of bora minima

are also seen. They are the western Istrian coast, the sheltered

areas in Rijeka Bay (the western sides of Rijeka Bay and the

island of Krk) and southern part of the island of Rab. At the

western Istrian coast, the sea breeze develops in the narrow

area despite the fact that the bora brings cold and dry

continental air and suppresses the daytime temperature rise. In

Rijeka Bay near Opatija, the low bora speed allows the

formation of a weak thermally-induced perturbation.

Figure 5. Bora wind simulation - North Adriatic

VI. REFERENCES

[1] W.Wang, C.Bruyere, M. Duda, J. Dudhia, D. Gill, H.-C. Lin, J.

Division and National Center for Atmospheric Research,January
2009

[2] S. Burke, S. Campana, E. Lanciotti, P. Mendez Lorenzo, V. Miccio,

Manuals Series, CERN-LCG-GDEIS-722398, April 2009

[3] - SEE-GRID Wiki EGEE-see Wiki,
[http://wiki.egee-see.org/index.php/SEE-GRID_Wiki]

[4] Belgrade Universi
Portal
 Data Management Web Portal User Guide EGEE-see Wiki,
[http://wiki.egee-
see.org/index.php/Data_Management_Web_Portal_-_User_Guide]

Figure 4. wrf.exe execution time

[5] o MPICH a Laboratory, University of Chicago,

