Skip to main content
Log in

A free software for sand and gravel embayed beach modelling: PhoEbuS- parabolic equation shape

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

An in-depth knowledge of the littoral system is essential for its conservation and for an accurate planning of due interventions. The parabolic bay shape equation, used to study the embayed beach planform, is a qualitatively assessed instrument to obtain information about beach equilibrium conditions. Nowadays the equation has been extended in order to be applicable not only to sand beaches but also to gravel beaches. In this paper Phoebus user-friendly software for an automatic use of the extended parabolic bay shape equation is presented. The software enables both technical experts and non-professionals to conduct expeditious analysis in order to evaluate the evolution and equilibrium conditions of embayed littoral beaches lying between natural headlands or man-made structures, as well as to artificially recreate stable embayed beaches by building new artificial structures on open beaches. The software can be also used for coastal planning, to anticipate beach modifications in response to new building or to changes in pre-existing structures.

Highlights

  1. 1.

    Development of a free software to automatically compute embayed beach planform

  2. 2.

    The system can be used on every type of beach image

  3. 3.

    The software allows to display the planform both for sand and gravel beaches

  4. 4.

    Software reliability was demonstrated for natural and artificial bay beaches

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allan JC, Hart R, Tranquili JV (2006) The use of passive integrated transponder (pit) tags to trace cobble transport in a mixed sand-and-gravel beach on the high-energy Oregon coast, USA. Mar Geol 232(1–2):63–86

    Article  Google Scholar 

  • Austin MJ, Masselink G (2006) Observations of morphological change and sediment transport on a steep gravel beach. Mar Geol 229(1–2):59–77

    Article  Google Scholar 

  • Benedet L, da Fontoura Klein AH, Hsu JR-C (2004) Practical insights and applicability of empirical bay shape equations. Coast Eng 2181–2193

  • Buscombe D, Masselink G (2006) Concepts in gravel beach dynamics. Earth Sci Rev 79(1–2):33–52

    Article  Google Scholar 

  • Charlier RH, De Meyer CP (1998) Coastal zone management. In: Springer Verlag (eds) Coastal erosion. Response and management, volume 70, Series Lecture Notes in Earth Sciences. Berlin and Heidelberg, pp 6–18

  • Clarke S, Dodd S, Damgaard J (2004) Modelling flow in and above a porous beach. J Waterw Port Coast Ocean Eng 130(5):223–233

    Article  Google Scholar 

  • European Environment Agency (EEA) (2001) The changing faces of Europe’s coastal areas. Report 6 of the European Environment Agency. Luxemburg

  • Fierro G, Berriolo G, Ferrari M (2010) Le spiagge della Liguria occidentale: analisi evolutiva. Regione Liguria, Genova

  • Gaillard P, Ravazzola P, Kontolios C, Arrivet L, Athanassoulis GA, Stefanakos CN, Gerostathis P, Cavaleri L, Bertotti L, Sclavo M, Ramieri E, Dentone L, Noel C, Viala C, Lefevre J-M (2004) Wind and wave atlas of the Mediterranean Sea. Software version

  • Garau Sagristá C (1974) Reflexion del oleaje sobre la playa. Influencia del fenómeno sobre la configuración del perfil y de la forma en planta de la propria palya. Revista de obras públicas 3116(4):869–882

    Google Scholar 

  • García Guinduláin A (2005) Carrying capacity of the Catalonian littoral beaches. Capacidad de carga de las playas en el Litoral Catalán. Unpublished M.Sc. Thesis, Universidad Politècnica de Catalunya. Departament d’Enginyeria hidràulica, Marítima i Ambiental, Barcelona

  • González M, Medina R (2001) On the application of static equilibrium bay formulations to natural and man-made beaches. Coast Eng 43:209–225

    Article  Google Scholar 

  • González M, Medina R, González-Ondina J, Osorio A, Mendez FJ, García E (2007) An integrated coastal modelling system for analyzing beach processes and beach restoration projects, SMC. Comput Geosci 33(7):916–931

    Article  Google Scholar 

  • Horn DP, Walton SM (2007) Spatial and temporal variations of sediment size on a mixed sand and gravel beach. Sed Geol 202:509–528

    Article  Google Scholar 

  • Hsu JRC, Evans C (1989) Parabolic bay shapes and applications. Proc Inst Civ Eng 87:557–570

    Article  Google Scholar 

  • Iglesias G, López I, Castro A, Carballo R (2009) Neural network modelling of planform geometry of headland-bay beaches. Geomorphology 103:577–587

    Article  Google Scholar 

  • Klein AH, Vargas A, Alice Raabe AL, Hsu JRC (2003) Visual assessment of bayed beach stability with computer software. Comput Geosci 29(10):1249–1257

    Article  Google Scholar 

  • Kraus NC, Rosati GD (1997) Coastal engineering technical note: interpretation of shoreline position data for coastal engineering analysis. US Army Engineer Waterways Experiment Station Coastal and Hydraulics Laboratory

  • Krumbein WC (1944) Shore processes and beach characteristics. Beach erosion board, Technical memorandum n°3. U.S. Army Corps of Engineers, Washingtom D.C.

  • Kulkarni CD, Levoya F, Monfort O, Miles J (2004) Morphological variations of a mixed sediment beachface (Teignmouth, UK). Cont Shelf Res 24(11):1203–1218

    Article  Google Scholar 

  • Lausman R, Klein AHF, Stive MJF (2010a) Uncertainty in the application of the Parabolic Bay Shape Equation: part 1. Coast Eng 57:132–141

    Article  Google Scholar 

  • Lausman R, Klein AHF, Stive MJF (2010b) Uncertainty in the application of the Parabolic Bay Shape Equation: part 2. Coast Eng 57:142–151

    Article  Google Scholar 

  • Leafe R, Pethick J, Townend I (1998) Realizing the benefits of shoreline management. Geogr J 164(3):282–290

    Article  Google Scholar 

  • Lee TL, Jeng DS, Chen BR (2007) An engineering application tool for visual assessment of the equilibrium beach. China Ocean Eng 21(4):701–713

    Google Scholar 

  • Moreno LJ, Kraus NC (1999) Equilibrium shape of headland-bay beaches for engineering design. In: Proc of Coast Sed ASCE., Long Island, New York, 860–875

  • Nolan TJ, Kirk RM, Shulmeister J (1999) Beach cusp morphology on sand and mixed sand and gravel beaches, South Island, New Zeland. Mar Geol 157(3–4):185–198

    Article  Google Scholar 

  • Osborne PD (2005) Transport of gravel and cobble on a mixed-sediment inner bank shoreline of a large inlet, Grays Harbor, Washington. Mar Geol 224(1–4):145–156

    Article  Google Scholar 

  • Pedrozo-Acuña A, Simmonds DJ, Otta AK, Chadwick AJ (2006) On the cross-shore profile change of gravel beaches. Coast Eng 53(4):335–347

    Article  Google Scholar 

  • Pellegrino V (2006) Analisi del sistema costiero. Caratteristiche geo-morfologiche e idrodinamiche delle cale e delle baie tipo “pocket beach” della costa catalana. PhD Thesis

  • Pethick JS, Crooks S (2000) Development of a coastal vulnerability index: a geomorphological perspective. Environ Conserv 27(4):359–367

    Article  Google Scholar 

  • Schiaffino CF, Brignone M, Ferrari M (2012a) Application of the parabolic bay shape equation to sand and gravel beaches on Mediterranean coast. Coast Eng 59(1):57–63

    Article  Google Scholar 

  • Schiaffino CF, Brignone M, Ferrari M (2012b) Application of the parabolic bay shape equation to sand and gravel beaches on Mediterranean coasts: reply to the comments of D.E. Reeve. Coast Eng 65:11–15

    Article  Google Scholar 

  • Silvester R, Hsu JRC (1997) Engineering aspects of coastal geomorphology. In: Silvester R, Hsu JRC (eds) Coastal stabilization. World Scientific, Singapore, pp 199–271

    Google Scholar 

  • Silvester R, Tsuchiya Y, Shibano T (1980) Zeta bays, pocket beaches and headland control. In: Proc of the 17th International Conference of Coastal Engineering, ASCE, Sydney, AUS, pp 1306–1319

  • Valdemoro HI, Jiménez JA (2006) The influence of shoreline dynamics on the use and exploitation of Mediterranean tourist beaches. Coast Manage 34(4):405–423

    Article  Google Scholar 

  • Yasso WE (1965) Plan geometry of headland-bay beaches. J Geol 73(5):702–714

    Article  Google Scholar 

  • Wang Z-Q, Tan S-K, Cheng N-S, Goh K-W (2008) A simple relationship for crenulated-shaped bay in static equilibrium. Coast Eng 55(1):73–78

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Francesca Baggio for English revision and translation. Aerial orthophotos courtesy of Google Earth™ and Regione Liguria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara F. Schiaffino.

Additional information

Communicated by: H. A. Babaie

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiaffino, C.F., Brignone, M. & Ferrari, M. A free software for sand and gravel embayed beach modelling: PhoEbuS- parabolic equation shape. Earth Sci Inform 6, 165–173 (2013). https://doi.org/10.1007/s12145-013-0122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-013-0122-6

Keywords

Navigation