Skip to main content

Advertisement

Log in

Two GUIs-based analysis tool for spectroradiometer data pre-processing

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

A new graphical user interface (GUI) for pre-processing reflectance spectra, built using MATLAB and expressly designed for the ASD FieldSpec® spectroradiometer, was developed to solve problems that generally affect experimental ASD data. The GUI is characterised by an easily readable, graphic visualisation of spectra, from which the absorption band depth (ABD) can be obtained for a selected wavelength. The output format of the ASD data is a binary file with an .asd extension. The binary file, that provides a single spectrum, can be processed using a software functionality, by means of a GUI, that allows to select one or more binary files to produce a spectral library in a unique .txt file. The spectral reflectance is re-calibrated with the “convex-hull” methodology to eliminate the convex shape, which is typical of reflectance spectra. Different examples of the use of the new GUI are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andreou C, Karathanassi V (2011) Exploitation of hyperspectral imagery for the detection of oil spill. Proceedings of the 12th Conference on Environmental Science and Technology. Rhodes, Greece, 8–10 September 2011

  • Ardissone P, Boccardo P, Borgogno Mondino E (2003) Digital images processing of hyperspectral airborne data: a cultural heritage example. CIPA XIX International Symposium, Commission V, WG5, Antalya, Turkey, 30 September–4 October 2003

  • Balas C, Papadakis V, Papadakis N, Papadakis A, Vazgiouraki E, Themelis G (2002) A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value. J Cult Herit 4(1):330–337

    Google Scholar 

  • Bartholomeus HM, Epema GF, Schaepman ME (2007) Determining iron content in Mediterranean soils in partly vegetated areas, using spectral reflectance and imaging spectroscopy. Int J Appl Earth Obs Geoinform 9:194–203

    Article  Google Scholar 

  • Bassani C, Cavalli R, Cavalcante F, Cuomo V, Palombo A, Pascucci S, Pignatti S (2007) Deterioration status of asbestos-cement roofing sheets assessed by analyzing hyperspectral data. Remote Sens Environ 109(3):361–378

    Article  Google Scholar 

  • Bassani C, Cavalli RM, Goffredo R, Palombo A, Pascucci S, Pignatti S (2009) Specific spectral bands for different land cover contexts to improve the efficiency of remote sensing archaeological prospection: the Arpi case study. J Cult Herit 10(1):41–48

    Article  Google Scholar 

  • Ben-Dor E (2002) Quantitative remote sensing of soil properties. Adv Agron 38:1–44

    Google Scholar 

  • Ben-Dor E, Taylor RG, Hill J, Dematte JAM, Whiting ML, Chabrillat S, Sommer S (2008) Imaging spectrometry for soil applications. Adv Agron 97:321–392

    Article  Google Scholar 

  • Ben-Dor E, Chabrillat S, Demattê JAM, Taylor GR, Hill J, Whiting ML, Sommer S (2009) Using imaging spectroscopy to study soil properties. Remote Sens Environ 113:S38–S55

    Article  Google Scholar 

  • Bianchi R, Cavalli RM, Marino CM, Pignatti S, Poscolieri, M (1995) Use of airborne hyperspectral images to assess the spatial distribution of oil spilled during the Trecate blow-out (Northern Italy). In: Proceedings SPIE, vol. 2585, pp 352–362

  • Bower TL, Rowan LC (1996) Remote mineralogic and lithological mapping of the Ice River alkaline complex, British Columbia, Canada, using AVIRIS data. Photogramm Eng Remote Sens 62:1143–1376

    Google Scholar 

  • Brekke C, Solberg AHS (2005) Oil spill detection by satellite 1 remote sensing. Remote Sens Environ 95:1–13

    Article  Google Scholar 

  • Buddenbaum H, Steffens M (2012) The Effects of Spectral Pretreatments on Chemometric Analyses of Soil Profiles Using Laboratory Imaging Spectroscopy. Hindawi Publishing Corporation Applied and Environmental Soil Science Volume 2012, Article ID 274903

  • Busetto L, Meroni M, Crosta GF, Guanter L, Colombo R (2011) SpecCal: novel software for in-field spectral characterization of high-resolution spectrometers. Comput Geosci 37:1685–1691

    Article  Google Scholar 

  • Cavalli RM, Pascucci S, Pignatti S (2009) Hyperspectral remote sensing data to map hazardous materials in a rural and industrial district: the Podgorica dwellings case studies. In: Hyperspectral image and signal processing: evolution in remote sensing. WHISPERS 2009

  • Cécillon L, Cassagne N, Czarnes S, Gros R, Brun JJ (2008) Variable selection in near infrared spectra for the biological characterization of soil and earthworm casts. Soil Biol Biochem 40:1975–1979

    Article  Google Scholar 

  • Chabrillat S, Goetz AFH, Krosley L, Olsen HW (2002) Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution. Remote Sens Environ 82:431–445

    Article  Google Scholar 

  • Clark RN (1999) Spectroscopy of rocks and minerals and principles of spectroscopy. In: Rencz AN (ed) Remote sensing for the earth sciences. John Wiley & Sons, Chichester, pp 3–58

    Google Scholar 

  • Clark RN, Roush TL (1984) Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J Geophys Res 89(B7):6329–6340

    Article  Google Scholar 

  • Clark RN, Green RO, Swayze GA, Meeker G, Sutley S, Hoefen TM, Livo KE, Plumlee G, Pavri B, Sarture C, Wilson S, Hageman P, Lamothe P, Vance JS, Boardman J, Brownfield I, Gent C, Morath LC, Taggart J, Theodorakos PM, Adams M (2001) Environmental Studies of the World Trade Center area after the September 11, attack. U.S. Geological Survey, Open File Report, OFR-01-0429

  • Clark RN, Swayze GA, Livo KE, Kokaly RF, King JB, Dalton JS, Rockwell BW, Hoefen T, McDougal RR (2002) Surface Reflectance Calibration of Terrestrial Imaging Spectroscopy Data: A Tutorial Using AVIRIS (online source: http://speclab.cr.usgs.gov/PAPERS.calibration.tutorial)

  • Cloutis EA (1996) Hyperspectral geological remote sensing: evaluation of analytical techniques. Int J Remote Sens 17:2215–2242

    Article  Google Scholar 

  • Comelli D, D’Andrea C, Valentini G, Cubeddu R, Colombo C, Toniolo L (2004) Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art. Appl Optics 43(10):2175–2183

    Article  Google Scholar 

  • Coren F, Visintini D, Prearo G, Sterzai P (2005) Integrating LIDAR intensity measures and hyperspectral data for extracting of cultural heritage. In: Proceedings of the Italy–Canada 2005 Workshop on 3D Digital Imaging & Modeling: Application of Heritage, Industry, Medicine & Land, Padova, Italy, May 17–18 2005

  • Cudahy T, Jones M, Thomas M, Cocks P, Agustin F, Caccetta M, Hewson R, Verrall M, Rodger A (2010) Mapping soil surface mineralogy at Tick Hill, North-Western Queensland, Australia, Using airborne hyperspectral imagery. Progress in Soil Science, 1, Volume 1, Proximal Soil Sensing, Part 3:211–229

  • Curtiss B, Goetz AFH (1994) Field spectrometry: Techniques and instrumentation. Proceedings of an International Symposium on Spectral Sensing Research, 10–15 July 1994, San Diego, California, USA

  • Elachi C (1987) Introduction to physics and techniques of remote sensing. John Wiley & Sons, New York

    Google Scholar 

  • Fiumi L (2001) Evaluation of MIVIS hyperspectral data for mapping covering materials in the urban areas. In: Proceedings of the IEEE/ISPRS Joint Workshop on Remote Sensing and data Fusion over Urban areas, Rome, Italy, November 8–9th

  • Garfagnoli F, Ciampalini A, Moretti S, Chiarantini L, Vettori S (2013) Quantitative mapping of clay minerals using airborne imaging spectroscopy: new data on Mugello (Italy) from SIM-GA prototypal sensor. Eur J Remote Sens 46:1–17

    Article  Google Scholar 

  • Geladi P (2003) Chemometrics in spectroscopy. Part 1. Classical chemometrics. Spectrochim Acta B At Spectrosc 58(5):767–782

    Article  Google Scholar 

  • Giannini MB, Creta T, Guglietta D, Merola P, Allegrini A (2012) Methodologies to identify asbestos-cement roofing by remote data. Eur J Remote Sens 44:27–37

    Google Scholar 

  • Giardino C, Candiani G, Bresciani M, Lee Z, Gagliano S, Pepe M (2011) BOMBER: a tool for estimating water quality and bottom properties from remote sensing images. Comput Geosci. doi:10.1016/j.cageo.2011.11.022

    Google Scholar 

  • Goetz AFH (2009) Three decades of hyperspectral remote sensing of the Earth: a personal view. Remote Sens Environ 113:S5–S16

    Article  Google Scholar 

  • Goetz AFH, Vane G, Solomon JE, Rock BN (1985) Imaging spectrometry for earth remote sensing. Science 228:1147–1153

    Article  Google Scholar 

  • Gomez C, Viscarra Rossel RA, Mc Bratney AB (2008) Soil organic carbon prediction by hyperspectral remote sensing and field VIS-NIR spectroscopy: an Australian case study. Geoderma 146:403–411

    Article  Google Scholar 

  • Green AA, Craig MD (1985) Analysis of aircraft spectrometer data with logarithmic residuals. In: JPL Proceedings of The Airborne Imaging Spectrometer Data Analysis Workshop, pp 111–119

  • Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, Faust JA, Pavri BE, Chovit CJ, Solis M, Olah MR, Williams O (1998) Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens Environ 65:227–248

    Article  Google Scholar 

  • Hill J, Mehl W, Altherr M (1994) Land degradation and soil erosion mapping in a mediterranean ecosystem. In: Hill J, Megier J (eds) Imaging spectrometry, a tool for environmental observations. Kluwer Academic Publishers, pp 237–260

  • Hörig B, Kühn F, Oschütz F, Lehmann F (2001) HyMap hyperspectral remote sensing to detect hydrocarbons. Int J Remote Sens 22(8):1413–1422

    Google Scholar 

  • Idowu OJ, van Es HM, Abawi GS, Wolfe WD, Ball JI, Gugino BK, Moebius BNA, Schindelbeck RR, Bilgili AV (2008) Farmer-oriented assessment of soil quality using field, laboratory, and VNIR spectroscopy methods. Plant Soil 307:243–253

    Article  Google Scholar 

  • Jaoumot J, Gargallo R, De Juan A, Tauler R (2005) A graphical user-friedly interface for MCR ALS: a new tool for multivariate curve resolution in MATLAB. Chemom Intell Lab Syst 76:101–110

    Article  Google Scholar 

  • Jha NM, Levy J, Gao Y (2008) Advances in remote sensing for oil spill disaster management: state-of-the-art. Sensors technology for oil spill surveillance. Sensors 8:236–255

    Article  Google Scholar 

  • Kokaly RF (2001) Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sens Environ 75(2):153–161

    Article  Google Scholar 

  • Lagacherie P, Baret F, Feret J-B, Madeira Netto J, Robbez-Masson JM (2008) Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sens Environ 112:825–835

    Article  Google Scholar 

  • Marino CM, Panigada C, Busetto L (2001) Airborne hyperspectral remote sensing application in urban areas: asbestos concrete sheeting identification and mapping. In: Proceedings of the IEEE/ISPRS Joint Workshop on Remote sensing and Data Fusion over Urban Areas, November 8–9th, Rome, Italy

  • Pascucci S, Bassani C, Cavalli RM, Fusilli L, Palombo A, Pignatti S, Santini F (2010). Hyperspectral remote sensing capability for mapping near-surface asbestos deposits and pollutants dispersion in soils. In: Proceedings of Hyperspectral 2010 Workshop, Frascati, Italy, 17–19 March 2010 (ESA SP-683, May 2010)

  • Plaza J, Pérez R, Plaza A, Martínez P, Valencia D (2005) Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data. In: Proceedings SPIE 5995, 599509

  • Plaza A, Benediktsson JA, Boardman JW, Brazile J, Bruzzone L, Camps-Valls G, Chanussot J, Fauvel M, Gamba P, Gualtieri A, Marconcini M, Tilton JC, Trianni G (2009) Recent advances in techniques for hyperspectral image processing. Remote Sens Environ 113:S110–S122

    Article  Google Scholar 

  • Salem F, Kafatos M (2001) Hyperspectral image analysis for oil spill mitigation. In: 22nd Asian Conference on Remote Sensing, Singapore, 2001

  • Salem F, Kafatos M, El-Ghazawi T, Gomez R, Yang R (2002) Hyperspectral image analysis for oil spill detection. In: Summaries of NASA/JPL Airborne Earth Science Workshop, Pasadena, CA, 5–9 November 2001

  • Salem F, Kafatos M, El-Ghazawi T, Gomez R, Yang R (2005) Hyperspectral image assessment of oil-contaminated wetland. Int J Remote Sens 26(4):811–821

    Article  Google Scholar 

  • Salisbury J (1998) Spectral measurement field guide. Defense Technology Information Center as Report No. ADA362372

  • Sanchez-Azofeifa GA, Castro K, Wright SJ, Gamon J, Kalacska M, Rivard B, Schnitzer SA, Feng JL (2009) Differences in leaf traits, leaf internal structure, and spectral reflectance between two communities of lianas and trees: implications for remote sensing in tropical environments. Remote Sens Environ 2076–2088

  • Selige T, Böhner J, Schmidhalter U (2006) High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma 136:235–244

    Article  Google Scholar 

  • Stevens A, Van Wesemael B, Bartholomeus H, Rosillon D, Tychon B, Ben-Dor E (2008) Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soil. Geoderma 144(1–2):395–404

    Article  Google Scholar 

  • Swayze GA, Kokaly RF, Higgings CT, Clinkenbeard JP, Clark RN, Lowers HA, Sultley SJ (2009) Mapping potentially asbestos-bearing rocks using imaging spectroscopy. Geology 37:763–766

    Article  Google Scholar 

  • Van der Meer F (1995) Spectral reflectance of carbonate mineral mixtures and bidirectional reflectance theory: quantitative analysis techniques for application in remote sensing. Remote Sens Rev 13(1–2):67–94

    Article  Google Scholar 

  • Van der Meer FD, Van der Werff HMA, Van Ruitenbeek FJA, Hecker CA, Bakker WH, Noomen MF, Van der Mejide M, Carranza EJM, Smeth JBD, Woldai T (2012) Multi- and hyperspectral geologic remote sensing: a review. Int J Appl Earth Obs Geoinform 14:112–128

    Article  Google Scholar 

  • Vane G, Goetz AFH (1988) Terrestrial imaging spectroscopy. Remote Sens Environ 24:1–29

    Article  Google Scholar 

  • Vane G, Goetz AFH, Wellman JB (1984) Airborne imaging spectrometer: a new tool for remote sensing. IEEE Trans Geosci Remote Sens 22(6):546–549

    Article  Google Scholar 

  • Viscarra Rossel RA, McGlynn RN, McBratney AB (2006a) Determining the composition of mineral-organic mixes using UV–VIS-NIR diffuse reflectance spectroscopy. Geoderma 137:70–82

    Article  Google Scholar 

  • Viscarra Rossel RA, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO (2006b) Visible, near infrared, mid infrared or combined diffused reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131:59–75

    Article  Google Scholar 

  • Ye X, Sakai K, Okamoto H, Garciano LO (2008) A ground-based hyperspectral imaging system for characterizing vegetation spectral features. Comput Electron Agric 63:13–21

    Article  Google Scholar 

  • Zarco-Tejada PJ, Miller JR, Pedros R, Verhoef W, Berger M (2006) FluorMODgui V3.0: a graphic user interface for the spectral simulation of leaf and canopy chlorophyll fluorescence. Comput Geosci 32:577–591

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Antonella Buccianti (Department of Earth Sciences, University of Firenze) is gratefully acknowledged for critical reading of the manuscript. Authors are also thankful to the reviewers, whose valuable comments considerably improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Garfagnoli.

Additional information

Communicated by: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garfagnoli, F., Martelloni, G., Ciampalini, A. et al. Two GUIs-based analysis tool for spectroradiometer data pre-processing. Earth Sci Inform 6, 227–240 (2013). https://doi.org/10.1007/s12145-013-0124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-013-0124-4

Keywords

Navigation