Skip to main content

Advertisement

Log in

Correlation analysis of NDVI dynamics and hydro-meteorological variables in growth period for four land use types of a water scarce area

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

As the characterization of primary productivity of wetland ecosystem, the Normalized Difference Vegetation Index (NDVI) plays an important role in local ecosystem conservation for environmental management. In this paper, the correlations of NDVI and hydro-meteorological variables were studied in a water scarce area with emphasis on different land use types, namely water, wetland, residential land and farmland, during the growing seasons of 1999 and 2000. The significant NDVI changes were detected between spring and summer for all land use types. The correlation analysis revealed that the NDVI-temperature correlation (P < 0.001) was stronger than NDVI-precipitation correlation (P < 0.01 for farmland and P < 0.05 for others) in all land use types. In addition, water level had no significant correlation with NDVI at such a small time scale. The sensitivity differences in different land use types based on the determination coefficient of the linear regression models are: Rfarmland > Rwetland > Rresidential land > Rwater for NDVI and precipitation correlations (P < 0.05); and Rwater > Rwetland > Rresidential land > Rfarmland for NDVI and temperature correlations (P < 0.001). The results would be valuable for the understandings of effects of hydro-meteorological variables on NDVI changes, as well as the potential effect on land use and land cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmedou O, Nagasawa R, Osman A, Hattori K (2008) Rainfall variability and vegetation dynamics in the Mauritanian Sahel. Clim Res 38(1):75–81. doi:10.3354/cr00776

    Article  Google Scholar 

  • Beck PSA, Atzberger C, Høgda KA, Johansen B, Skidmore AK (2006) Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sens Environ 100(3):321–334. doi:10.1016/j.rse.2005.10.021

    Article  Google Scholar 

  • Berger DL, Johnson MJ, Tumbusch ML, Mackay J (2001) Estimates of evapotranspiration from the Ruby Lake National Wildlife Refuge Area, Ruby Valley, Northeastern Nevada, May 1999-October 2000. US Department of the Interior, US Geological Survey

  • Bierschenk A, Savage C, Townsend C, Matthaei C (2012) Intensity of land use in the catchment influences ecosystem functioning along a freshwater-marine continuum. Ecosystems 1–15. doi:10.1007/s10021-012-9536-0

  • Cai YP, Huang GH, Yang ZF, Tan Q (2009) Identification of optimal strategies for energy management systems planning under multiple uncertainties. Appl Energ 86(4):480–95. doi: 10.1016/j.apenergy.2008.09.025

    Google Scholar 

  • Cai YP, Huang GH, Tan Q, Chen B (2011) Identification of optimal strategies for improving eco-resilience to floods in ecologically vulnerable regions of a wetland. Ecol Model 222(2):360–369. doi: 10.1016/j.ecolmodel.2009.12.012

    Google Scholar 

  • Cai Y, Mitani Y, Ikemi H, Liu S (2012) Effect of precipitation timescale selection on tempo-spatial assessment of paddy water demand in Chikugo-Saga Plain, Japan. Water Resour Manag 26(6):1731–1746. doi:10.1007/s11269-012-9984-5

    Google Scholar 

  • Chamaillé-Jammes S, Fritz H (2009) Precipitation–NDVI relationships in eastern and Southern African savannas vary along a precipitation gradient. Int J Remote Sens 30(13):3409–3422. doi:10.1080/01431160802562206

    Article  Google Scholar 

  • Cui BS, Li X, Zhang KJ (2010) Classification of hydrological conditions to assess water allocation schemes for Lake Baiyangdian in North China. J Hydrol 385(1–4):247–256. doi:10.1016/j.jhydrol.2010.02.026

    Article  Google Scholar 

  • Dong C, Huang GH, Cai YP, Xu Y (2011) An interval-parameter minimax regret programming approach for power management systems planning under uncertainty. Appl Energ 88(8):2835–45. doi: 10.1016/j.apenergy.2011.01.056

    Google Scholar 

  • Dunn SM, Brown I, Sample J, Post H (2012) Relationships between climate, water resources, land use and diffuse pollution and the significance of uncertainty in climate change. J Hydrol 434–435:19–35. doi:10.1016/j.jhydrol.2012.02.039

    Article  Google Scholar 

  • Dupuis AP, Hann BJ (2009) Warm spring and summer water temperatures in small eutrophic lakes of the Canadian prairies: potential implications for phytoplankton and zooplankton. J Plankton Res 31(5):489–502. doi:10.1093/plankt/fbp001

    Article  Google Scholar 

  • Elliott JA (2010) The seasonal sensitivity of Cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Glob Chang Biol 16(2):864–876. doi:10.1111/j.1365-2486.2009.01998.x

    Article  Google Scholar 

  • Gamon JA, Field CB, Goulden ML, Griffin KL, Hartley AE, Joel G, Peñuelas J, Valentini R (1995) Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol Appl 28–41. doi:www.jstor.org/stable/1942049

  • Gu Y, Brown JF, Verdin JP, Wardlow B (2007) A 5-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys Res Lett 34, L06407. doi:10.1029/2006GL029127

    Google Scholar 

  • Hall-Beyer M (2012) Patterns in the yearly trajectory of standard deviation of NDVI over 25 years for forest, grasslands and croplands across ecological gradients in Alberta, Canada. Int J Remote Sens 33(9):2725–2746. doi:10.1080/01431161.2011.620029

    Article  Google Scholar 

  • Hansen P, Schjoerring J (2003) Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ 86(4):542–553. doi:10.1016/S0034-4257(03)00131-7

    Article  Google Scholar 

  • Ichii K, Kawabata A, Yamaguchi Y (2002) Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990. Int J Remote Sens 23(18):3873–3878. doi:10.1080/01431160110119416

    Article  Google Scholar 

  • Jacobs JM, Mergelsberg SL, Lopera AF, Myers DA (2002) Evapotranspiration from a wet prairie wetland under drought conditions: Paynes Prairie Preserve, Florida, USA. Wetlands 22(2):374–385. doi:10.1672/0277-5212(2002)022[0374:EFAWPW]2.0.CO;2

    Article  Google Scholar 

  • Lafleur PM, Rouse WR (1988) The influence of surface cover and climate on energy partitioning and evaporation in a subarctic wetland. Bound-Layer Meteorol 44(4):327–347. doi:10.1007/BF00123020

    Article  Google Scholar 

  • Li B, Tao S, Dawson R (2002) Relations between AVHRR NDVI and ecoclimatic parameters in China. Int J Remote Sens 23(5):989–999. doi:10.1080/014311602753474192

    Article  Google Scholar 

  • Liu J, Dietz T, Carpenter SR, Alberti M, Folke C, Moran E, Pell AN, Deadman P, Kratz T, Lubchenco J (2007) Complexity of coupled human and natural systems. Science 317(5844):1513–1516. doi:10.1126/science.1144004

    Article  Google Scholar 

  • Lotsch A, Friedl MA, Anderson BT, Tucker CJ (2003) Coupled vegetation-precipitation variability observed from satellite and climate records. Geophys Res Lett 30(14):1774. doi:10.1029/2003GL017506

    Article  Google Scholar 

  • Lunetta RS, Shao Y, Ediriwickrema J, Lyon JG (2010) Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data. Int J Appl Earth Obs Geoinformation 12(2):81–88. doi:10.1016/j.jag.2009.11.005

    Article  Google Scholar 

  • Meng M, Ni J, Zong M (2011) Impacts of changes in climate variability on regional vegetation in China: NDVI-based analysis from 1982 to 2000. Ecol Res 26(2):421–428. doi:10.1007/s11284-011-0801-z

    Article  Google Scholar 

  • Mishra A, Singh V (2010) A review of drought concepts. J Hydrol 391:202–216. doi:10.1016/j.jhydrol.2010.07.012

    Article  Google Scholar 

  • Mishra A, Özger M, Singh V (2011) Association between uncertainties in meteorological variables and water-resources planning for the state of Texas. J Hydrol Eng 16:984–999. doi:10.1061/(ASCE)HE.1943-5584.0000150

    Article  Google Scholar 

  • Na X, Zang S (2011) Classifying wetland vegetation type from MODIS NDVI time series using Fourier analysis. Appl Inform Commun 224(1):66–73. doi:10.1007/978-3-642-23214-5_9

    Article  Google Scholar 

  • Neigh CSR, Tucker CJ, Townshend JRG (2008) North American vegetation dynamics observed with multi-resolution satellite data. Remote Sens Environ 112(4):1749–1772. doi:10.1016/j.rse.2007.08.018

    Article  Google Scholar 

  • Oindo BO, Skidmore AK (2002) Interannual variability of NDVI and species richness in Kenya. Int J Remote Sens 23(2):285–298. doi:10.1080/01431160010014819

    Article  Google Scholar 

  • Paerl HW, Paul VJ (2011) Climate change: links to global expansion of harmful cyanobacteria. Water Res 46(5):1349–1363. doi:10.1016/j.watres.2011.08.002

    Article  Google Scholar 

  • Qi Y (1999) The effect of climate change on vegetation at high latitudes of the Northern Hemisphere, a functional analysis (in Chinese). Acta Ecol Sin 19(4):474–477

    Google Scholar 

  • Seaquist J, Hickler T, Eklundh L, Ardö J, Heumann B (2009) Disentangling the effects of climate and people on Sahel vegetation dynamics. Biogeosciences 6(3):469–477. doi:10.5194/bgd-5-3045-2008

    Article  Google Scholar 

  • Segah H, Tani H, Hirano T (2010) Detection of fire impact and vegetation recovery over tropical peat swamp forest by satellite data and ground-based NDVI instrument. Int J Remote Sens 31(20):5297–5314. doi:10.1080/01431160903302981

    Article  Google Scholar 

  • Song Y, Ma M (2008) Variation of AVHRR NDVI and its relationship with climate in Chinese arid and cold regions (in Chinese). J Remote Sens 12(3):499–505

    Google Scholar 

  • Tadonléké RD (2010) Evidence of warming effects on phytoplankton productivity rates and their dependence on eutrophication status. Limnol Oceanogr 55(3):973–982. doi:10.4319/lo.2010.55.3.0973

    Article  Google Scholar 

  • Tan Q, Huang GH, Cai YP (2011) Radial interval chance-constrained programming for agricultural non-point source water pollution control under uncertainty. Agr Water Manage 98(10):1595–606. doi:10.1016/j.agwat.2011.05.013

  • Tang J, Ding X, Wang L, Xu Q, Yang Z, Zhao J, Sun Q, Feng S, Zhang J (2012) Effects of wetland degradation on bacterial community in the Zoige Wetland of Qinghai-Tibetan Plateau (China). World J Microbiol Biotechnol 28(2):649–657. doi:10.1007/s11274-011-0858-4

    Article  Google Scholar 

  • Tarnavsky E, Garrigues S, Brown ME (2008) Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products. Remote Sens Environ 112(2):535–549. doi:10.1016/j.rse.2007.05.008

    Article  Google Scholar 

  • Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int J Biometeorol 45(4):184–190. doi:10.1007/s00484-001-0109-8

    Article  Google Scholar 

  • Wang F, Wang X, Zhao Y, Yang ZF (2012) Long-term water quality variations and chlorophyll a simulation with an emphasis on different hydrological periods in Lake Baiyangdian, North China. J Environ Inform 20(2):90–102. doi:10.3808/jei.201000223

    Article  Google Scholar 

  • Wang F, Wang X, Zhao Y, Yang ZF (2013a) Temporal variations of NDVI and correlations between NDVI and hydro-climatological variables at Lake Baiyangdian, China. Int J Biometeorol 1–13. doi:10.1007/s00484-013-0758-4

  • Wang F, Wang X, CHEN B, Zhao Y, Yang ZF (2013b) Chlorophyll a simulation in a Lake Ecosystem using a model with wavelet analysis and Artificial Neural Network. Environ Manag 51(5):1044–1054. doi:10.1007/s00267-013-0029-5

    Article  Google Scholar 

  • Yin XA, Yang ZF (2011) Development of a coupled reservoir operation and water diversion model: balancing human and environmental flow requirements. Ecol Model 222(2):224–231. doi:10.1016/j.ecolmodel.2010.06.025

    Article  Google Scholar 

  • Zhao Y, Yang ZF, Xia XH, Wang F (2012) A shallow lake remediation regime with phragmites australis: incorporating nutrient removal and water evapotranspiration. Water Res 46(17):5635–5644. doi:10.1016/j.watres.2012.07.053

    Article  Google Scholar 

  • Zhou L, Kaufmann R, Tian Y, Myneni R, Tucker C (2003) Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. J Geophys Res 108(D1):4004. doi:10.1029/2002JD002510

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Water Pollution Control and Treatment Project of China (No.2008ZX07209–009), The national Science Foundation for Innovative Research Group (No.51121003), the National Natural Sciences Foundation of China (No. 31301921; No. 31170193) and Research Project for National Environmental Nonprofit Industry (No. 201209032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Wang.

Additional information

Communicated by: H. A. Babaie

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOCX 79 kb)

Table S1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Wang, X., Zhao, Y. et al. Correlation analysis of NDVI dynamics and hydro-meteorological variables in growth period for four land use types of a water scarce area. Earth Sci Inform 7, 187–196 (2014). https://doi.org/10.1007/s12145-013-0139-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-013-0139-x

Keywords

Navigation