Skip to main content

Advertisement

Log in

Regional gravity inversion of crustal thickness beneath the Tibetan plateau

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

We apply a newly developed inversion scheme for a gravimetric determination of the Moho depths. This scheme utilizes the system of observation equations, which relates the complete crust-stripped gravity disturbances (i.e., the gravity disturbances corrected for anomalous crustal density structures) with the (unknown) Moho depths by means of a linearized Fredholm integral equation of the first kind. A point-value discretization scheme is applied, in which the coefficients of a design matrix are calculated using the closed analytical formula for the integral kernel function. The a priori error model is not applied due to the lack of knowledge on the accuracy of crustal density structure model. Tikhonov’s regularization is applied to stabilize the ill-posed solution; the regularization matrix is the identity matrix and the regularization parameter is selected based on an optimal fitting of the gravimetric solution to the a priori seismic Moho model. This method is applied to determine the Moho depths regionally at the study area of the Tibetan plateau and Himalayas characterized by the world largest crustal thickness. A constant value of the crust-mantle density contrast of 485 kg m−3 is assumed in our numerical model. For this density contrast, the estimated maximum Moho depths in central Tibet exceed 80 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allègre CJ, Courtillot V, Tapponier P, Hirn A, Mattauer M, Coulon C, Jaeger JJ, Achache J, Schärer U, Marcoux J, Burg JP, Girardeau J, Armijo R, Garie C, Göpel C, Li T, Xiao X, Chang C, Li G (1984) Structure and evolution of the Himalaya-Tibet orogenic belt. Nature 307:17–22

    Article  Google Scholar 

  • Bagherbandi M (2012) A comparison of three gravity inversion methods for crustal thickness modelling in Tibet plateau. Asian J Earth Sci 43(1):89–97

    Article  Google Scholar 

  • Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS, Trans. AGU, 81, F897

  • Bilham R, Larson K, Freymueller J (1997) GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386:61–64

    Article  Google Scholar 

  • Braitenberg C, Zadro M, Fang J, Wang Y, Hsu HT (2000a) Gravity inversion in Quinghai-Tibet plateau. Phys Chem Earth 25:381–386

    Article  Google Scholar 

  • Braitenberg C, Zadro M, Fang J, Wang Y, Hsu HT (2000b) The gravity and isostatic Moho undulations in Qinghai-Tibet plateau. J Geodyn 30:489–505

    Article  Google Scholar 

  • Caporali A (1995) Gravity anomalies and the flexure of the lithosphere in the Karakoram, Pakistan. J Geophys Res 100:15075–15085

    Article  Google Scholar 

  • Caporali A (1998) Gravimetric constraints on the rheology of the Indian and Tarim plates in the Karakoram continent collision zone. J Asian Earth Sci 16:313–321

    Article  Google Scholar 

  • Caporali A (2000) Buckling of the lithosphere in western Himalaya; constraints from gravity and topography data. J Geophys Res 105:3103–3113

    Article  Google Scholar 

  • Dewey JF, Cande S, Pitman WC (1989) Tectonic evolution of the Indian/Eurasia Collision Zone. Eclogae Geol Helv 82(3):717–734

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

    Article  Google Scholar 

  • Gao R, Lu Z, Li Q, Guan Y, Zhang J, He R, Huang L (2005) Geophysical survey and geodynamic study of crust and upper mantle in the Qinghai-Tibet Plateau. Episodes 28(4):263–273

    Google Scholar 

  • Gladkikh V, Tenzer R (2011) A mathematical model of the global ocean saltwater density distribution. Pure Appl Geophys 169(1–2):249–257

    Google Scholar 

  • Hinze WJ (2003) Bouguer reduction density, why 2.67? Geophysics 68(5):1559–1560

    Article  Google Scholar 

  • Hirn A, Lepine JC, Jobert TG, Sapin M, Wittlinger G, Xu ZX, Gao EY, Wang XJ, Teng JW, Xiong SB, Pandey MR, Talte JM (1984) Crust structure and variability of the Himalayan border of Tibet. Nature 307(5946):23–25

    Article  Google Scholar 

  • Kind R, Ni J, Zhao W, Wu J, Yuan X, Zhao L, Sandvol E, Reeses C, Nabelek J, Hearn T (1996) Evidence from earthquake data for a partially molten crustal layer in Southern Tibet. Science 274:1692–1694

    Article  Google Scholar 

  • Kind R, Yuan X, Saul J, Nelson D, Sobolev SV, Mechie J, Zhao W, Kosarev G, Ni J, Achauer U, Jiang M (2002) Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction. Science 298:1219–1221

    Article  Google Scholar 

  • Lyon-Caen H, Molnar P (1983) Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere. J Geophys Res 88:8171–8191

    Article  Google Scholar 

  • Lyon-Caen H, Molnar P (1984) Gravity anomalies and the structure of western Tibet and the southern Tarim basin. Geophys Res Lett 11:1251–1254

    Article  Google Scholar 

  • Martinec Z (1998) Boundary value problems for gravimetric determination of a precise geoid. Lecture Notes in Earth Science, 73, Springer-Verlag

  • Mayer-Guerr T, Rieser D, Höck E, Brockmann JM, Schuh W-D, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03s. Abstract, GGHS2012, Venice

  • Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia, effects of a continental collision. Science 189:419–426

    Article  Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–162

    Article  Google Scholar 

  • Nelson KD, Zhao W, Brown LD, Kuo J, Che J, Liu X, Klemperer SL, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J (1996) Partially molten middle crust beneath southern Tibet synthesis of Project INDEPTH results. Science 274:1684–1688

    Article  Google Scholar 

  • Pavlis NK, Factor JK, Holmes SA (2007) Terrain-related gravimetric quantities computed for the nNext EGM. Presented at the 1st International symposium of the International gravity service 2006, August 28- September 1, Istanbul, Turkey

  • Rai SS, Priestley K, Gaur VK, Mitra S, Singh MP, Searle M (2006) Configuration of the Indian Moho beneath the NW Himalaya and Ladakh. Geophys Res Lett 33, L15308

    Article  Google Scholar 

  • Schulte-Pelkum V, Monsalve G, Sheehan A, Pandey MR, Sapkota S, Bilham R (2005) Imaging the Indian subcontinent beneath the Himalaya. Nature 435:1222–1225

    Article  Google Scholar 

  • Shin YH, Xu H, Braitenberg C, Fang J, Wang Y (2007) Moho undulations beneath Tibet from GRACE-integrated gravity data. Geophys J Int 170:971–985

    Article  Google Scholar 

  • Sjöberg LE (2013) On the isotactic gravity anomaly and disturbance and their applications to Vening Meinesz-Moritz gravimetric inverse problem. Geophys J Int. doi:10.1093/gji/ggt008

    Google Scholar 

  • Sjöberg LE, Bagherbandi M (2011) A method of estimating the Moho density contrast with a tentative application by EGM08 and CRUST2.0. Acta Geophys 58:1–24

    Google Scholar 

  • Teng JW, Yin ZX, Xu X, Wnag T, Lu DY (1983) Structure of the crust and upper mantle pattern and velocity distributional characteristics in the Northern Himalayan mountain region. Acta Geophys Sin 26(6):525–540

    Google Scholar 

  • Tenzer R, Chen W (2013) Expressions for the global gravimetric Moho modeling in spectral domain. Comput Geosci Pure Appl Geophys. doi:10.1007/s00024-013-0740-4

    Google Scholar 

  • Tenzer R, Hamayun, Vajda P (2009a) Global maps of the CRUST2.0 crustal components stripped gravity disturbances. J Geophys Res 114(B):05408

    Article  Google Scholar 

  • Tenzer R, Hamayun, Vajda P (2009b) A global correlation of the step-wise consolidated crust-stripped gravity field quantities with the topography, bathymetry, and the CRUST2.0 Moho boundary. Contrib Geophys Geodesy 39(2):133–147

    Google Scholar 

  • Tenzer R, Vajda P, Hamayun (2010a) A mathematical model of the bathymetry-generated external gravitational field. Contrib Geophys Geodesy 40(1):31–44

    Google Scholar 

  • Tenzer R, Abdalla A, Vajda P, Hamayun (2010b) The spherical harmonic representation of the gravitational field quantities generated by the ice density contrast. Contrib Geophys Geodesy 40(3):207–223

    Google Scholar 

  • Tenzer R, Novák P, Gladkikh V (2011) On the accuracy of the bathymetry-generated gravitational field quantities for a depth-dependent seawater density distribution. Stud Geophys Geod 55(4):609–626

    Article  Google Scholar 

  • Tenzer R, Novák P, Vajda P, Gladkikh V, Hamayun (2012a) Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Comput Geosci 16(1):193–207

    Article  Google Scholar 

  • Tenzer R, Gladkikh V, Vajda P, Novák P (2012b) Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure. Surv Geophys 33(5):817–839

    Article  Google Scholar 

  • Tenzer R, Novák P, Gladkikh V (2012c) The bathymetric stripping corrections to gravity field quantities for a depth-dependant model of the seawater density. Mar Geod 35:198–220

    Article  Google Scholar 

  • Tenzer R, Hamayun, Novák P, Gladkikh V, Vajda P (2012d) Global crust-mantle density contrast estimated from EGM2008, DTM2008, CRUST2.0, and ICE-5G. Pure Appl Geophys 169(9):1663–1678

    Article  Google Scholar 

  • Tenzer R, Bagherbandi M, Hwang C, Chang ETY (2013) Moho interface modeling beneath Himalayas, Tibet and central Siberia using GOCO02S and DTM2006.0. Special issue on geophysical and climate change studies in Tibet, Xinjiang, and Siberia from satellite geodesy. Terr Atmos Ocean Sci 24(4):581–590

    Article  Google Scholar 

  • Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG (1995) Numerical methods for the solution of Ill-posed problems. Kluwer, Dordrecht

  • Tilmann F, Ni J, INDEJPTH Seismic Team (2003) Seismic imaging of the down-welling Indian lithosphere beneath central Tibet. Science 300:1424–1427

    Article  Google Scholar 

  • Vajda P, Vaníček P, Novák P, Tenzer R, Ellmann A (2007) Secondary indirect effects in gravity anomaly data inversion or interpretation. J Geophys Res 112, B06411

    Google Scholar 

  • Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge, 458 pp

    Google Scholar 

  • Wittlinger G, Vergne J, Tapponnier P, Farra V, Poupinet G, Jiang M, Su H, Herquel G, Paul A (2004) Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet. Earth Planet Sci Lett 221:117–130

    Article  Google Scholar 

  • Wu G, Xiao X, Li T (1991) Yadong to Golmud transect, Qinghai-Tibet plateau, China, Global Geoscience Transect 3, AGU, Publication No. 189 of the International Lithosphere Program, pp. 1–32 and supplementary foldout

  • Wu QJ, Zeng RS, Zhao WJ (2004) Dipping structure of upper mantle and continent-continent collision in Himalyas-Tibet Plateau. Sci China Ser D 34(10):919–925

    Google Scholar 

  • Xiong SB, Teng JW, Yin ZX (1985) Research on the fine crustal structure of the northern Qilian-Hexi Corridor by deep seismic reflection. Chin J Geophys 38:29–35

    Google Scholar 

  • Xu ZQ, Jiang M, Yang JS, Xue GQ, Su HP, Li HB, Cui JW, Wu CL, Liang FH (2004) Mantle structure of Qinghai-Tibet plateau: mantle plume, mantle shear zone and delamination of lithospheric slab. Earth Sci Front 11(4):329–343

    Google Scholar 

  • Young D (1971) Iterative solutions of large linear systems. Academic Press, New York

    Google Scholar 

  • Zeng RS, Ding ZF, Wu QJ (1994) A review of the lithospheric structure in Tibetan plateau and constraints for dynamics. Acta Geophys Sin 37:99–116

    Google Scholar 

  • Zeng RS, Teng JW, Li YK, Klemperer S, Yang LQ (2002) Crustal velocity structure and eastward escaping of crustal material in the southern Tibet. Sci China 32(10):793–798

    Google Scholar 

  • Zhang ZJ, Li YK, Wang GJ, Teng JW, Klemperer S, Li JW, Gan JY, Chen Y (2001) E-W crustal structure under the northern Tibet revealed by wide-angle seismic profiles. Sci China Ser D 31(11):881–888

    Google Scholar 

  • Zhang Z, Deng Y, Teng J, Wang C, Gao R, Chen Y, Fan W (2011) An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings. J Asian Earth Sci 40:977–989

    Article  Google Scholar 

  • Zhao W-J, Nelson KD, Project INDEPTH Team (1993) Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature 366:557–559

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tenzer.

Additional information

Communicated by: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenzer, R., Chen, W. Regional gravity inversion of crustal thickness beneath the Tibetan plateau. Earth Sci Inform 7, 265–276 (2014). https://doi.org/10.1007/s12145-014-0146-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-014-0146-6

Keywords

Navigation