Skip to main content
Log in

Appraisal of active deformation from drainage network and faults: inferences from non-linear analysis

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

This investigation reveals the relative susceptibility of the landscape to surface deformation by means of non-linear analysis of drainage network. The geometrical characteristics of the drainage network are quite capable of discriminating the impact of active tectonics. This study uses fractal dimension, lacunarity and succolarity techniques to demarcate numerous zones where the drainage network is tectonically controlled. Rose diagrams are used to compare drainage network orientation with the faults. This investigation is primarily based on the basic concept that the drainage network is subject to linearized and modify from its natural geometrical shape and orientation under the influence of tectonic activity. The areas with similar fractal dimension can be further discriminated by lacunarity and succolarity analysis. A detailed textural investigation of the drainage network (Strahler order ≥2) of Secchia, Panaro and Reno mountain river basins in northern Apennines, Italy is carried out to analyze the linearization, translational invariance and rotation of the stream patterns. The low fractal dimension values of Secchia, Panaro, Reno, Dragone, Dolo and Setta rivers indicate tectonically controlled drainage. The results reveal that the fractal dimension, lineament density and orientation analysis of drainage network and faults is a significant tool to pinpoint areas susceptible to active deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allain C, Cloitre M (1991) Characterizing the lacunarity of random and deterministic fractal sets. Phys Rev A 44:3552–3558

    Article  Google Scholar 

  • Alves-Junior S, Barros-filho M (2005) Enhancing urban analysis through lacunarity multiscale measurement. UCL working paper series 97:1–19

  • Ambrosetti P, Bartolini C, Bosi C, Carraro F, Ciaranfi N, Ghisetti F, Papani G, Vezzani L, Zanferrari A, Zitellini N (1987) Neotectonic map of Italy scale 1:500,000. Quad Ric Sci 4:114

    Google Scholar 

  • Anudu GK, Essien BI, Onuba LN, Ikpokonte AE (2011) Lineament analysis and interpretation for assessment of groundwater potential of Wamba and adjoining areas, Nasarawa State, northcentral Nigeria. J Appl Technol Environ Sanit 1:185–198

    Google Scholar 

  • Barros-Filho MN, Sobreira FJA (2008) Accuracy of lacunarity algorithms in texture classification of high spatial resolution images from urban areas. Int Arch Photogramm Beijing Remote Sens Spat Inf Sci 37:417–422

    Google Scholar 

  • Batty M, Longley P (1994) Fractal cities: a geometry of form and function. Academic, London

    Google Scholar 

  • Ben-Zion Y, Sammis CG (2003) Characterization of fault zones. Pure Appl Geophys 160:677–715

    Article  Google Scholar 

  • Bettelli G, Bonazzi U, Panini F (1989) Schema introduttivo alla geologia delle Liguridi dell’Appennino modenese e delle aree limitrofe. Mem Soc Geol Ital 39:91–126

    Google Scholar 

  • Boccaletti M, Bonini M, Corti G, Gasperini P, Martelli L, Piccardi L, Severi P, Vannucci P (2004a) Note illustrative alla Carta Sismotettonica della regione Emilia-Romagna alla scala 1:250.000. Regione Emilia-Romagna, C.N.R., Firenze. S.EL.CA. Firenze

  • Boccaletti M, Bonini M, Corti G, Gasperini P, Martelli L, Piccardi L, Severi P, Vannucci P (2004b) Carta Sismotettonica della regione Emilia-Romagna alla scala 1:250.000. Regione Emilia-Romagna, C.N.R., Firenze. S.EL.CA. Firenze

  • Boccaletti M, Corti G, Martelli L (2011) Recent and active tectonics of the external zone of the Northern Apennines (Italy). Int J Earth Sci 100:1331–1348. doi:10.1007/s00531-010-0545-y

    Article  Google Scholar 

  • Burrough PA (1981) Fractal dimensions of landscapes and other environmental data. Nature 294:240–242

    Article  Google Scholar 

  • Caputo M, Caputo R (1988) Structural analysis: new analytical approach and applications. Ann Tecton 2:84–89

    Google Scholar 

  • Centamore E, Ciccacci S, Del Monte M, Fredi P, Lupia Palmieri E (1996) Morphological and morphometric approach to the study of the structural arrangement of northeastern Abruzzo (central Italy). Geomorphology 16:127–137

    Article  Google Scholar 

  • Chiarabba C, Jovane L, Di Stefano R (2005) A new view of Italian seismicity using 20 years of instrumental recording recordings. Tectonophysics 395:251–268

    Article  Google Scholar 

  • Ciccacci S, Fredi P, Lupia Palmieri E, Pugliese F (1986) Indirect evaluation of erosion entity in drainage basins through geomorphic, climatic and hydrological parameters. Int Geomorphol 2:33–48

    Google Scholar 

  • Clarke KC (1986) Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Comput Geosci 12:713–722

    Article  Google Scholar 

  • CPTI working group (2004) Catalogo Parametrico dei Terremoti Italiani. Version 2004 (CPTI04). INGV, Milano, Web: http://emidius.mi.ingv.it/CPTI/

    Google Scholar 

  • Culling WEH, Datko M (1987) The fractal geometry of the soil-covered landscape. Earth Surf Process Landf 12:369–385

    Article  Google Scholar 

  • Currado C, Fredi P (2000) Morphometric parameters of drainage basins and morphotectonic setting of eastern Abruzzo. Mem Soc Geol Ital 55:411–419

    Google Scholar 

  • De Melo RHC (2007) Using fractal characteristics such as fractal dimension, lacunarity and succolarity to characterize texture patterns on images. Dissertacao de mestrado, Universidade Federal Fluminense, Escola de engenharia e Instituto de Computacao, Niteroi, RJ, Brasil

  • Del Monte M, Di Bucci D, Trigari A (1996) Assetto morfotettonico della regione compresa tra la Majella e il Mare adriatico (Appennino Abruzzese). Mem Soc Geol Ital 51:419–430

    Google Scholar 

  • Delcaillau B, Carozza JM, Laville E (2006) Recent fold growth and drainage development: the Janauri and Chandigarh anticlines in the Siwalik foothills, northwest India. Geomorphology 76:241–256

    Article  Google Scholar 

  • Della Seta M (2004) Azimuthal transects of stream orientations: an advance in understanding the regional morphotectonic setting of eastern Abruzzo (Central Italy). Geogr Fis Dinam Quat 27:21–28

    Google Scholar 

  • Della Seta M, Del Monte M, Fredi P, Lupia Palmieri E (2004) Quantitative morphotectonic analysis as a tool for detecting deformation patterns in soft-rock terrains: a case study from the southern Marches, Italy. Géomorphol Relief Process Environ 4:267–284

    Article  Google Scholar 

  • Dombradi E, Timar G, Gabor B, Sierd C, Frank H (2007) Fractal dimension estimations of drainage network in the Carpathian-Pannonian system. Glob Planet Chang 58:197–213

    Article  Google Scholar 

  • Dong P (2000a) Lacunarity for spatial heterogeneity measurement in GIS. Ann GIS 6:20–26

    Article  Google Scholar 

  • Dong P (2000b) Test of a new lacunarity estimation method for image texture analysis. Int J Remote Sens 21:3369–3377

    Article  Google Scholar 

  • Dong P (2009) Lacunarity analysis of raster datasets and 1D, 2D. Comput Geosci 35:2100–2110

    Article  Google Scholar 

  • Dougherty G, Henebry GM (2001) Fractal signature and lacunarity in the measurement of the texture of trabecular bone in clinical CT images. Med Eng Phys 23:369–380

    Article  Google Scholar 

  • Falconer KL (1990) Fractal geometry: mathematical foundations and applications. University of Bristol, Wiley, England

    Google Scholar 

  • Feagina RA, Wub XB, Feaginc T (2007) Edge effects in lacunarity analysis. Ecol Model 201:262–268. doi:10.1016/j.ecolmodel.2006.09.019,2007

    Article  Google Scholar 

  • Gerrard AJ, Ehlen J (1999) Fractal analysis of joint spacing and landform features on the Dartmoor Granite. Geosci South-West Engl 9:300–303

    Google Scholar 

  • Gloaguen R, Marpu PR, Niemeyer I (2007) Automatic extraction of faults and fractal analysis from remote sensing data. Nonlinear Process Geophys 14:131–138

    Article  Google Scholar 

  • Gloaguen R, Kaessner A, Wobbe F, Shahzad F, Mahmood SA (2008) Remote sensing analysis of crustal deformation using river networks. In: IEEE Int. Geosci Remote Sens Symp Boston, US, pp IV-1 - IV-4

  • Golf JA (1990) Comment on Fractal mapping of digitized images: application to the topography of Arizona and comparison with synthetic images by J. Huang and D.L. Turcotte. J Geophys Res 95:5159

    Article  Google Scholar 

  • Greenbaum D (1985) Review of remote sensing applications to groundwater exploration in basement and regolith. Brit Geol Surv Rep 8:1–36

    Google Scholar 

  • Guillermo RA, Gerardo MEP, Piccoloa MC, Pierini J (2004) Fractal analysis of tidal channels in the Bahia Blanca Estuary (Argentina). Geomorphology 57:263–274

    Article  Google Scholar 

  • Hengl T, Reuter HI (2009) Geomorphometry: concepts, software and applications. Elsevier, Amsterdam

    Google Scholar 

  • Hobbs WH (1911) Repeating patterns in the relief and structure of the land. Geol Soc Am Bull 22:123–176

    Article  Google Scholar 

  • Holcombe R (2012) GEOrient, structual geology and mapping software, Holcombe Coughlin and Associates Australia. Web: http://www.holcombe.net.au/software/rodhsoftware_georient.htm

  • Hosini S, Ghoorchi M (2010) Compare Orientation of drainages and faults in Nehbandan, East Iran. The 1st International Applied Geological Congress, Department of Geology, Islamic Azad University - Mashad Branch, Iran

  • Huang J, Turcotte DL (1989) Fractal mapping of digitized images: application to the topography of Arizona and comparisons with synthetic images. J Geophys Res 94:7491–7495

    Article  Google Scholar 

  • Huang J, Turcotte DL (1990) Reply [to “Comment on ‘Fractal mapping of digitized images: application to the topography of arizona and comparison with synthetic images’ by Huang J Turcotte DL”]. J Geophys Res 95:5161

    Article  Google Scholar 

  • Jenson SK, Domingue JO (1988) Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm Eng Remote Sens 54:1593–1600

    Google Scholar 

  • La Barbera P, Rosso R (1989) On the fractal dimension of stream networks. Water Resour Res 25:735–741

    Article  Google Scholar 

  • Lavecchia G, Boncio P, Creati N (2003) A lithospheric-scale seismogenic thrust in Central Italy. J Geodyn 36:79–94

    Article  Google Scholar 

  • Lifton NA, Chase CG (1992) Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: implications for landscape evolution in the San Gabriel Mountains, California. Geomorphology 5:77–114

    Article  Google Scholar 

  • Longley PA, Goodchild MF, Maguire DJ, Rhind DW (2005) Geographical information systems & science. Wiley, Chichester

    Google Scholar 

  • Lupia Palmieri E, Ciccacci S, Civitelli G, Corda L, D’Alessandro L, Del Monte M, Fredi P, Pugliese F (1995) Geomorfologia quantitativa e morfodinamica del territorio abruzzese. I. Il Bacino del Fiume Sinello. Geogr Fis Dinam Quat 18:31–46

    Google Scholar 

  • Lupia Palmieri E, Centamore E, Ciccacci S, D’Alessandro L, Del Monte M, Fredi P, Pugliese F (1998) Geomorfologia quantitativa e morfodinamica del Territorio abruzzese: II – Il bacino idrografico del Fiume Tordino. Geogr Fis Dinam Quat 21:113–129

    Google Scholar 

  • Lupia Palmieri E, Biasini A, Caputo C, Centamore E, Ciccacci S, Del Monte M, Fredi P, Pugliese F (2001) Geomorfologia quantitativa e morfodinamica del territorio abruzzese. III. Il Bacino idrografico del Fiume Saline. Geogr Fis Dinam Quat 24:157–176

    Google Scholar 

  • Maître H, Pinciroli M (1999) Fractal characterization of a hydrological basin using SAR satellite images. IEEE Trans Geosci Remote Sens 37:25

    Article  Google Scholar 

  • Mandelbrot B (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156:636–638

    Article  Google Scholar 

  • Mandelbrot B (1983) The fractal geometry of nature. Freeman WH, New York

    Google Scholar 

  • Mark DM, Aronson PB (1984) Scale dependent fractal dimensions of topographic surfaces: an empirical investigation, with applications in geomorphology and computer mapping. Math Geol 16:671–683

    Article  Google Scholar 

  • Martinez MD, Lana X, Burgueño A, Serra C (2007) Lacunarity, predictability and predictive instability of the daily pluviometric regime in the Iberian Peninsula. Nonlinear Process Geophys 14:109–121

    Article  Google Scholar 

  • Melo RHC (2007) Using fractal characteristics such as fractal dimension, lacunarity and succolarity to characterize texture patterns on images, Master’s thesis, Federal Fluminense University

  • Melo RHC, Conci A (2008) Succolarity: defining a method to calculate this fractal measure. 15th International Conference on Systems, Signals and Image Processing, Bratislava, Slovak Republic

  • Melo RHC, Vieira EA, Conci A (2006) Characterizing the lacunarity of objects and image sets and its use as a technique for the analysis of textural patterns. Lect Notes Comput Sci 4179:208–219

    Article  Google Scholar 

  • Michetti AM, Serva L, Vittori E (2000) ITHACA (Italy Hazard from Capable Faulting), a database of active capable faults of the Italian onshore territory, Internal report of Agenzia Nazionale Protezione Ambiente (ANPA), Rome. ITHACA: Web http://www.apat.gov.it/site/it-IT/Progetti/ITHACA

  • Montgomery DR, Abbe TB, Buffington JM, Peterson NP, Schmidt KM, Stock JD (1996) Distribution of bedrock and alluvial channels in forested mountain drainage basins. Nature 381:587–589

    Article  Google Scholar 

  • Moreira IC (1999) Fractais. In: Nussenzveig HM (ed) Complexidade e Caos. Editora UFRJ/COPEA, Rio de Janeiro, pp 51–82

    Google Scholar 

  • O’Callaghan J, Mark D (1984) The extraction of drainage networks from digital elevation data. Comput Vis Graph Image Process 28:323–344

    Article  Google Scholar 

  • Peitgen HO, Jurgens H, Saupe D (1992) Chaos and fractals new frontiers of science. Springer Verlag, New York

    Book  Google Scholar 

  • Phillips JD (1993) Interpreting the fractal dimension of river networks. In: Lam NS, De Cola L (eds) Fractals and geography. Prentice Hall, New York, pp 142–157

    Google Scholar 

  • Plotnick RE, Gardner RH, O’Neil RV (1993) Lacunarity indices as measures of landscape texture. Landsc Ecol 8:201–211

    Article  Google Scholar 

  • Plotnick RE, Gardner RH, Hargrove WW, Prestegaard K, Perlmutter M (1996) Lacunarity analysis: a general technique for the analysis of spatial patterns. Phys Rev 53:5461–5468

    Article  Google Scholar 

  • Qinghua G (2004) Interpretation of scale in paired quadrat variance methods. J Veg Sci 15:763–770

    Article  Google Scholar 

  • Rauch E (2007) Introduction to lacunarity. Web. www.swiss.ai.mit.edu/~rauch/lacunarity/lacunarity.html

  • Rodriguez-Iturbe I, Rinaldo A (2001) Fractal river basins: chance and self-organization. Cambridge University Press, Cambridge

    Google Scholar 

  • Russ JC (1993) Fractal Surfaces. Plenum Press, New York

  • Russ JC (1997) Fractal dimension measurement of engineering surfaces. In: Rosen BG, Crafoord RJ (eds) 7th Int’l Conf on Metrology and Properties of Engineering Surfaces. Chalmers Univ., Goteborg, Sweden, pp 170–174

  • Scheidegger AE (2002) Morphometric analysis and its relation to tectonics in Macaronesia. Geomorphology 46:95–115

    Article  Google Scholar 

  • Schuller DJ, Rao AR, Jeong JR (2001) Fractal characteristics of dense stream networks. J Hydrol 243:1–16

    Article  Google Scholar 

  • Shahzad F, Mahmood SA, Gloaguen R (2010) Nonlinear analysis of drainage systems to examine surface deformation: an example from Potwar Plateau (Northern Pakistan). Nonlinear Process Geophys 17:137–147

    Article  Google Scholar 

  • Strahler AN (1966) The Earth sciences. Harper International

  • Tarboton DG, Bras RL, Rodriguez-Iturbe I (1988) The fractal nature of river networks. Water Resour Res 24:1317–1322

    Article  Google Scholar 

  • Tarboton D, Bras R, Rodriguez-Iturbe I (1991) On the extraction of channel networks from digital elevation data. Hydrol Process 5:81–100

    Article  Google Scholar 

  • Taud H, Parrot JF (2005) Measurement of DEM roughness using the local fractal dimension. Géomorphol Relief Process Environ 10:327–338

    Google Scholar 

  • Turcotte DL (1992) Fractals and chaos in geology and geophysics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Turcotte DL (2007) Self-organized complexity in geomorphology: observations and models. Geomorphology 91:302–310. doi:10.1016/j.geomorph.2007.04.016

    Article  Google Scholar 

  • Twidale CR (1980) Geomorphology. Thomas Nelson

  • Twidale CR (2004) River patterns and their meaning. Earth Sci Rev 67:159–218

    Article  Google Scholar 

  • Valous NA, Sun DW, Allen P, Mendoza F (2010) The use of lacunarity for visual texture characterization of pre-sliced cooked pork ham surface intensities. Food Res Int 43:387–395

    Article  Google Scholar 

  • Veltri M, Veltri P, Maiolo M (1996) On the fractal description of natural channel networks. J Hydrol 187:137–144

    Article  Google Scholar 

  • Vetel W, Le Gall B, Johnson C (2004) Recent tectonics in the Turkana Rift (North Kenya): an integrated approach from drainage network, satellite imagery and reflection seismic analyses. Basin Res 16:165–181

    Article  Google Scholar 

  • Wobus CW, Whipple KX, Kirby E, Snyder NP, Johnson J, Spyropolou K, Crosby B, Sheehan DD (2006) Tectonics from topography: procedures, promise and pitfalls. In: Willett SD, Hovius N, Brandon MT, Fisher DM Tectonics, climate and landscape evolution. Geol Soc Am Special Paper 398:5–74

    Google Scholar 

  • Xie H, Wang JA, Stein E (1998) Direct fractal measurement and multifractal properties of fracture surfaces. Phys Lett A 242:41–50

    Article  Google Scholar 

  • Xie H, Wang J, Kwaśniewski MA (1999) Multifractal characterization of rock fracture surfaces. Int J Rock Mech Min Sci 36:19–27

    Article  Google Scholar 

  • Zernitz ER (1932) Drainage patterns and their significance. J Geol 40:498–521

    Article  Google Scholar 

  • Zhang T, Tang G, Liu X, Zhou Y, Jia D (2007) Multi-scale structure of channel network in Jiuyuangou drainage basin. Geoinformatics Geospatial Inf Sci 6753

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saima Siddiqui.

Additional information

Communicated by: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siddiqui, S., Soldati, M. & Castaldini, D. Appraisal of active deformation from drainage network and faults: inferences from non-linear analysis. Earth Sci Inform 8, 233–246 (2015). https://doi.org/10.1007/s12145-014-0156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-014-0156-4

Keywords

Navigation