Skip to main content
Log in

A MATLAB-based program for processing geochemical data using fractal/multifractal modeling

  • Software Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

In the field of applied geochemistry, it is important to obtain quantitative descriptions of geochemical patterns and identify geochemical anomalies. In this paper, we present a MATLAB-based program for processing geochemical data by means of fractal/multifractal modeling. The procedure consists of two functional parts. First, we quantify the spatial distribution characteristics of geochemical patterns using the multifractal spectrum. Second, geochemical anomalies are identified using various fractal/multifractal models. These models include the concentration-area fractal model, spectrum-area multifractal model, and multifractal singularity analysis. The results can be visualized in the MATLAB platform or saved for further analysis, i.e., by geographic information systems software. We demonstrate the applicability of this program by processing a geochemical dataset from soil samples taken in Inner Mongolia, China. We examine the concentrations of Ag in these soil samples, and show that the results obtained by our program are highly correlated with known Ag deposits in the region of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afzal P, Khakzad A, Moarefvand P, Rashidnejad Omran N, Esfandiari B, Fadakar Alghalandis Y (2010) Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. J Geochem Explor 104:34–46

    Article  Google Scholar 

  • Afzal P, Fadakar Alghalandis Y, Khakzad A, Moarefvand P, Rashidnejad Omran N (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modelling. J Geochem Explor 18:220–232

    Article  Google Scholar 

  • Afzal P, Fadakar Alghalandis Y, Moarefvand P, Rashidnejad Omran N, Asadi Haroni H (2012) Application of power-spectrum–volume fractal method for detecting hypogene, supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit, Central Iran. J Geochem Explor 112:131–138

    Article  Google Scholar 

  • Afzal P, Harati H, Fadakar AY, Yasrebi AB (2013) Application of spectrum–area fractal model to identify of geochemical anomalies based on soil data in Kahang porphyry-type Cu deposit, Iran. Chem Erde 73:533–543

    Article  Google Scholar 

  • Agterberg FP (1996) Multifractal modeling of the sizes and grades of giant and supergiant deposits. Int J Rock Mech Mining Sci Geomech Abst 33:A365

    Google Scholar 

  • Agterberg FP (2012) Multifractals and geostatistics. J Geochem Explor 122:113–122

    Article  Google Scholar 

  • Allègre CL, Lewin E (1995) Scale law Scaling laws and geochemical distributions. Earth Planet Sci Lett 132:1–13

    Article  Google Scholar 

  • Arias M, Gumie P, Martín-Izard A (2012) Multifractal analysis of geochemical anomalies: a tool for assessing prospectivity at the SE border of the Ossa Morena Zone, Variscan Massif (Spain). J Geochem Explor 122:101–112

    Article  Google Scholar 

  • Behrens JT (1997) Principles and procedures of exploratory data analysis. Psychol Methods 2:131–160

    Article  Google Scholar 

  • Bölviken B, Stokke PR, Feder J, Jössang T (1992) The fractal nature of geochemical landscapes. J Geochem Explor 43:91–109

    Article  Google Scholar 

  • Carranza EJM (2009) Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Elsevier B.V, pp. 455–456

  • Carranza EJM (2010) Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochem: Explor, Environ, Anal 10:171–187

    Google Scholar 

  • Cheng Q (2007) Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol Rev 32:314–324

    Article  Google Scholar 

  • Cheng Q, Agterberg FP (1996) Multifractal modeling and spatial statistics. Math Geol 28:1–16

    Article  Google Scholar 

  • Cheng Q, Agterberg FP (2009) Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Comput Geosci 35:234–244

    Article  Google Scholar 

  • Cheng Q, Agterberg FP, Ballantyne SB (1994) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51:109–130

    Article  Google Scholar 

  • Cheng Q, Agterberg FP, Bonham-Carter GF (1996) A spatial analysis method for geochemical anomaly separation. J Geochem Explor 56:183–195

    Article  Google Scholar 

  • Cheng Q, Bonham-Carter GF, Hall GEM, Bajc A (1997) Statistical study of trace elements in the soluble organic and amorphous Fe-Mn phases of surficial sediments, Sudbury Basin 1. multivariate and spatial analysis. J Geochem Explor 59:27–46

    Article  Google Scholar 

  • Cheng Q, Xu Y, Grunsky E (1999) Integrated spatial and spectral analysis for geochemical anomaly separation. In: Lippard SJ, Naess A, Sinding-Larsen R (Eds.), Proceedings of the Fifth Annual Conference of the International Association for Mathematical Geology, Trondheim, Norway 6–11th August, vol. 1, pp. 87–92

  • Cheng Q, Xu Y, Grunsky E (2000) Integrated spatial and spectrum method for geochemical anomaly separation. Nat Resour Res 9:43–52

    Article  Google Scholar 

  • Cheng Q, Xia Q, Li W, Zhang S, Chen Z, Zuo R, Wang W (2010) Density/area power-law models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China. Biogeosciences 7:3019–3025

    Article  Google Scholar 

  • Davis JC (2002) Statistics and data analysis in geology, 3rd edn. Wiley, New York

    Google Scholar 

  • Evertsz CJG, Mandelbrot BB (1992) Multifractal measures (Appendix B). In: Saupe D, Peitgen HO, Jurgens H (eds) Chaos and fractals. Springer Verlag, New York, pp 922–953

    Google Scholar 

  • Hawkes HE, Webb JS (1962) Geochemistry in mineral exploration. Harper and Row, New York

    Google Scholar 

  • Huang Z, Wang Z, Chang C, Ma D, Wang L, Wang X, Zhang H (2013) Mineralization regularity and prospecting direction of polymetallic metallogenic belt in Dongwuqi, Inner Mongolia. Geol Survey Res 36:205–212 (In Chinese with English abstract)

    Google Scholar 

  • Jiang H, Liu G, Liu W(2007) Geological characteristics and mineral resource prospecting of Jilinbaolige silver deposit, Inner Mongolia. Geology and Mineral Resources of South China:9–13 (In Chinese with English abstract)

  • Lavallee D, Lovejoy S, Schertzer D, Ladoy P (1993) Nonlinear variability and landscape topography: analysis and simulation. Fract Geograph:158–192

  • Li C, Ma T, Shi J (2003) Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J Geochem Explor 77:167–175

    Article  Google Scholar 

  • Lima A, De Vivo B, Cicchella D, Cortini M, Albanese S (2003) Multifractal IDW interpolation and fractal filtering method in environmental studies: an application on regional stream sediments of (Italy), Campania region. Appl Geochem 18:1853–1865

    Article  Google Scholar 

  • Liu, H., (2011) Geochemical methods for semi–arid grasslands: a case study in Dong Ujimqinqi, Inner Mongolia. A dissertation of master degree from China University of Geosciences, 73p

  • Liu H, Chi Q, Wang W, Wang X, Zhou J (2013) Geochemical methods for grassland–covered hilly terrains in central–eastern Inner Mongolia. Geophys Geochem Explor 37:382–388 (In Chinese with English abstract)

    Google Scholar 

  • Mehran Heidari S, Ghaderi M, Afzal P (2013) Delineating mineralized phases based on lithogeochemical data using multifractal model in Touzlar epithermal Au-Ag (Cu) deposit, NW Iran. Appl Geochem 31:119–132

    Article  Google Scholar 

  • Reimann C (2005a) Geochemical mapping: technique or art? Geochem: Explor, Environ, Anal 5:359–370

    Google Scholar 

  • Reimann C (2005b) Sub-continental-scale geochemical mapping: sampling, quality control and data analysis issues. Geochem: Explor, Environ, Anal 5:311–323

    Google Scholar 

  • Sinclair AJ (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3:129–149

    Article  Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading, USA

  • Turcotte DL (2002) Fractals in petrology. Lithos 65:261–271

    Article  Google Scholar 

  • Wang J (2003) Metallogeny of Dongwu banner copper and silver ploymetallic ore zone of inner Mongolia. Min Res Geol 17:132–135 (In Chinese with English abstract)

    Google Scholar 

  • Wang H, Cheng Q, Zuo R (2015) Spatial characteristics of geochemical patterns related to Fe mineralization in the southwestern Fujian province (China). J Geochem Explor 148:259–269

    Article  Google Scholar 

  • Xie S, Bao Z (2004) Fractal and multifractal properties of geochemical fields. Math Geol 36:847–864

    Article  Google Scholar 

  • Xu Y, Cheng Q (2001) A fractal filtering technique for processing regional geochemical maps for mineral exploration. Geochem: Explor, Environ, Anal 1:147–156

    Google Scholar 

  • Yousefi M, Kamkar-Rouhani A, Carranza EJM (2012) Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. J Geochem Explor 115:24–35

    Article  Google Scholar 

  • Yousefi M, Kamkar-Rouhani A, Carranza EJM (2014) Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity. Geochem: Explor, Environ, Anal 14:45–58

    Google Scholar 

  • Yu Y, Liu H, Li J, Ma X, Chao Y, Li Y, Yang W (2011) Discovery and enlightenment of the large–scale polymetallic mineralization belt in Ajile, Inner Mongolia. Geol Explor 46:798–804 (In Chinese with English abstract)

    Google Scholar 

  • Zuo R (2011a) Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Appl Geochem 26:S271–S273

    Article  Google Scholar 

  • Zuo R (2011b) Identifying geochemical anomalies associated with Cu and Pb-Zn skarn mineralization using principal component analysis and spectrum-area fractal modeling in the Gangdese Belt, Tibet (China). J Geochem Explor 111:13–22

    Article  Google Scholar 

  • Zuo R (2012) Exploring the effects of cell size in geochemical mapping. J Geochem Explor 112:357–367

    Article  Google Scholar 

  • Zuo R, Cheng Q (2008) Mapping singularities — a technique to identify potential Cu mineral deposits using sediment geochemical data, an example for Tibet, west China. Mineral Mag 72:531–534

    Article  Google Scholar 

  • Zuo R, Xia Q (2009) Application fractal and multifractal methods to mapping prospectivity for metamorphosed sedimentary iron deposits using stream sediment geochemical data in eastern Hebei province, China. Geochim Et Cosmochimica Acta 73:A1540

    Google Scholar 

  • Zuo R, Cheng Q, Agterberg FP, Xia Q (2009a) Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. J Geochem Explor 101:225–235

    Article  Google Scholar 

  • Zuo R, Cheng Q, Xia Q, Agterberg FP (2009b) Application of fractal models to characterization of vertical distribution of geochemical element concentration. J Geochem Explor 102:37–43

    Article  Google Scholar 

  • Zuo R, Carranza EJM, Cheng Q (2012) Fractal/multifractal modelling of geochemical exploration data. J Geochem Explor 122:1–3

    Article  Google Scholar 

  • Zuo R, Xia Q, Wang H (2013a) Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Appl Geochem 28:202–211

    Article  Google Scholar 

  • Zuo R, Xia Q, Zhang D (2013b) A comparison study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas. Appl Geochem 33:165–172

    Article  Google Scholar 

  • Zuo R, Wang J, Chen G, Yang M (2015) Identification of weak anomalies: a multifractal perspective. J Geochem Explor 148:12–24

    Article  Google Scholar 

Download references

Acknowledgments

Mr. Hanliang Liu from Institute of Geophysical and Geochemical Exploration (China) are thanked for providing geochemical data. Drs. Guoxiong Chen from China University of Geosciences (Wuhan) are thanked for testing the program code. This research benefited from the joint financial support from the National Natural Science Foundation of China (No. 41372007), and the Program for New Century Excellent Talents in University (NCET-13-1016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renguang Zuo.

Additional information

Communicated by: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zuo, R. A MATLAB-based program for processing geochemical data using fractal/multifractal modeling. Earth Sci Inform 8, 937–947 (2015). https://doi.org/10.1007/s12145-015-0215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-015-0215-5

Keywords

Navigation