Skip to main content

Advertisement

Log in

An integrated algorithm for depression filling and assignment of drainage directions over flat surfaces in digital elevation models

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Depression filling and assignment of drainage directions over flat surfaces, two of the common requirements of digital terrain analysis and other related hydrological work, are usually considered as stand-alone steps. This paper presents an integrated algorithm and its pseudocode combining the two steps to increase the efficiency of the overall process. We have developed a Chain Code Matrix to take advantage of the process sequence in the depression filling, which points the drainage direction of cells on flat surfaces towards the lowest potential outlet. Therefore, to improve the drainage direction assignment on flat surfaces, the Chain Code Matrix can be used to guide the calculation of the gradient directly from higher towards lower terrain on flat surfaces instead of applying iterative searching. This avoids finding flat surfaces through the drainage direction calculation in the Digital Elevation Model, which is inevitable in the existing methods. We used the Digital Elevation Models of ten Chinese provinces from the Shuttle Radar Topography Mission data to validate the results and compare the speeds. The experiments show that the integrated algorithm provides the same result for depression filling and drainage directions on flat surfaces as the previous algorithms, but is more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alsdorf DE (2003) Water storage of the central Amazon floodplain measured with GIS and remote sensing imagery. Ann Assoc Am Geogr 93:55–66

    Article  Google Scholar 

  • Barnes R, Lehman C, Mulla D (2014a) An efficient assignment of drainage direction over flat surfaces in raster digital elevation models. Comput Geosci 62:128–135. doi:10.1016/j.cageo.2013.01.009

    Article  Google Scholar 

  • Barnes R, Lehman C, Mulla D (2014b) Priority-flood: an optimal depression-filling and watershed-labeling algorithm for digital elevation models. Comput Geosci 62:117–127. doi:10.1016/j.cageo.2013.04.024

    Article  Google Scholar 

  • Beucher N, Beucher S (2011) Hierarchical queues: general description and implementation in MAMBA image library

  • Beucher S, Meyer F (1992) The morphological approach to segmentation: the watershed transformation. Opt Eng N Y Marcel Dekker Inc 34:433–433

    Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci Bull 24:43–69. doi:10.1080/02626667909491834

    Article  Google Scholar 

  • Brardinoni F, Hassan MA (2006) Glacial erosion, evolution of river long profiles, and the organization of process domains in mountain drainage basins of coastal. B C J Geophys Res: Earth Surf (2003–2012) 111

  • Clarke SE, Burnett KM, Miller DJ (2008) Modeling Streams and Hydrogeomorphic Attributes in Oregon From Digital and Field Data1 JAWRA. J Am Water Resour Assoc 44:459–477

    Article  Google Scholar 

  • Clennon J, King C, Muchiri E, Kitron U (2007) Hydrological modelling of snail dispersal patterns in Msambweni, Kenya and potential resurgence of Schistosoma haematobium transmission. Parasitology 134:683–693

    Article  Google Scholar 

  • Coe JA, Kinner DA, Godt JW (2008) Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado. Geomorphology 96:270–297

    Article  Google Scholar 

  • Ehlschlaeger C (1989) Using the AT search algorithm to develop hydrologic models from digital elevation data. In: International geographic information systems (IGIS) symposium. 275–281

  • Fang X, Pomeroy J, Westbrook C, Guo X, Minke A, Brown T (2010) Prediction of snowmelt derived streamflow in a wetland dominated prairie basin. Hydrol Earth Syst Sci Discuss 7

  • Garbrecht J, Martz LW (1997) The assignment of drainage direction over flat surfaces in raster digital elevation models. J Hydrol 193:204–213

    Article  Google Scholar 

  • Grimaldi S, Teles V, Bras RL (2004) Sensitivity of a physically based method for terrain interpolation to initial conditions and its conditioning on stream location. Earth Surf Process Landf 29:587–597. doi:10.1002/esp.1053

    Article  Google Scholar 

  • Grimaldi S, Nardi F, Benedetto FD, Istanbulluoglu E, Bras RL (2007) A physically-based method for removing pits in digital elevation models. Adv Water Resour 30:2151–2158. doi:10.1016/j.advwatres.2006.11.016

    Article  Google Scholar 

  • Jenson S, Domingue J (1988) Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm Eng Remote Sens 54:1593–1600

    Google Scholar 

  • Johnston EG, Rosenfeld A (1975) Digital detection of pits, peaks, ridges, and ravines. IEEE Trans Syst Man Cybernet

  • Kite G (2001) Modelling the Mekong: hydrological simulation for environmental impact studies. J Hydrol 253:1–13

    Article  Google Scholar 

  • Lin WT, Chou WC, Lin CY, Huang PH, Tsai JS (2006) Automated suitable drainage network extraction from digital elevation models in Taiwan’s upstream watersheds. Hydrol Process 20:289–306

    Article  Google Scholar 

  • Liu Y-H, Zhang W-C, Xu J-W (2009) Another fast and simple DEM depression-filling algo-rithm based on priority queue structure. Atmos Ocean Sci Lett 2:214–219

    Article  Google Scholar 

  • Magalhães SG, Andrade MA, Randolph Franklin W, Pena G (2012) A new method for computing the drainage network based on raising the level of an ocean surrounding the terrain. In: Josselin D, Vandenbroucke D, Gensel J (eds) Bridging the geographic information sciences. lecture notes in geoinformation and cartography. Springer, Springer Berlin Heidelberg, pp 391–407. doi:10.1007/978-3-642-29063-3_21

    Chapter  Google Scholar 

  • Martz LW, Garbrecht J (1992) Numerical definition of drainage network and subcatchment areas from digital elevation models. Comput Geosci 18:747–761. doi:10.1016/0098-3004(92)90007-E

    Article  Google Scholar 

  • Martz LW, Jong E (1988) CATCH: A FORTRAN program for measuring catchment area from digital elevation models. Comput Geosci 14:627–640. doi:10.1016/0098-3004(88)90018-0

    Article  Google Scholar 

  • Metz M, Mitasova H, Harmon R (2010) Accurate stream extraction from large, radar-based elevation models. Hydrol Earth Syst Sci Discuss 7

  • Metz M, Mitasova H, Harmon R (2011) Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search. Hydrol Earth Syst Sci 15:667–678

    Article  Google Scholar 

  • Meyer F (1994) Topographic distance and watershed lines. Signal Process 38:113–125. doi:10.1016/0165-1684(94)90060-4

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30. doi:10.1002/hyp.3360050103

    Article  Google Scholar 

  • Nardi F, Grimaldi S, Santini M, Petroselli A, Ubertini L (2008) Hydrogeomorphic properties of simulated drainage patterns using digital elevation models: the flat area issue / Propriétés hydro-géomorphologiques de réseaux de drainage simulés à partir de modèles numériques de terrain: la question des zones planes. Hydrol Sci J 53:1176–1193. doi:10.1623/hysj.53.6.1176

    Article  Google Scholar 

  • O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vis Graph Image Process 28:323–324

    Article  Google Scholar 

  • O’Loughlin EM (1986) Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour Res 22:794–804. doi:10.1029/WR022i005p00794

    Article  Google Scholar 

  • Phillips JD, Slattery MC (2007) Downstream trends in discharge, slope, and stream power in a lower coastal plain river. J Hydrol 334:290–303

    Article  Google Scholar 

  • Planchon O, Darboux F (2002) A fast, simple and versatile algorithm to fill the depressions of digital elevation models. CATENA 46:159–176. doi:10.1016/S0341-8162(01)00164-3

    Article  Google Scholar 

  • Soille P, Gratin C (1994) an efficient algorithm for drainage network extraction on dems. J Vis Commun Image Represent 5:181–189. doi:10.1006/jvci.1994.1017

    Article  Google Scholar 

  • Tarboton D, Schreuders K, Watson D, Baker M (2009) Generalized terrain-based flow analysis of digital elevation models. In: Proceedings of the 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation, Cairns, Australia. 2000–2006

  • Tribe A (1992) Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method. J Hydrol 139:263–293. doi:10.1016/0022-1694(92)90206-B

    Article  Google Scholar 

  • Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13:583–598

    Article  Google Scholar 

  • Wang L, Liu H (2006) An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. Int J Geogr Inf Sci 20:193–213. doi:10.1080/13658810500433453

    Article  Google Scholar 

  • White AB, Kumar P, Saco PM, Rhoads BL, Yen BC (2004) Hydrodynamic and geomorphologic dispersion: scale effects in the Illinois River. Basin J Hydrol 288:237–257

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities under Grant 2-2050205-15-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaocan Zhang.

Additional information

Responsible editor: H. A. Babaie

Supplementary material related to this article, including the reference implementation, which can be used for validation, can be requested from the authors via email.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, C., Wang, X., Feng, C. et al. An integrated algorithm for depression filling and assignment of drainage directions over flat surfaces in digital elevation models. Earth Sci Inform 8, 895–905 (2015). https://doi.org/10.1007/s12145-015-0223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-015-0223-5

Keywords

Navigation