Skip to main content
Log in

A development of spatiotemporal queries to analyze the simulation outcomes from a voxel automata model

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

The raster and vector spatial data models are the most commonly used in geographic information systems (GIS) practice but are insufficient for the representation of dynamic spatiotemporal phenomena that operates in multiple dimensions. Although numerous improvements to the spatial data models have been proposed and various prototype implementations have been developed in order to address this limitation, the problem has persisted. One of the proposals for spatial data representation is the geoatom data model which is a theoretical concept used for conceptualizing geographic information as it pertains to the four-dimensional (4D) space-time continuum. The objective of this study is to develop and apply the spatiotemporal queries in order to analyze and explore the evolution of the 4D geospatial process. The geo-atom data model and voxel automata have been used for the simulation of a dynamic 4D process of snow cover retreat in order to test the developed theoretical concepts. The developed queries for spatio-temporal analysis are volume, surface area, rate of change and temporal ordering. The data used have spatial, temporal and attribute components and represent the voxels units generated from the simulation of the process. Obtained results are the outcomes of various spatio-temporal queries that permit the analysis of the snow retreat process in 4D. This study contributes to conceptual and applied advancements in the field of 4D GIS and multidimensional analysis, and is relevant to geography, earth and environmental sciences, the disciplines where the phenomena need to be studied in 4D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beni LH, Mostafavi MA, Pouliot J, Gavrilova M (2011) Toward 3D spatial dynamic field simulation within GIS using kinetic Voronoi diagram and Delaunay tetrahedralization. Int J Geogr Inf Sci 25(1):25–50

    Article  Google Scholar 

  • Billen R, Zlatanova S (2003) 3D spatial relationships model: a useful concept for 3D cadastre? 3D. Cadastres 27(4):411–425

    Google Scholar 

  • Bittner T, Donnelly M, Smith B (2009) A spatio-temporal ontology for geographic information integration. Int J Geogr Inf Sci 23(6):765–798

    Article  Google Scholar 

  • Breunig M, Zlatanova S (2011) 3D geo-database research: retrospective and future directions. Comput Geosci 37(7):791–803

    Article  Google Scholar 

  • Burrough PA, Karssenberg D, Van Deursen WPA (2005) Environmental modelling with PCRaster. In: Maguire DJ, Goodchild MF, Batty M (eds) GIS, Spatial Analysis and Modeling. Redlands, California

    Google Scholar 

  • Burrough PA, McDonnell R (1998) Principles of geographical information systems. In: Oxford university press, Oxford. York, New

    Google Scholar 

  • Cazorzi F, Fontana GD (1996) Snowmelt modelling by combining air temperature and a distributed radiation index. J Hydrol 181(1–4):169–187

    Article  Google Scholar 

  • Couclelis H (1992) People manipulate objects (but cultivate fields): beyond the raster-vector debate in GIS. In: Frank A, Campari I, Formentini U (eds) Theories and methods of spatio-temporal reasoning in geographic space. Springer, Berlin, pp. 65–77

    Chapter  Google Scholar 

  • Couclelis H (2010) Ontologies of geographic information. Int J Geogr Inf Sci 24(12):1785–1809

    Article  Google Scholar 

  • DeMers, M. N. (2009). Fundamentals of geographic information systems (4th ed.). Wiley, Hoboken, NJ.

  • Dias D, Tchepel O (2014) Modelling of human exposure to air pollution in the urban environment: a GPS-based approach. Environ Sci Pollut Res 21(5):3558–3571

    Article  Google Scholar 

  • Dragicevic S, Marceau DJ (2000) A fuzzy set approach for modelling time in GIS. Int J Geogr Inf Sci 14(3):225–245

    Article  Google Scholar 

  • Dunn SM, Colohan RJE (1999) Developing the snow component of a distributed hydrological model: a step-wise approach based on multi-objective analysis. J Hydrol 223(1–2):1–16

    Article  Google Scholar 

  • Egenhofer MJ, Clementini E, Di Felice P (1994) Topological relations between regions with holes. Int J Geogr Inf Syst 8(2):129–142

    Article  Google Scholar 

  • Ellul C, Haklay M (2006) Requirements for topology in 3D GIS. Trans GIS 10(2):157–175

    Article  Google Scholar 

  • Erwig M, Guting RH, Schneider M, Vazirgiannis M (1999) Spatio-temporal data types: an approach to modeling and querying moving objects in databases. GeoInformatica 3(3):269–296

    Article  Google Scholar 

  • Erwig M, Schneider M (2002) Spatio-temporal predicates. IEEE Trans Knowl Data Eng 14(4):881–901

    Article  Google Scholar 

  • Frank AU (1992) Spatial concepts, geometric data models, and geometric data structures. Comput Geosci 18(4):409–417

    Article  Google Scholar 

  • Gailly, J.-l., and Adler, M. (2013). zlib 1.2.8. http://www.zlib.net/. Last accessed 24 November 2015.

  • Galton A (2009) Spatial and temporal knowledge representation. Earth Sci Inf 2(3):169–187

    Article  Google Scholar 

  • Gately CK, Hutyra LR, Wing IS, Brondfield MN (2013) A bottom up approach to on-road CO2 emissions estimates: improved spatial accuracy and applications for regional planning. Environ Sci Technol 47(5):2423–2430

    Article  Google Scholar 

  • Gebbert S, Pebesma E (2014) A temporal GIS for field based environmental modeling. Environ Model Softw 53:1–12

    Article  Google Scholar 

  • Goodall JL, Maidment DR (2009) A spatiotemporal data model for river basin-scale hydrologic systems. Int J Geogr Inf Sci 23(2):233–247

    Article  Google Scholar 

  • Goodchild MF (1992) Geographical data modeling. Comput Geosci 18(4):401–408

    Article  Google Scholar 

  • Goodchild MF (2010) Twenty years of progress: GIScience in 2010. Journal of Spatial Information Science 1:3–20

    Google Scholar 

  • Goodchild MF, Yuan M, Cova TJ (2007) Towards a general theory of geographic representation in GIS. Int J Geogr Inf Sci 21(3):239–260

    Article  Google Scholar 

  • Grenon P, Smith B (2004) SNAP and SPAN: towards dynamic spatial ontology. Spat Cogn Comput 4(1):69–104

    Google Scholar 

  • Hock R (2003) Temperature index melt modelling in mountain areas. Mountain Hydrology and Water Resources 282(1–4):104–115

    Google Scholar 

  • Hubbard S, Hornsby KS (2011) Modeling alternative sequences of events in dynamic geographic domains. Trans GIS 15(5):557–575

    Article  Google Scholar 

  • Jain S, Goswami A, Saraf AK (2009) Role of elevation and aspect in snow distribution in Western Himalaya. Water Resour Manag 23(1):71–83

    Article  Google Scholar 

  • Jjumba A, Dragicevic S (2015) Integrating GIS-based geo-atom theory and voxel automata to simulate the dispersal of airborne pollutants. Trans GIS 19(4):582–603

    Article  Google Scholar 

  • Jjumba A, Dragicevic S (2016) Towards voxel based geographic automata for the simulation of geospatial processess. ISPRS J Photogramm Remote Sens. doi:10.1016/j.isprsjprs.2016.01.017

  • Jones CB (1997) Geographical information systems and computer cartography. Longman, Harlow, England

    Google Scholar 

  • Kresse W, Danko DM, Fadaie K (2012) Standardization. In: Kresse W, Danko DM (eds) Springer handbook of geographic information. Springer, New York, pp. 393–566

    Chapter  Google Scholar 

  • Lake R, Burggraf D, Trninic M, Rae L (2004) Geography Mark-Up Language: Foundation for the Geo-Web. Wiley, Sussex

    Google Scholar 

  • Langran G (1992) Time in geographic information systems. Taylor and Francis, New York

    Google Scholar 

  • Langran G (1993) Issues of implementing a spatiotemporal system. Int J Geogr Inf Syst 7(4):305–314

    Article  Google Scholar 

  • Langran G, Chrisman NR (1988) A framework for temporal geographic information. Cartographica 25(4):1–14

    Article  Google Scholar 

  • Lee G, Joo S, Oh C, Choi K (2013) An evaluation framework for traffic calming measures in residential areas. Transp Res Part D: Transp Environ 25:68–76

    Article  Google Scholar 

  • Lin B, Su J (2008) One way distance: for shape based similarity search of moving object trajectories. GeoInformatica 12(2):117–142

    Article  Google Scholar 

  • Longley P, Goodchild MF, Maguire DJ, Rhind DW (2011) Geographic information systems and science (Vol, 3rd). John Wiley and Sons, Hoboken, NJ

    Google Scholar 

  • Marceau DJ, Guindon L, Bruel M, Marois C (2001) Building temporal topology in a GIS database to study the land-use changes in a rural-urban environment. Prof Geogr 53(4):546–558

    Article  Google Scholar 

  • McIntosh J, Yuan M (2005) Assessing similarity of geographic processes and events. Trans GIS 9(2):223–245

    Article  Google Scholar 

  • Mennis J (2011) Reflection essay: a conceptual framework and comparison of spatial data models, In Classics in Cartography (pp. 197–207). John Wiley & Sons, Ltd

    Google Scholar 

  • Nativi S, Caron J, Davis E, Domenico B (2005) Design and implementation of netCDF markup language (NcML) and its GML-based extension (NcML-GML). Comput Geosci 31(9):1104–1118

    Article  Google Scholar 

  • Nyerges T, Roderick M, Prager S, Bennett D, Lam N (2014) Foundations of sustainability information representation theory: spatial–temporal dynamics of sustainable systems. Int J Geogr Inf Sci 28(5):1165–1185

    Article  Google Scholar 

  • O’Sullivan D (2005) Geographical information science: time changes everything. Prog Hum Geogr 29(6):749–756

    Article  Google Scholar 

  • Peuquet DJ (1994) It’s about time: a conceptual framework for the representation of temporal dynamics in geographic information systems. Ann Assoc Am Geogr 84(3):441–461

    Article  Google Scholar 

  • Peuquet DJ (2002) Representations of space and time. Guilford Press, New York

    Google Scholar 

  • Peuquet DJ, Duan N (1995) An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data. Int J Geogr Inf Syst 9(1):7–24

    Article  Google Scholar 

  • Pultar, E., Raubal, M., Cova, T. J., and Goodchild, M. F. (2009). Dynamic GIS case studies: wildfire evacuation and volunteered geographic information. In (Vol. 13, pp. 85–104).

  • Raper J (2000) Multidimensional Geographic Information Science (1, edition edn. Taylor & Francis, London

    Book  Google Scholar 

  • Raper J, Livingstone D (1995) Development of a geomorphological spatial model using object-oriented design. Int J Geogr Inf Syst 9(4):359–383

    Article  Google Scholar 

  • Rasinmäki J (2003) Modelling spatio-temporal environmental data. Integrating Environmental Modelling and GI-Technology 18(10):877–886

    Google Scholar 

  • Thomsen A, Breunig M, Butwilowski E, Broscheit B (2008) Modelling and managing topology in 3D geoinformation systems. In: van Oosterom P, Zlatanova S, Penninga F, Fendel E (eds) Advances in 3D geoinformation systems. Springer, Berlin Heidelberg, pp. 229–246

    Chapter  Google Scholar 

  • Torrens PM, Benenson I (2005) Geographic automata systems. Int J Geogr Inf Sci 19(4):385–412

    Article  Google Scholar 

  • van Oosterom, P., and Stoter, J. (2010). 5D data modelling: full integration of 2D/3D space, time and scale dimensions. In (pp. 310–324). Springer-Verlag.

  • von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Urbana

    Google Scholar 

  • Worboys M (1994) A unified model for spatial and temporal information. Comput J 37(1):26–34

    Article  Google Scholar 

  • Yi J, Du Y, Liang F, Zhou C, Wu D, Mo Y (2014) A representation framework for studying spatiotemporal changes and interactions of dynamic geographic phenomena. Int J Geogr Inf Sci 28(5):1010–1027

    Article  Google Scholar 

  • Yuan M (1999) Use of a three-domain representation to enhance GIS support for complex spatiotemporal queries. Trans GIS 3(2):137–159

    Article  Google Scholar 

  • Yuan M, Nara A, Bothwell J (2014) Space–time representation and analytics. Ann GIS 20(1):1–9

    Article  Google Scholar 

  • Zhao Z, Shaw S-L, Wang D (2015) A space-time raster GIS data model for spatiotemporal analysis of vegetation responses to a freeze event. Trans GIS 19(1):151–168

    Article  Google Scholar 

Download references

Acknowledgments

The full support of this study was made through the Natural Sciences and Engineering Research Council (NSERC) of Canada Discovery Grant awarded to second author. The authors would like to thank three anonymous reviewers for constructive feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Dragicevic.

Additional information

Communicated by: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jjumba, A., Dragicevic, S. A development of spatiotemporal queries to analyze the simulation outcomes from a voxel automata model. Earth Sci Inform 9, 343–353 (2016). https://doi.org/10.1007/s12145-016-0260-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-016-0260-8

Keywords

Navigation