Skip to main content

Advertisement

Log in

QMorphoStream: processing tools in QGIS environment for the quantitative geomorphic analysis of watersheds and river networks

  • Methodology Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

The quantitative geomorphic analysis is a powerful tool for the study of geomorphology and landforms, as it provides objective methods to describe the main properties of drainage basins by means of an appropriate set of parameters. Over the last decades, GIS techniques and processing tools have been widely applied to the geomorphic analysis, and specific applications were developed, essentially using commercial software. In the present paper, the first experimental version of QMorphoStream, an originally developed set of processing tools for quantitative geomorphic analysis in QGIS environment, is presented. Besides the obvious advantage in terms of cost reduction, the choice of an open source development environment allowed us to integrate original algorithms with both QGIS built-in functions and processing tools available in the developers’ community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abera W, Antonello A, Franceschi S, Formetta G, Rigon R (2014) The uDig spatial toolbox for hydro-geomorphic analysis. Geomorphological Techniques 2:1–19

    Google Scholar 

  • Anderson HW (1957) Relating sediment yield to watershed variables. Trans Am Geophys Union 38:921–924

    Article  Google Scholar 

  • Avena GC, Giuliano G, Lupia Palmieri E (1967) Sulla valutazione quantitativa della gerarchizzazione ed evoluzione dei reticoli fluviali (Quantitative assessment of fluvial networks hierarchy and evolution). Boll Soc Geol Ital 86:781–796

    Google Scholar 

  • Blasi L, Grauso S, Marzocchi S (1990) Automazione delle procedure di analisi geomorfica quantitativa mediante utilizzo di un sistema informativo geografico. Technical Report RT/AMB/90/31, Italian National Committee for Research and Development of Nuclear Energy and Alternative Energies (ENEA), Roma

  • Ciccacci S, Fredi P, Lupia Palmieri E, Pugliese F (1980) Contributo dell’analisi geomorfica quantitativa alla valutazione dell’entità dell’erosione nei bacini fluviali. Boll Soc Geol Ital 99:455–516

    Google Scholar 

  • Ciccacci S, Fredi P, Lupia Palmieri E, Pugliese F (1987) Indirect evaluation of erosion entity in drainage basins through geomorphic, climatic and hydrological parameters. In: Gardiner V (ed) International Geomorphology 1986. John Wiley & Sons, Chichester, UK: 33–48

  • Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J (2015) System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci Model Dev 8:1991–2007

    Article  Google Scholar 

  • De Bonis P, Fattoruso G, Grauso S, Peloso A, Regina P (2002) Computation of geomorphic parameters via G.I.S.-based algorithms: a support tool in river basin management. In: Proceedings of International Conference “New Trends in Water and Environmental Engineering for Safety and Life. Eco-compatible Solutions for Aquatic Environments”. Capri, Italy

  • Delahaye A (2016) A Strahler plugin for QGIS. https://github.com/ArMoraer/QGISStrahler

  • Della Seta M, Del Monte M, Pascoli A (2005) Quantitative geomorphic analysis to evaluate flood hazards. Geografia Fisica e Dinamica Quaternaria 28:117–124

    Google Scholar 

  • Dorillo I (2010) r.geomorphic.py: un algoritmo per il calcolo dei parametri dell’analisi geomorfica quantitativa. Un’applicazione al torrente Fersinone (Bacino del F. Tevere, Umbria centrale. r.geomorphic.py, a GIS algorithm for calculating quantitative geomorphic analysis parameters. An application to Fersinone creek (central Umbria). Dissertation, Università degli Studi di Perugia

  • ESRI. GIS mapping software, solutions, services, map apps, and data (2016). http://www.esri.com/

  • Genchi SA, Vitale AJ, Perillo GME, Piccolo MC (2016) Geomorphometric assessment of drainage systems in a semi-arid region of Argentina using geospatial tools and multivariate statistics. Earth Science Informatics online first articles

  • Gigli C, Miniero O, Grauso S, Polizzano C, Aurelio V, Oliveri F, Marzocchi S (1991) ELISA e GEOMORF. Un sistema informativo territoriale ambientale e un applicativo idrografico come sua evoluzione. Technical Report RT/AMB/90/42, Italian National Committee for Research and Development of Nuclear Energy and Alternative Energies (ENEA), Roma

  • Grauso S (1986) Analisi geomorfica quantitativa: un contributo alla descrizione e qualificazione dell’ambiente. Technical Report RT/PAS/86/6,Italian National Committee for Research and Development of Nuclear Energy and Alternative Energies (ENEA), Roma

  • Grauso S, Pagano A, Fattoruso G, De Bonis P, Onori F, Regina P, Tebano C (2008) Relation between climatic-geomorphical parameters an sediment yield in a mediterranean semi-arid area (Sicily, southern Italy). Environ Geol 54:219–234

    Article  Google Scholar 

  • Harlin JM (1978) Statistical moments of the hypsometric curve and its density function. Math Geol 10:59–72

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative analysis. Bull Geol Soc Am 56:275–370

    Article  Google Scholar 

  • Jasiewicz J, Metz M (2011) A new GRASS GIS toolkit for Hortonian analysis of drainage networks. Comput Geosci 37:1162–1173

    Article  Google Scholar 

  • Karymbalis E, Chalkias C, Ferentinou M (2011) Flood hazard evaluation in small catchments based on quantitative geomorphology and GIS modeling: The case of Diakoniaris torrent (W. Peloponnese, Greece). In: Advances in the Research of Aquatic Environment. Springer, Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, USA:137–145

  • Langen G, Griffith J (2012) Alternative method for automatic coding of stream order. In: ESRI International User Conference. San Diego, CA, USA

  • López-Vicente M, Álvarez S (2016) Effect of DEM resolution on simulated hydrological connectivity in a Mediterranean agro-ecosystem with different crops. Conference poster: 4th MC meeting & WG meetings 21-23rd of September 2016, Prague, Czech Republic

  • Lupia Palmieri E (1983) Il problema della valutazione dell’entità dell’erosione nei bacini fluviali. In: Proceedings of 23rd Italian Geographic Congress. Italian Geographic Society, Catania, pp 143–176

  • Lupia Palmieri E, Ciccacci S, Civitelli G, Corda L, D’Alessandro L, Del Monte M, Fredi P, Pugliese F (1995) Geomorfologia quantitativa e morfodinamica: I – Il bacino idrografico del Fiume Sinello – Quantitative geomorphology and morphodinamics of the Abruzzo, Italy: I – The drainage basin of the River Sinello. Geografia Fisica e Dinamica Quaternaria 18:31–46

  • Mahmood SA, Gloaguen R (2012) Appraisal of active tectonics in Hindu Kush: insights from DEM derived geomorphic indices and drainage analysis. Geosci Front 3:407–428

    Article  Google Scholar 

  • Neteler M, Bowman MH, Landa M, Metz M (2012) GRASS GIS: a multi-purpose open source GIS. Environ Model Softw 31:124–130

    Article  Google Scholar 

  • Noti V (2014) GIS Open Source per geologia e ambiente. Dario Flaccovio Editore, Palermo, Italy

    Google Scholar 

  • Numpy and Scipy Documentation (2016). http://docs.scipy.org/doc/

  • Pérez-Peña JV, Azañon JM, Azor A (2009) CalHypso: an ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Comput Geosci 35:1214–1223

    Article  Google Scholar 

  • Pérez-Peña JV, Azor A, Azañon JM, Keller EA (2010) Active tectonics in the sierra Nevada (Betic cordillera, SE Spain): insights from geomorphic indexes and drainage pattern analysis. Geomorphology 119:74–87

    Article  Google Scholar 

  • QGIS. A Free and Open Source Geographic Information System (2016). http://www.qgis.org

  • Sarangi A, Madramootoo CA, Enright P (2003) Development of User Interface in ArcGIS for Estimation of Watershed Geomorphology. Proceedings of CSAE/SGR 2003 Meeting, Canadian Society for Engineering in Agricultural, Food, and Biological Systems, Montreal, Canada

  • Scheidegger AE (1968) Horton’s law of stream numbers. Water Resour Res 4:655–658

    Article  Google Scholar 

  • Singh O, Sarangi A, Sharma MC (2008) Hypsometric integral estimation methods and its relevance on erosion status of north-western lesser Himalayan watersheds. Water Resour Manag 22:1545–1560

    Article  Google Scholar 

  • Stall JB, Bartelli LJ (1959) Correlation of reservoir sedimentation and watershed factors. Springfield plain, Illinois. Illinois State Water Survey, Urbana, IL, USA

    Google Scholar 

  • Strahler AN (1952a) Dynamic basis of geomorphology. Bull Geol Soc Am 63:923–938

    Article  Google Scholar 

  • Strahler AN (1952b) Hypsometric (area-altitude) analysis of erosional topography. Bull Geol Soc Am 63:1117–1142

    Article  Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Transactions. Am Geophys Union 38:913–920

    Article  Google Scholar 

  • Tarboton DG, Bras RL, Rodriguez-Iturbe I (1991) On the extraction of channel networks from digital elevation data. Hydrol Process 5:81–100

    Article  Google Scholar 

  • uDig. User-friendly Desktop Internet GIS (2016). http://udig.refractions.net

  • Wuttichaikitcharoen P, Babel MS (2014) Principal component and multiple regression analyses for the estimation of suspended sediment yield in ungauged basins of northern Thailand. Water 6:2412–2435

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Pasanisi.

Additional information

Responsible editor: Hassan A. Babaie

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tebano, C., Pasanisi, F. & Grauso, S. QMorphoStream: processing tools in QGIS environment for the quantitative geomorphic analysis of watersheds and river networks. Earth Sci Inform 10, 257–268 (2017). https://doi.org/10.1007/s12145-016-0284-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-016-0284-0

Keywords

Navigation