Skip to main content
Log in

CURVGRAV-GUI: a graphical user interface to interpret gravity data using curvature technique

  • Software Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

CURVGRAV-GUI is an open source software that was developed to interpret gridded gravity data by using curvature technique. It was developed using C# language with Microsoft.NET Framework 4.0. This program calculates the critical and extreme points, and estimates the depths of source bodies at this points. Besides, CURVGRAV-GUI processes gravity data by using minimum curvature, one of the attributes of curvature, and detects the subsurface lineaments. It is a user-friendly application that can display obtained solutions and gravity data thanks to image and scatter maps. CURVGRAV-GUI was designed to develop both synthetic and field applications. Additionally, the β constant, a parameter related to the source geometry, was examined for different source types such as sphere, horizontal and vertical cylinder and thin vertical fault. This program was tested by using two synthetic model applications. In the first synthetic model application, it was used a complex synthetic model consisting of three sphere and a horizontal cylinder located at the different depths. In the second synthetic model application, a graben model consisting of two thin vertical fault was used. Finally, the performance of the CURVGRAV-GUI was tested with using a real gravity data belonging to Kozakli-Central Anatolia region, Turkey. Very successful results were obtained for both synthetic and field data. Earth scientist can use CURVGRAV-GUI for educational experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barraud J (2013) Improving identification of valid depth estimates from gravity gradient data using curvature and geometry analysis. First Break 31:87–92

    Google Scholar 

  • Cordell L (1979) Gravimetric expression of graben faulting in Santa Fe country and the espanola basin, New Mexico. New Mexico Geol Soc Guidebook, 30th Field Conference, pp 59–64

  • Ekingen A (1971) Gravimetric method in geothermal field explorations and its application in Turkey. First geothermal energy symposium of Turkey, Ankara, pp 60–74

  • Grauch VSJ, Cordell L (1987) Limitations of determining density or magnetic boundaries from horizontal gradient of gravity or pseudogravity data. Geophysics 52(1):118–121

    Article  Google Scholar 

  • Hansen RO, DeRidder E (2006) Linear feature analysis for aeromagnetic data. Geophysics 71(6):L61–L67

    Article  Google Scholar 

  • Miller HG, Singh V (1994) Potential field tilt-a new concept for location of potential field sources. J Appl Geophys 32:213–217

    Article  Google Scholar 

  • Nettleton LL (1976) Gravity and magnetics in oil exploration. Mac Graw-Hill, New York

    Google Scholar 

  • Oruç B (2011) Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-central Anatolia region, Turkey. Pure Appl Geophys 168:1769–1780

    Article  Google Scholar 

  • Peet FG, Sahota TS (1985) Surface curvature as a measure of image texture. IEEE Transaction on Pattern Analysis and Machine Intelligence PAMI-7(6):734–738

    Article  Google Scholar 

  • Phillips JD, Hansen RO, Blakely RJ (2007) The use of curvature in potential-field interpretation. Explor Geophys 38:111–119

    Article  Google Scholar 

  • Reid AB, Allsop JM, Granser H, Millett AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55:80–91

    Article  Google Scholar 

  • Roberts A (2001) Curvature attributes and their application to 3D interpret horizons. First Break 19(2):85–100

    Article  Google Scholar 

  • Salem A, Ravat D, Smith S, Ushijima K (2005) Interpretation of magnetic data using an enhanced local wave number (EWL) method. Geophysics 70:L7–L12

    Article  Google Scholar 

  • Sertcelik I, Kafadar O (2012) Application of edge detection to potential field data using eigenvalue analysis of structure tensor. J Appl Geophys 84:86–94

    Article  Google Scholar 

  • Smith RS, Thurston JB, Dai TF, MacLeod IN (1998) iSPI-the improved source parameter imaging method. Geophys Prospect 46:141–151

    Article  Google Scholar 

  • Thomas GB (1972) Calculus and analytical geometry, fourth edition. Addison-Wesley Publishing Company, Reading, USA, pp 473–475

    Google Scholar 

  • Thompson DT (1982) EULDPH-a new technique for making computer assisted depth estimates from magnetic data. Geophysics 47:31–37

    Article  Google Scholar 

  • Thurston JB, Smith RS (1997) Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI method. Geophysics 62:807–813

    Article  Google Scholar 

  • Verduzco B, Fairhead JD, Green CM, Mackenzie C (2004) The meter reader-new insights into magnetic derivatives for structural mapping. Lead Edge 23:116–119

    Article  Google Scholar 

Download references

Acknowledgements

I thank General Directorate of Mineral Research and Exploration for permission to use the gravity data of Kozakli-Central Anatolia region, Turkey. I also thank the referees for making valuable suggestions and comments in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozkan Kafadar.

Additional information

Responsible Editor: H. A. Babaie

Appendix: Calculation of the β values for some source bodies

Appendix: Calculation of the β values for some source bodies

Sphere

$$ g\left( x, z\right)=\frac{Az}{{\left({x}^2+{z}^2\right)}^{3/2}} $$
(18)
$$ \frac{\partial g}{\partial x}=\frac{-3 Axz}{{\left({x}^2+{z}^2\right)}^{5/2}}\kern0.75em ,\kern0.5em \frac{\partial^2 g}{{\partial x}^2}=\frac{15 A{x}^2 z}{{\left({x}^2+{z}^2\right)}^{7/2}}-\frac{3 Az}{{\left({x}^2+{z}^2\right)}^{5/2}} $$
(19)
$$ K(x)=\frac{\frac{\partial^2 g}{{\partial x}^2}}{{\left(1+{\left(\frac{\partial g}{\partial x}\right)}^2\right)}^{\frac{3}{2}}}\Rightarrow \kern1.25em K(x)=\frac{\frac{15 A{x}^2 z}{{\left({x}^2+{z}^2\right)}^{7/2}}-\frac{3 A z}{{\left({x}^2+{z}^2\right)}^{5/2}}}{{\left(1+{\left(\frac{-3 A xz}{{\left({x}^2+{z}^2\right)}^{5/2}}\right)}^2\right)}^{\frac{3}{2}}},\kern0.5em K(0)=\frac{-3 A}{z^4}\kern0.5em $$
(20)
$$ K(0)=-\frac{2\beta g(0)}{z^2}\Rightarrow \kern1.25em \frac{-3 A}{z^4}=\frac{-2\beta \frac{A}{z^2}}{z^2},\kern0.5em \beta =\frac{3}{2} $$
(21)

Horizontal cylinder

$$ g\left( x, z\right)=\frac{Az}{x^2+{z}^2} $$
(22)
$$ \frac{\partial g}{\partial x}=\frac{-2 Axz}{{\left({x}^2+{z}^2\right)}^2}\kern0.75em ,\kern0.5em \frac{\partial^2 g}{{\partial x}^2}=\frac{8 A{x}^2 z}{{\left({x}^2+{z}^2\right)}^3}-\frac{2 Az}{{\left({x}^2+{z}^2\right)}^2} $$
(23)
$$ K(x)=\frac{\frac{\partial^2 g}{{\partial x}^2}}{{\left(1+{\left(\frac{\partial g}{\partial x}\right)}^2\right)}^{\frac{3}{2}}},\kern0.5em K(x)=\frac{\frac{8 A{x}^2 z}{{\left({x}^2+{z}^2\right)}^3}-\frac{2 A z}{{\left({x}^2+{z}^2\right)}^2}}{{\left(1+{\left(\frac{-2 A xz}{{\left({x}^2+{z}^2\right)}^2}\right)}^2\right)}^{\frac{3}{2}}},\kern0.5em K(0)=\frac{-2 A}{z^3}\kern0.5em $$
(24)
$$ K(0)=-\frac{2\beta g(0)}{z^2},\kern0.5em \frac{-2 A}{z^3}=\frac{-2\beta \frac{A}{z}}{z^2},\kern0.5em \beta =1 $$
(25)

Vertical cylinder

$$ g\left( x, z\right)=\frac{A}{{\left({x}^2+{z}^2\right)}^{1/2}} $$
(26)
$$ \frac{\partial g}{\partial x}=\frac{- Ax}{{\left({x}^2+{z}^2\right)}^{3/2}}\kern0.75em ,\kern0.5em \frac{\partial^2 g}{{\partial x}^2}=\frac{3 A{x}^2}{{\left({x}^2+{z}^2\right)}^{5/2}}-\frac{A}{{\left({x}^2+{z}^2\right)}^{3/2}} $$
(27)
$$ K(x)=\frac{\frac{\partial^2 g}{{\partial x}^2}}{{\left(1+{\left(\frac{\partial g}{\partial x}\right)}^2\right)}^{\frac{3}{2}}},\kern0.5em K(x)=\frac{\frac{3 A{x}^2}{{\left({x}^2+{z}^2\right)}^{5/2}}-\frac{A}{{\left({x}^2+{z}^2\right)}^{3/2}}}{{\left(1+{\left(\frac{- A x}{{\left({x}^2+{z}^2\right)}^{3/2}}\right)}^2\right)}^{\frac{3}{2}}},\kern0.5em K(0)=\frac{- A}{z^3}\kern0.5em $$
(28)
$$ K(0)=-\frac{2\beta g(0)}{z^2},\kern0.5em \frac{- A}{z^3}=\frac{-2\beta \frac{A}{z}}{z^2},\kern0.5em \beta =\frac{1}{2} $$
(29)

Vertical thin fault

$$ g\left( x, z\right)= A\left(\frac{\pi}{2}+{tan}^{-1}\left(\frac{x}{z}\right)\right) $$
(30)
$$ \frac{\partial g}{\partial x}=\frac{Az}{x^2+{z}^2} $$
(31)

The horizontal gradient of the vertical thin fault anomaly is equal to the horizontal cylinder anomaly. In this study, the curvature method was applied on horizontal gradient of vertical thin fault anomaly, therefore, the β parameter is 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafadar, O. CURVGRAV-GUI: a graphical user interface to interpret gravity data using curvature technique. Earth Sci Inform 10, 525–537 (2017). https://doi.org/10.1007/s12145-017-0306-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-017-0306-6

Keywords

Navigation