Skip to main content

Advertisement

Log in

Predicting future urban impervious surface distribution using cellular automata and regression analysis

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Urban impervious surfaces are considered as key indicator of urbanization intensity and environmental quality. Due to their significant impact on surface runoff, flood frequency, and water quality, impervious surfaces have been identified as an important indicator for examining the hydrological impact of urbanization. The amount and distribution of impervious surfaces have been estimated using remote sensing and geographic information system (GIS) techniques. Little research, however, has been conducted to predict future impervious surface distributions. To address this problem, we developed an integrated residential/commercial growth and impervious surface distribution model to predict urban impervious surface distribution. Taking Milwaukee River Basin, Wisconsin as a case study, we simulated future residential and commercial developments using a CA model. Further, we developed a linear regression model to predict impervious surface distributions in residential and commercial land uses. Analysis of results suggests that the proposed model performs significantly better than the traditional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerman D, Stein ED (2008) Estimating the variability and confidence of land use and imperviousness relationships at a regional scale. JAWRA Journal of the American Water Resources Association 44(4):996–1008. doi:10.1111/j.1752-1688.2008.00215.x

    Article  Google Scholar 

  • Arnold CL, Gibbons CJ (1996) Impervious surface coverage - The emergence of a key environmental indicator. J Am Plan Assoc 62:243–258. doi:10.1080/01944369608975688

    Article  Google Scholar 

  • Arnold JG, Srinivasan R, Muttian RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development. JAWRA Journal of the American Water Resources Association 34:73–89. doi:10.1111/j.1752-1688.1998.tb05961.x

    Article  Google Scholar 

  • Asner GP, Keller M, Pereira R, Zweede JC, Silva JN (2004) Canopy damage and recovery after selective logging in Amazonia: field and satellite studies. Ecol Appl 14:280–298. doi:10.1890/01-6019

    Article  Google Scholar 

  • Berezowski T, Chormanski J, Batelaan O, Canters F, De Voorde T (2012) Impact of remotely sensed land-cover proportions on urban runoff prediction. Int J Appl Earth Obs Geoinf 16:54–65. doi:10.1016/j.jag.2011.11.007

    Article  Google Scholar 

  • Brabec E, Schulte S, Richards PL (2002) Impervious surfaces and water quality: a review of current literature and its implications for watershed planning. J Plan Lit 16:499–514. doi:10.1177/088541202400903563

    Article  Google Scholar 

  • Brun SE, Band LE (2000) Simulating runoff behavior in an urbanizing watershed. Comput Environ Urban Syst 24:5–22. doi:10.1016/S0198-9715(99)00040-X

    Article  Google Scholar 

  • Carlson TN (2004) Analysis and prediction of surface runoff in an urbanizing watershed using satellite imagery. J Am Water Resour Assoc 40(4):1087–1098

    Article  Google Scholar 

  • Choi W, Deal BM (2008) Assessing hydrological impact of potential land use change through hydrological and land use change modeling for the Kishwaukee River basin (USA). J Environ Manag 88:1119–1130. doi:10.1016/j.jenvman.2007.06.001

    Article  Google Scholar 

  • Chormanski J, Van de Voorde T, De Roeck T, Batelaan O, Canters F (2008) Improving distributed runoff prediction in urbanized catchments with remote sensing based estimates of impervious surface cover. Sensors 8:910–932. doi:10.3390/s8020910

    Article  Google Scholar 

  • Dams J, Woldeamlak ST, Batelaan O (2008) Predicting land-use change and its impact on the groundwater system of the Kleine Nete catchment, Belgium. Hydrolg and Earth System Sciences 12:1369–1385. doi:10.5194/hess-12-1369-2008

    Article  Google Scholar 

  • Dams J, Dujardin J, Regger R, Bashir I, Canters F, Batelaan O (2013) Mapping impervious surface change from remote sensing for hydrological modeling. J Hydrol 485:84–95. doi:10.1016/j.jhydrol.2012.09.045

    Article  Google Scholar 

  • Gillies RR, Box BJ, Symanzik J, Rodemaker EJ (2003) Effects of urbanization on the aquatic Fauna of the Line Creek watershed, Atlanta - a satellite perspective. Remote Sens Environ 86:411–422. doi:10.1016/S0034-4257(03)00082-8

    Article  Google Scholar 

  • Grimm, N. B., Eastwood, M. L., Sarture C. M., Chrien, T. G., Aronsson, M., Chippendale, B. J. Faust, J. A. Pavri, B. E., Chovit, C. J. Soils, M., Olah, M. R. and Williams, O. (2008) - Global change and the ecology of cities. Science, 319:756–760. doi:10.1126/science.1150195

  • Hu X, Weng Q (2009) Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sens Environ 113:2089–2102. doi:10.1016/j.rse.2009.05.014

    Article  Google Scholar 

  • Hurd JD, Civo DL (2004) Temporal characterization of impervious surfaces for the State of Connecticut. ed. ASPRS Annual Conference Proceeddings, 2004 Denver, Colorado

  • Jin G, Li Z, Lin Q, Shi C, Liu B, Yao L (2015) Land Use Suitability Assessment in Low-Slope Hilly Regions under the Impact of Urbanization in Yunnan, China. Adv Meteorol 2015:1-9

  • Law N, Cappiella K, Novotney M (2009) The need for improved pervious land cover characterization in urban watersheds. J Hydrol Eng 14:305–308. doi:10.1061/(ASCE)1084-0699(2009)14:4(305)

    Article  Google Scholar 

  • Li W, Wu C (2014) Phenology-based temporal mixture analysis for estimating large-scale impervious surface distributions. Int J Remote Sens 35:779–795. doi:10.1080/01431161.2013.873147

    Article  Google Scholar 

  • Li W, Wu C (2015) Incorporating land use land cover probability information into endmember class selections for temporal mixture analysis. ISPRS J Photogramm Remote Sens 101:163–173. doi:10.1016/j.isprsjprs.2014.12.007

    Article  Google Scholar 

  • Li W, Wu C (2016) A geostatistical temporal mixture analysis approach to address endmember variability for estimating regional impervious surface distributions. GIScience & Remote Sensing 53:102–121. doi:10.1080/15481603.2015.1118975

    Article  Google Scholar 

  • Li W, Wu C (2017) A geographic information-assisted temporal mixture analysis for addressing the issue of endmember class and endmember spectra variability. Sensors 17(3):624. doi:10.3390/s17030624

    Article  Google Scholar 

  • Li W, Wu C, Zang S (2014) Modeling urban land use conversion of Daqing City, China: a comparative analysis of “top-down” and “bottom-up” approaches. Stoch Env Res Risk A 28:817–828. doi:10.1007/s00477-012-0671-0

    Article  Google Scholar 

  • Lu D, Weng Q (2009) Extraction of urban impervious surfaces from an IKONOS image. Int J Remote Sens 30:1297–1311. doi:10.1080/01431160802508985

    Article  Google Scholar 

  • Ma F, Wei A, Deng Q, Zhao H (2014) Hydrochemical characteristics and the suitability of groundwater in the coastal region of Tangshan, China. J Earth Sci 25(6):1067-1075

  • Meyer JL, Paul MJ, Taulbee WK (2005) Stream ecosystem function in urbanizing landscapes. J N Am Benthol Soc 24:602–612. doi:10.1899/04-021.1

    Article  Google Scholar 

  • Mohapatra RP, Wu C (2010) High Resolution Impervious Surface Estimation: An Integration of Ikonos and Landsat-7 ETM+ Imagery. Photogrammetric Engineering and Remote Sensing 76:1329–1341. doi:10.14358/PERS.76.12.1329

    Article  Google Scholar 

  • Normal LM, Guertin DP, Feller M (2008) A coupled model approach to reduce nonpoint-source pollution resulting from predicted urban growth: a case study in the ambos Nogales watershed. Urban Geography 29(5):496–516

    Article  Google Scholar 

  • Normal LM, Villarreal ML, Lara-Valencia F, Yuan Y, Nie W, Wilson S, Amaya G, Sleeter R (2012) Maping socio-environmentally vulnerable populations access and exposure to ecosystem services at the U.S.-Mexico borderlands. Appl Geogr 34:413–424

    Article  Google Scholar 

  • Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32:333–365. doi:10.1146/annurev.ecolsys.32.081501.114040

    Article  Google Scholar 

  • Phinn S, Stanford M, Scarth P, Murray AT, Shyy PT (2002) Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques. Int J Remote Sens 23:4131–4153. doi:10.1080/01431160110114998

    Article  Google Scholar 

  • Powell RL, Dar AR, Philip ED, Laura LH (2007) Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sens Environ 106:253–267. doi:10.1016/j.rse.2006.09.005

    Article  Google Scholar 

  • Roy HA, Rosemond DA, Paul JM, Leign DS, Wallace BJ (2003) Stream macroinvertebrate response to catchment urbanization (Georgia, USA). Freshw Biol 48:329–346

    Article  Google Scholar 

  • Schueler TR (1994) The importance of imperviousness. Watershed Protection Techniques 2:100–111

    Google Scholar 

  • Shuster WD, Bonta J, Thurston H, Warnemuende E, Smith DR (2005) Impacts of impervious surface on watershed hydrology: a review. Urban Water J 2:263–275. doi:10.1080/15730620500386529

    Article  Google Scholar 

  • Straatman B, White R, Engelen G (2004) Towards an automatic calibration procedure for constrained cellular automata. Computers, Environment and Urban Systems 28:149–170. doi:10.1016/S0198-9715(02)00068-6

    Article  Google Scholar 

  • Sun L, Wei J, Duan DH, Guo YM, Yang DX, Jia C, Mi XT (2016) Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China. J Atmos Sol Terr Phys 142:43-54

  • Verbeiren B, Van De Voorde T, Canters F, Binard M, Cornet Y, Batelaan O (2013) Assessing urbanisation effects on rainfall-runoff using a remote sensing supported modelling strategy. Int J Appl Earth Obs Geoinf 21:92–102. doi:10.1016/j.jag.2012.08.011

    Article  Google Scholar 

  • Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Grofeman PM, Morgan RP II (2005) The urban stream syndrome: current knowledge and the search for a cure. J N Am Benthol Soc 24:706–723. doi:10.1899/04-028.1

    Article  Google Scholar 

  • Weng QH (2001) Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS. Environ Manag 28:737–748. doi:10.1007/s002670010258

    Article  Google Scholar 

  • Weng QH (2007) Remote sensing of impervious surfaces: an overview. In: Weng QH (ed) Remote sensing of impervious surfaces. CRC Press XV-XXVI, Boca Raton

    Chapter  Google Scholar 

  • Wu C (2004) Normalized spectral mixture analysis for monitoring urban composition using ETM plus imagery. Remote Sens Environ 93:480–492. doi:10.1016/j.rse.2004.08.003

    Article  Google Scholar 

  • Wu C (2009) Quantifying high-resolution impervious surfaces using spectral mixture analysis. Int J Remote Sens 30(11):2915–2932. doi:10.1080/01431160802558634

    Article  Google Scholar 

  • Wu C, Murray AT (2003) Estimating impervious surface distribution by spectral mixture analysis. Remote Sens Environ 84:493–505. doi:10.1016/S0034-4257(02)00136-0

    Article  Google Scholar 

  • Xiong X, Li B, Jiang Y, Koyama T, Zhang C (2011) Experimental and numerical study of the geometrical and hydraulic characteristics of a single rock fracture during shear. Int J Rock Mech Min Sci 48(8):1292-1302

  • Yang LM, Huang C, Homer CG, Wylie BK, Coan MJ (2003a) An approach for mapping large-area impervious surfaces: synergistic use of Landsat-7 ETM+ and high spatial resolution imagery. Can J Remote Sens 29:230–240. doi:10.5589/m02-098

    Article  Google Scholar 

  • Yang LM, Xian G, Klaver JM, Deal B (2003b) Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data. Photogramm Eng Remote Sens 69:1003–1010. doi:10.14358/PERS.69.9.1003

    Article  Google Scholar 

  • Yuan F, Bauer ME (2007) Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ 106:375–386. doi:10.1016/j.rse.2006.09.003

    Article  Google Scholar 

  • Yuan F, Wu C, Bauer ME (2008) Comparison of spectral analysis techniques for impervious surface estimation using Landsat imagery. Photogramm Eng Remote Sens 74:1045–1055. doi:10.14358/PERS.74.8.1045

    Article  Google Scholar 

  • Zhao X, Wang P, Chen C, Jiang T, Yu Z, Guo B (2017) Waterbody information extraction from remote-sensing images after disasters based on spectral information and characteristic knowledge. Int J Remote Sens 38(5):1404-1422

Download references

Acknowledgements

This work was supported in part under a grant from the U.S. Geological Survey, U.S. Department of Interior, federal grant number G11AP20115, Project 2013WI314B and with Research Committee Award from the University of Wisconsin-Milwaukee. We would also like to thank the suggestions from reviewers for improving the early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenliang Li.

Additional information

Communicated by: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wu, C. & Choi, W. Predicting future urban impervious surface distribution using cellular automata and regression analysis. Earth Sci Inform 11, 19–29 (2018). https://doi.org/10.1007/s12145-017-0312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-017-0312-8

Keywords

Navigation