Skip to main content

Advertisement

Log in

Hyperspectral Remote Sensing of Forests: Technological advancements, Opportunities and Challenges

  • Review Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

In real world what we are able to see is just because of light or energy reflected or emitted from the viewing object is falling upon retina of human eye. The variations in intensity of light reflected back from any object in different wavelengths are sensed and provide ability of discriminating different objects having similar size and shape. In the same way, in spectroscopy we sense the reflected light through artificial sensors and record as image (in airborne and satellite spectroscopy) or as spectrum (in field spectroscopy). In remote sensing discrimination of different object mainly depends on difference in reflection of energy in different wavelength region of light. Considering this behaviour of light, in hyperspectral remote sensing the reflected light coming from object is split into multiple continuous and small-small wavelength bands and are sensed in each wave band separately. Therefore we are having reflection response of object in multiple and narrow wavelength regions, which can be used in discrimination of different objects that are not separable in multispectral remote sensing due to less number of broad range wave bands. Collection of data is one aspect of the technology but as soon as these data are collected, a question arises how to and where to use this data? To answer where to use, a list of applications like discrimination, mapping and monitoring of different features and process of landforms in ecosystem have been reported, and forestry is one of them. And question of how to use these data in each applications involve converting the raw data into useful information using a multistep process of atmospheric, radiometric and geometric correction, removal of bad data and data redundancy, transformation and extraction of most useful data, data segmentation and extraction of useful information. For this purpose variety of data processing techniques, algorithms, concepts and schemes have been reported from time to time. In this review article we have summarized the available technical developments in hyperspectral remote sensing during the last three decades and tried to discuss the opportunities and challenges in hyperspectral remote sensing applications in the forestry sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abe BT, Olugbara OO, Marwala T (2014) Experimental comparison of support vector machines with random forests for hyperspectral image land cover classification. J Earth Syst Sci 123(4):779–790

    Google Scholar 

  • Alsuwaidi A, Veys C, Hussey M (2016) Hyperspectral Selection Based Algorithm for Plant Classification. IEEE Int Conf Imaging Syst Techniques:395–400

  • Adam E, Mutanga O, Abdel REM (2014) Estimating standing biomass in papyrus (Cyperus papyrus ) swamp: exploratory of in situ hyperspectral indices and random forest regression. Int J Remote Sens 35(2):693–714

    Google Scholar 

  • Artigas FJ, Yang JS (2005) Hyperspectral remote sensing of marsh species and plant vigour gradient in the New Jersey Meadowlands. Int J Remote Sens 26(23):5209–5220

    Google Scholar 

  • Atzberger C, Jarmer T, Schlerf M, Kotz B, Werner D (2003) Spectro-radiometric determination of wheat bio-physical variables: comparison of different empirical-statistical approaches. Remote Sens Trans:463–470

  • Binaghi E, Gallo I, Boschetti M (2004) A neural adaptive model for hyperspectral data classification under minimal training conditions. Proceedings of the society of photo-optical instrumentation engineers 5573: 173-181

  • Bakos KL, Gamba P (2011) Hierarchical hybrid decision tree fusion of multiple hyperspectral data processing chains. IEEE Trans Geosci Remote Sens 49(1):388–394

    Google Scholar 

  • Barnsley MJ, Lewis P, O'Dwyer S, Disney MI, Hobson P, Cutter M, Lobb D (2000) On the potential of CHRIS/PROBA for estimating vegetation canopy properties from space. Remote Sens Rev 19(1-4):171–189

    Google Scholar 

  • Barry KM, Stone C, Mohammed CL (2008) Crown-scale evaluation of spectral indices for defoliated and discoloured eucalypts. Int J Remote Sens 29(1):47–69

    Google Scholar 

  • Blackburn GA (2007) Wavelet decomposition of hyperspectral data: a novel approach to quantifying pigment concentrations in vegetation. Int J Remote Sens 28(12):2831–2855

    Google Scholar 

  • Blackburn GA, Ferwerda JG (2008) Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis. Remote Sens Environ 112(4):1614–1632

    Google Scholar 

  • Behmann J, Steinruecken J, Pluemer L (2014) Detection of early plant stress responses in hyperspectral images. ISPRS 93:98–111

    Google Scholar 

  • Ben I, Mohamed M, Bchir O (2014) Survey on number of endmembers estimation techniques for hyperspectral data unmixing. International Conference on Audio. Language And Image Processing 1-2: 651-655

  • Berk A, Anderson GP, Acharya PK, Chetwynd JH, Bernstein LS, Shettle EP, Matthew MW and Adler-Golden S M, (2000) MODTRAN4 user’s manual Hanscom AFB: Air Force Research Laboratory. Space Vehicles Directorate, Air Force Materiel Command, MA, 97

  • Bernard K, Tarabalka Y, Angulo J (2011) A stochastic minimum spanning forest approach for spectral-spatial classification of hyperspectral images. IEEE Int Conf Image Process:1265–1268

  • Ball G, Hall D (1965) ISODATA, a novel method of data analysis and classification CA, USA. Technical report, AD-699616, Stanford University, Stanford

  • Boschetti M, Boschetti L, Oliveri S, Casati L, Canova I (2007) Tree species mapping with Airborne hyper-spectral MIVIS data. Int J Remote Sens 28(6)

  • Bostater CR (2006) Optimal band selection for hyperspectral remote sensing of aquatic benthic features - a wavelet filter window approach. Proceedings of The Society of Photo-Optical Instrumentation Engineers 6360: U185-U194

  • Brackx M, Van WS, Verhelst J (2017) Hyperspectral leaf reflectance of Carpinus betulus L saplings for urban air quality estimation. Environ Pollut 220(A:159–167

    Google Scholar 

  • Breiman L (2001) Random forest. Mach Learn 45:5–32

    Google Scholar 

  • Brelsford C, Shepherd D (2014) Using mixture-tuned match filtering to measure changes in subpixel vegetation area in Las Vegas, Nevada. J Appl Remote Sens 8(1):083660

    Google Scholar 

  • Brunn A, Dittmann C, Fischer C (2001) Atmospheric correction of 2000 HyMap (TM) data in the framework of the EU-Project MINEO. Proceedings Of The Society Of Photo-Optical Instrumentation Engineers 4541: 382-392

  • Bulcock HH, Jewitt GPW (2010) Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological applications with a particular focus on canopy interception. Hydrol Earth Syst Sci 14(2):383–392

    Google Scholar 

  • Burai P, Deak B, Valko O (2015) Classification of herbaceous vegetation using airborne hyperspectral imagery. Remote Sens 7(2):2046–2066

    Google Scholar 

  • Cachorro VE, Vergaz R, De Frutos AM (1999) A model for atmospheric correction of DAIS hyperspectral imager sensor based on experimental optical measurements, remote sensing in the 21st century. Economic And Environmental Applications 541-547

  • Carter GA (1994) Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int J Remote Sens 15:697–703

    Google Scholar 

  • Carter GA (1998) Reflectance bands and indices for remote estimation of photosynthesis and stomatal conductance in pine canopies. Remote Sens Environ 63:61–72

    Google Scholar 

  • Carvalho OA, Menezes PR, (2000) Spectral Correlation Mapper (SCM): an improving Spectral Angle Mapper (SAM). Proceedings of the Nincth JPL Airborne Earth Science Workshop 18: 65-74

  • Carvalho OA, De Carvalho APF, Guimaraes RF (2003) Classification of hyperspectral image using SCM methods for geobotanical analysis in the Brazilian Savanna region. IEEE Int Symp Geosci Remote Sens:3754–3756

  • Chabrillat S, Kaufmann H, Palacios OA (2004) Development of land degradation spectral indices in a semiarid Mediterranean ecosystem. Proceedings of the society of photo-optical instrumentation engineers (SPIE) 5574: 235-243

  • Chaichoke V, Suwit O, Tanasak V, Andrew KS (2005) Tropical mangrove species discrimination using hyperspectral data: A laboratory study. Estuar Coast Shelf Sci 65(1–2):371–379

    Google Scholar 

  • Chan JC, Paelinckx D (2008) Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens Environ 112(6):2999–3011

    Google Scholar 

  • Cheng T, Rivard B, Sanchez-Azofeifa GA (2010) Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation. Remote Sens Environ 114(4):899–910

    Google Scholar 

  • Cho MA, Skidmore AK (2009) Hyperspectral predictors for monitoring biomass production in Mediterranean mountain grasslands: Majella National Park, Italy. Int J Remote Sens 30(2):499–515

    Google Scholar 

  • Cho MA, Skidmore AK, Sobhan I (2009) Mapping beech (Fagus sylvatica L) forest structure with airborne hyperspectral imagery. Int J Appl Earth Obs Geoinf 11(3):201–211

    Google Scholar 

  • Cho MA, Debba P, Mathieu R (2010) Improving discrimination of savanna tree species through a multiple-endmember spectral angle mapper approach: Canopy-level analysis. IEEE Trans Geosci Remote Sens 48(11):4133–4142

    Google Scholar 

  • Cho MA, Debba P, Mutanga O (2012) Potential utility of the spectral red-edge region of SumbandilaSat imagery for assessing indigenous forest structure and health. Int J Appl Earth Obs Geoinf 16:85–93

    Google Scholar 

  • Christian B, Krishnayya NSR (2009) Classification of tropical trees growing in a sanctuary using Hyperion (EO-1) and SAM algorithm. Curr Sci 96(12):1601–1607

    Google Scholar 

  • Ciraolo G, Cox E, La Loggia G (2003) The classification of submerged vegetation using hyperspectral MIVIS data Conference on Airborne Remote Sensing for Geophysical and Environmental Application. Annals of. Geophysics 49(1):287–294

    Google Scholar 

  • Cocks T, Jenssen R, Stewart A, Wilson I, and Shields T (1998) The Hymap airborne hyperspectral sensor: The system, calibration and performance. EARSEL Workshop on Imaging Spectroscopy

  • Conese C, Maselli F (1993) Selection of optimal bands from TM scenes through mutual information analysis. ISPRS J Photogramm Remote Sens 48(3):2–11

    Google Scholar 

  • Cooley JW, Tukey OW (1965) An algorithm for the machine calculation of complex fourier series. Math Comput 19:297–301

    Google Scholar 

  • Cord M, Cunningham P (2008) Machine learning techniques for multimedia: Case studies on organization and retrieval. Springer Science & Business Media 1-29

  • Craig R, Jie S (2002) Principal component analysis for hyperspectral image classification. Surveying and Land. Inf Syst 62(2):115–000

    Google Scholar 

  • Clark ML, Kilham NE (2016) Mapping of land cover in northern California with simulated hyperspectral satellite imagery. ISPRS J Photogramm Remote Sens 119:228–245

    Google Scholar 

  • Clark ML, Roberts DA (2012) Species-Level Differences in hyperspectral Metrics among Tropical Rainforest Trees as Determined by a Tree-Based Classifier. Remote Sens 4(6):1820–1855

    Google Scholar 

  • Croft H, Chen JM, Zhang Y (2013) Modelling leaf chlorophyll content in broadleaf and needle leaf canopies from ground CASI Landsat TM 5 and MERIS reflectance data. Remote Sens Environ 133:128–140

    Google Scholar 

  • Calderon R, Navas CJA, Lucena C (2013) High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens Environ 139:231–245

    Google Scholar 

  • Clasen A, Somers B, Pipkins K (2015) Spectral unmixing of forest crown components at close range Airborne and Simulated Sentinel-2 and EnMAP Spectral Imaging Scale. Remote Sens 7(11):15361–15387

    Google Scholar 

  • Cui LL, Fan WY, Shi J (2004) Some key pre-processing techniques on airborne imaging spectrometer data for quantitative analysis. Proceedings of The Society of Photo-Optical Instrumentation Engineers 5548: 398-408

  • Cui M, Prasad S, Bruce LM (2012) Robust spatial-spectral hyperspectral image classification for vegetation stress detection. IEEE International Symposium on Geoscience and Remote Sensing:5486–5489

  • De Backer S, Kempeneers P, Debruyn W (2005) A band selection technique for spectral classification. IEEE Geosci Remote Sens Lett 2(3):319–323

    Google Scholar 

  • Deng C, Wu C (2013) A spatially adaptive spectral mixture analysis for mapping subpixel urban impervious surface distribution. Remote Sens Environ:13362–13370

  • Dennison PE, Roberts DA (2003) The effects of vegetation phenology on endmember selection and species mapping in southern California chaparral. Remote Sens Environ 87(2-3):295–309

    Google Scholar 

  • Dennison PE, Halligan KQ, Roberts DA (2004) A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper. Remote Sens Environ 93(3):359–367

    Google Scholar 

  • Deventer VH, Cho MA Mutanga O (2015) Capability of models to predict leaf N and P across four seasons for six sub-tropical forest evergreen trees. ISPRS J Photogramm Remote Sens 101:209–220

    Google Scholar 

  • Dian Y, Li Z, Pang Y (2013) Forest tree species classification based on airborne hyperspectral imagery. Proceedings of SPIE 8921: UNSP 892107

  • Dian Y, Fang S, Yuan L (2014) Comparison of the different classifiers in vegetation species discrimination using hyperspectral reflectance data. J Indian Soc Remote Sens 42(1):61–72

    Google Scholar 

  • Dian Y, Li Z, Pang Y (2015) Spectral and texture features combined for forest tree species classification with airborne hyperspectral imagery. J Indian Soc of Remote Sens 43(1):101–107

    Google Scholar 

  • Dian Y, Le Y, Fang S (2016) Influence of Spectral Bandwidth and Position on Chlorophyll Content Retrieval at Leaf and Canopy Levels. J Indian Soc Remote Sens 44(4):583–593

    Google Scholar 

  • Delalieux S, Somers B, Haest B (2012) Heathland conservation status mapping through integration of hyperspectral mixture analysis and decision tree classifiers. Remote Sens Environ 126:222–223

    Google Scholar 

  • Dalponte M, Bruzzone L, Vescovo L (2009) The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas. Remote Sens Environ 113(11):2345–2355

    Google Scholar 

  • Du H, Chang CI, Ren HD, Amico FM, Jensen JO (2004) New hyperspectral discrimination measure for spectral characterization. Opt Eng 43(8):1777–1786

    Google Scholar 

  • Dudley KL, Dennison PE, Roth KL (2015) A multi-temporal spectral library approach for mapping vegetation species across spatial and temporal phenological gradients. Remote Sens Environ 167:121–134

    Google Scholar 

  • Dyk A, Goodenough DG, Thompson S (2003) Compressed hyperspectral imagery for forestry. IEEE Int Symp Geosci Remote Sens:294–296

  • Ebadi L, Shafri HZM (2015) A stable and accurate wavelet-based method for noise reduction from hyperspectral vegetation spectrum. Earth Sci Inf 8(2):411–425

    Google Scholar 

  • Ebadi L, Shafri HZM, Mansor SB (2013) A review of applying second-generation wavelets for noise removal from remote sensing data. Environ Earth Sci 70(6):2679–2690

    Google Scholar 

  • Everitt JH, Yang C, Summy K (2013) Using hyperspectral reflectance data to assess biocontrol damage of giant salvinia. Geocarto Int 28(6):502–516

    Google Scholar 

  • Emengini EJ, Blackburn GA, Theobald JC (2013) Discrimination of plant stress caused by oil pollution and waterlogging using hyperspectral and thermal remote sensing. J Appl Remote Sens 7:073476

    Google Scholar 

  • Elatawneh A, Kalaitzidis C, Petropoulos GP (2014) Evaluation of diverse classification approaches for land use/cover mapping in a Mediterranean region utilizing Hyperion data. Int J Digital Earth 7(3):194–216

    Google Scholar 

  • Fahsi A, Tsegaye T, Rajbhandari N (1999) Effect of vegetation density and vegetation conditions on the spectral backscattering in the visible and the near infrared. Proceedings of The Society of Photo-Optical Instrumentation Engineers (Spie) 3868: 132-140

  • Fan F, Deng Y (2014) Enhancing endmember selection in multiple endmember spectral mixture analysis for urban impervious surface area mapping using spectral angle and spectral distance parameters. Int J Appl Earth Obs Geoinf 33:290–301

    Google Scholar 

  • Fan W, Li M, Yu Y (2011) Quantitative retrieving of vegetation factors for desertification area. Adv Mater Res 183-185:376–380

    Google Scholar 

  • Fassnacht FE, Neumann C, Foerster M (2014) Comparison of feature reduction algorithms for classifying tree species with hyperspectral data on three central european test sites. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2547–2561

    Google Scholar 

  • Feilhauer H, Asner GP, Martin RE (2010a) Brightness-normalized partial least squares regression for hyperspectral data. J Quant Spectrosc Radiat Transf 111(12-13):1947–1957

    Google Scholar 

  • Feilhauer H, Oerke EC, Schmidtlein S (2010b) Quantifying empirical relations between planted species mixtures and canopy reflectance with PROTEST. Remote Sens Environ 114(7):1513–1521

    Google Scholar 

  • Feng J, Jiao L, Sun T (2016) Multiple kernel learning based on discriminative kernel clustering for hyperspectral band selection. IEEE Trans Geosci Remote Sens 54(11):6516–6530

    Google Scholar 

  • Feret JB, Asner GP (2011) Spectroscopic classification of tropical forest species using radiative transfer modeling. Remote Sens Environ 115(9):2415–2422

    Google Scholar 

  • Feret JB, Francois C, Gitelson A (2011) Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling. Remote Sens Environ 115(10):2742–2750

    Google Scholar 

  • Fevotte C, Dobigeon N (2015) Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization. IEEE Trans Image Process 24(12):4810–4819

    Google Scholar 

  • Filippi AM Jensen JR (2006) Fuzzy learning vector quantization for hyperspectral coastal vegetation classification. Remote Sens Environ 100(4):512–530

    Google Scholar 

  • Filippi AM, Jensen JR (2007) Effect of continuum removal on hyperspectral coastal vegetation classification using a fuzzy learning vector quantizer. IEEE Trans Geosci Remote Sens 45(6):1857–1869

    Google Scholar 

  • Foody GM, Curran PJ, Honzak M (1997) Non-linear mixture modelling without endmembers using an artificial neural network. Int J Remote Sens 18(4):937–953

    Google Scholar 

  • Forzieri G, Moser G, Catani F (2012) Assessment of hyperspectral MIVIS sensor capability for heterogeneous landscape classification. ISPRS J Photogramm Remote Sens 74:175–184

    Google Scholar 

  • Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. Proceedings of the 13th International Conference on Machine Learning Bari Italy 148–156

  • Gao Y, Li D (2015) Assessing leaf senescence in tall fescue (Festuca arundinacea Schreb) under salinity stress using leaf spectrum. Eur J Hortic Sci 80(4):170–176

    Google Scholar 

  • Ge S, Carruthers RI, Kramer M (2011) Multiple-level defoliation assessment with hyperspectral data: integration of continuum-removed absorptions and red edges. Int J Remote Sens 32(21):6407–6422

    Google Scholar 

  • Gholizadeh A, Misurec J, Kopackova V (2016) Assessment of red-edge position extraction techniques: a case study for norway spruce forests using Hymap and simulated sentinel-2 data. Forests 7(10):226

    Google Scholar 

  • Gomez CMT, Lopez GF, Pena-Barragan Jose M (2007) Assessing nitrogen and potassium deficiencies in olive orchards through discriminant analysis of hyperspectral data. J Am Soc Hortic Sci 132(5):611–618

    Google Scholar 

  • Gomez JA, Zarco-Tejada PJ, Garcia-Morillo J (2011) Determining Biophysical Parameters for Olive Trees Using CASI-Airborne and Quickbird-Satellite Imagery. Agron J 103(3):644–654

    Google Scholar 

  • Gong P, Pu R, Heald RC (2002) Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. Int J Remote Sens 23(9):1827–1850

    Google Scholar 

  • Goodenough DG, Dyk A, Niemann O (2003) Processing Hyperion and ALI for forest classification. IEEE Trans Geosci Remote Sens 41(6):1321–1331

    Google Scholar 

  • Goodenough DG, Han T, Pearlman JS (2004) Forest chemistry mapping with hyperspectral data. IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data 395-398

  • Grace J, Nichol C, Disney M (2007) Can we measure terrestrial photosynthesis from space directly using spectral reflectance and fluorescence. Glob Chang Biol 13(7):1484–1497

    Google Scholar 

  • Green AA, Berman M, Switzer P, Craig MD (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26:65–74

    Google Scholar 

  • Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, Faust JA, Pavri BE, Chovit CJ, Solis M, Olah MR, Williams O (1998) Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens Environ 65:227–248

    Google Scholar 

  • Gruninger J, Fox M, Lee J (2002) Use of the Vis-SWIR to aid atmospheric correction of multispectral and hyperspectral thermal infrared (TIR) imagery: The TIR model. Proceedings of The Society of Photo-Optical Instrumentation Engineers 4816: 80-92

  • Guo Y, Zeng F (2012) Atmospheric Correction Comparison Of Spot-5 Image Based On Model FLAASH And Model QUAC. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences XXXIX-B7

  • Guo B, Gunn SR, Damper RI (2006) Band selection for hyperspectral image classification using mutual information. IEEE Geosci Remote Sens Lett 3(4):522–526

    Google Scholar 

  • Harsanyi JC, Chang CI (1994) Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection. IEEE Trans Geosci Remote Sens 32(4):779–785

    Google Scholar 

  • Hernandez CR, Navarro CRM, Suarez L (2011) Assessing structural effects on PRI for stress detection in conifer forests. Remote Sens Environ 115(9):2360–2375

    Google Scholar 

  • Heylen R, Parente M, Gader P (2014) A Review of nonlinear hyperspectral unmixing methods. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):1844–1868

    Google Scholar 

  • Hsu PHT, Seng YH, Gong P (2002) Dimension reduction of hyperspectral images. Geographic. Inf Sci 8:1–8

    Google Scholar 

  • Hu B, Li Q (2007) Vegetation classification using hyperspectral remote sensing and singular spectrum analysis. Proceedings of The Society Of Photo-Optical Instrumentation Engineers 6696(1-2): N6960-N6960

  • Huete A, Miura T, Gao X (2002) Land cover conversion and degradation analyses through coupled soil-plant biophysical parameters derived from hyperspecral EO-1 Hyperion. IEEE Int Symp Geosci Remote Sens:799–801

  • Huete AR, Miura T, Gao X (2003) Land cover conversion and degradation analyses through coupled soil-plant biophysical parameters derived from hyperspectral EO-1 Hyperion. IEEE Trans Geosci Remote Sens 41(6):1268–1276

    Google Scholar 

  • Hui F (2013) Land-cover mapping in the Nujiang Grand Canyon: integrating spectral textural and topographic data in a random forest classifier. Int J Remote Sens 34(21):7545–7567

    Google Scholar 

  • Jin H, Li P, Cheng T (2012) Land cover classification using CHRIS/PROBA images and multi-temporal texture. Int J Remote Sens 33(1):101–119

    Google Scholar 

  • Jin J, Jiang H, Zhang X (2013) Using multivariate analysis to detect the hyperspectral response of Chinese fir to acid stress. Int J Remote Sens 34(11):3775–3786

    Google Scholar 

  • Jacquemoud S, Baret J (1990) PROSPECT: A model of leaf optical properties spectra. Remote Sens Environ 34:75–91

    Google Scholar 

  • Jengo C M, LaVeigne J (2004) Sensor performance comparison of HyperSpecTIR instruments 1 and 2. IEEE Aerospace Conference Proceedings 3: 1805

  • Jiantao FQ, Gong J (2016) Land-cover classification of the yellow river delta wetland based on multiple end-member spectral mixture analysis and a random forest classifier. Int J Remote Sens 37(8):1845–1867

    Google Scholar 

  • Ju Y, Pan J, Wang X (2014) Detection of Bursaphelenchus xylophilus infection in Pinus massoniana from hyperspectral data. Nematology 16:1197–1207

    Google Scholar 

  • Kopackova V, Misurec J, Lhotakova Z (2014) Using multi-date high spectral resolution data to assess the physiological status of macroscopically undamaged foliage on a regional scale. Int J Appl Earth Obs Geoinf 27:169–186

    Google Scholar 

  • Kalacska M, Lalonde M, Moore TR (2015) Estimation of foliar chlorophyll and nitrogen content in an ombrotrophic bog from hyperspectral data: Scaling from leaf to image. Remote Sens Environ 169:270–279

    Google Scholar 

  • Karathanassi V, Andreou C, Andronis V (2014) Effects of band selection on endmember extraction for forestry applications. Proceedings of SPIE 9245: UNSP 92451O

  • Kefauver SC, Penuelas JUS (2013) Using topographic and remotely sensed variables to assess ozone injury to conifers in the Sierra Nevada (USA) and Catalonia (Spain). Remote Sens Environ 139:138–148

    Google Scholar 

  • Kempeneers P, De Backer SB, Debruyn W (2004) Wavelet based feature extraction for hyperspectral vegetation monitoring. Proceedings of The Society of Photo-Optical Instrumentation Engineers 5238: 297-305

  • Kempeneers P, Deronde B, Bertels L (2004) Classifying hyperspectral airborne imagery for vegetation survey along coastlines. IEEE Int Symp Geosci Remote Sens:1475–1478

  • Kempeneers P, Zarco-Tejada PJ, North PRJ (2008) Model inversion for chlorophyll estimation in open canopies from hyperspectral imagery. Int J Remote Sens 29(17-18):5093–5111

    Google Scholar 

  • Khurshid KS, Staenz K, Sun L (2005) Preprocessing of EO-1 hyperion data. Can J Remote Sens 32(2):84–97

    Google Scholar 

  • Kim Y, Glenn DM, Park J (2011) Hyperspectral image analysis for water stress detection of apple trees. Comput Electron Agric 77(2):155–160

    Google Scholar 

  • Kira O, Linker R, Gitelson A (2015) Non-destructive estimation of foliar chlorophyll and carotenoid contents: Focus on informative spectral bands. Int J Appl Earth Obs Geoinf 38:251–260

    Google Scholar 

  • Kolluru P, Pandey K, Padalia H (2014) A Unified framework for dimensionality reduction and classification of hyperspectral data. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences 40(8): 447-453

    Google Scholar 

  • Kovacs JM, Liu Y, Zhang C (2011) A field based statistical approach for validating a remotely sensed mangrove forest classification scheme. Wetl Ecol Manag 19(5):409–421

    Google Scholar 

  • Kruse FA (2004) Comparison of ATREM ACORN and FLAASH atmospheric corrections using low-altitude AVIRIS data of Boulder. Jet Propulsion Laboratory Publication

  • Kruse FA, Richardson LL, Ambrosia VG (1997) Techniques developed for geologic analysis of hyperspectral data applied to near-shore hyperspectral ocean data. Proceedings of Fourth International Conferenceon Remote Sensing for Marine and Coastal Environments Orlando Florida

  • Kumar V, Ghosh JK (2017) Camouflage Detection Using MWIR Hyperspectral Images. J Indian Soc Remote Sens 45:139

    Google Scholar 

  • Kumar A, Manjunath KR, Meenakshi (2013) Field hyperspectral data analysis for discriminating spectral behavior of tea plantations under various management practices. Int J Appl Earth Obs Geoinf 23:352–359

    Google Scholar 

  • Lee CM, Morgan LC, Hook SJ, Green RO, Susan LU, Daniel JM, Elizabeth MM (2015) An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities. Remote Sens Environ 167:6–19

    Google Scholar 

  • Lee J, Cai X, Lellmann J (2016) Individual Tree Species Classification From Airborne Multisensor Imagery Using Robust PCA. IEEE Sel Top Appl Earth Obs Remote Sens 9(6):2554–2567

    Google Scholar 

  • Lei Q, Bodechtel J (1999) Application of MAIS (Modular Airborne Imaging Spectrometer) data for mineral prospection in Gansu Province China. Geoscience and Remote Sensing Symposium

  • Levesque J, Staenz K (2004) A method for monitoring mine tailings re-vegetation using hyperspectral remote sensing. IEEE Int Symp Geosci Remote Sens:575–578

  • Lewis M (2000) Discrimination of arid vegetation composition with high resolution CASI imagery. Rangel J 22(1):141–167

    Google Scholar 

  • Lhotakova Z, Brodsky L, Kupkova L (2013) Detection of multiple stresses in Scots pine growing at post-mining sites using visible to near-infrared spectroscopy. Environ Sci.:Processes Impacts 15(11):2004–2015

    Google Scholar 

  • Li L, Ustin SL, Lay M (2005) Application of AVIRIS data in detection of oil-induced vegetation stress and cover change at Jornada New Mexico. Remote Sens Environ 94(1):1–16

    Google Scholar 

  • Li N, Lue J, Altermann W (2010) Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution. Spectrosc Spectr Anal 30(9):2508–2511

    Google Scholar 

  • Li X, Jia X, Wang L (2015) On spectral unmixing resolution using extended support vector machines. IEEE Trans Geosci Remote Sens 53(9):4985–4996

    Google Scholar 

  • Li J, Xi T, Huang W (2016a) Application of Long-Wave Near Infrared hyperspectral Imaging for Measurement of Soluble Solid Content (SSC) in Pear. Food Anal Methods 9(11):3087–3098

    Google Scholar 

  • Li SP, Wu ZF, Zhao YS (2016b) Hyperspectr`al and red-edge characteristics of typical hardwoods leaf coloring date in Mudan Valley Changbai. Mt J Infrared Millimeter Waves 35(5):584–591

    Google Scholar 

  • Lillesand TM., Kiefer RW, Chipman JW (2008) Remote Sensing and Image Interpretation. 6th Edition John Wiley & Sons, Hoboken.

  • Liu S, Jiao L, Yang S (2016) Hierarchical sparse learning with spectral-spatial information for hyperspectral imagery denoising. Sensors 16(10):1718

    Google Scholar 

  • Lorente D, Aleixos N, Gomez-Sanchis J (2013) Selection of optimal wavelength features for decay detection in citrus fruit using the roc curve and neural networks. Food Bioprocess Technol 6(2):530–541

    Google Scholar 

  • Lu X, Hu Z, Guo S (2009) The Quantitative Estimation of Periurban vegetation ecology Using hyperspectral Remote Sensing Joint Urban. Remote Sensing Event 1-3:13–18

    Google Scholar 

  • Lu D, Song K, Wang Z (2010) Application of wavelet transform (wt) on canopy hyperspectral data for soybean leaf area index (lai) estimation in the Songnen Plain China. Proceedings of SPIE-The International Society for Optical Engineering 7807(1): 78070V

  • Ma J, Zheng Z, Tong Q, Zheng L, Zhang B (2001) Hyperspectral image band selection based on genetic algorithms. SPIE 4548:195–198

    Google Scholar 

  • Manjunath KR, Kumar T, Kundu N (2013) Discrimination of mangrove species and mudflat classes using in situ hyperspectral data: A case study of Indian Sundarbans. GIScience Remote Sens 50(4):400–417

    Google Scholar 

  • Mannel S, Price M (2012) Comparing classification results of multi-seasonal TM against AVIRIS imagery - seasonality more important than number of bands. Photogrammetrie Fernerkundung Geoinformation (5):603–612

    Google Scholar 

  • Markelin L, Honkavaara E, Schlaepfer D (2012) Assessment of Radiometric Correction Methods for ADS40. Imagery. Photogrammetrie Fernerkundung Geoinformation (3):251–266

    Google Scholar 

  • Maselli F, Conese C, Petkov L, Resti R (1992) Inclusion of prior probabilities derived from a nonparametric process into the maximum likelihood classifier. Photogramm Eng Remote Sens 58:201–207

    Google Scholar 

  • McGwire K, Minor T, Fenstermaker L (2000) Hyperspectral mixture modeling for quantifying sparse vegetation cover in arid environments. Remote Sens Environ 72(3):360–374

    Google Scholar 

  • Male EJ, Pickles WL, Silver EA (2010) Using hyperspectral plant signatures for CO2 leak detection during the 2008 ZERT CO2 sequestration field experiment in Bozeman Montana. Environ Earth Sci 6(2):251–261

    Google Scholar 

  • Meggio F, Zarco-Tejada PJ, Nunez LC (2010) Grape quality assessment in vineyards affected by iron deficiency chlorosis using narrow-band physiological remote sensing indices. Remote Sens Environ 114(9):1968–1986

    Google Scholar 

  • Meng R, Dennison PE (2015) Spectroscopic Analysis of Green Desiccated and Dead Tamarisk Canopies. Photogramm Eng Remote Sens 81(3):199–207

    Google Scholar 

  • Malenovsky Z, Homolova L, Cudlin P (2007) Physically-based retrievals of Norway spruce canopy variables from very high spatial resolution hyperspectral data. IEEE Int Symp Geosci Remote Sens:4057–4060

  • Metternicht G, Zinck JA, Blanco PD (2010) Remote sensing of land degradation: experiences from latin america and the caribbean. J Environ Qual 39(1):42–61

    Google Scholar 

  • Miao L, Qi H, Szu H (2007) A maximum entropy approach to unsupervised mixed-pixel decomposition. IEEE Trans Image Process 16(4):1008–1021

    Google Scholar 

  • Miao X, Patil R, Heaton JS (2011) Detection and classification of invasive saltcedar through high spatial resolution airborne hyperspectral imagery. Int J Remote Sens 32(8):2131–2150

    Google Scholar 

  • Miglani A, Ray SS, Vashishta DP (2011) Comparison of Two Data Smoothing Techniques for vegetation Spectra Derived From EO-1 Hyperion. J Indian Soc Remote Sens 39(4):443–453

    Google Scholar 

  • Mirik M, Steddom K, Michels GJ (2006) Estimating biophysical characteristics of musk thistle (Carduus nutans) with three remote sensing instruments. Rangel Ecol Manag 59(1):44–54

    Google Scholar 

  • Mishra A, Karimi D, Ehsani R (2011) Evaluation of an active optical sensor for detection of Huanglongbing (HLB) disease. Biosyst Eng 110(3):302–309

    Google Scholar 

  • Mitchell PA (1995) Hyperspectral digital imagery collection experiment (HYDICE). Proc SPIE 2587:70

    Google Scholar 

  • Mitchell JJ, Glenn NF (2009) Leafy Spurge (Euphorbia esula) Classification Performance Using hyperspectral and Multispectral Sensors. Rangel Ecol Manag 62(1):16–27

    Google Scholar 

  • Mitchell JJ, Glenn NF, Sankey TT (2012) Remote sensing of sagebrush canopy nitrogen. Remote Sens Environ 124:217–223

    Google Scholar 

  • Moroni M, Lupo E, Cenedese A (2013) Hyperspectral Proximal Sensing of Salix Alba Trees in the Sacco River Valley (Latium Italy). Sensors 13(11):14633–14649

    Google Scholar 

  • Moustakidis S, Mallinis G, Koutsias N (2012) SVM-based fuzzy decision trees for classification of high spatial resolution remote sensing images. IEEE Trans Geosci Remote Sens 50(1):149–169

    Google Scholar 

  • Mukherjee K, Ghosh JK, Mittal RC (2013) Variogram fractal dimension based features for hyperspectral data dimensionality reduction. J Indian Soc Remote Sens 41(2):249–258

    Google Scholar 

  • Mueller R, Cerra D, Reinartz P (2013) Synergetics Framework For hyperspectral Image Classification. International Archives of the Photogrammetry. Remote Sens Spat Inf Sci 40(W-1):257–262

    Google Scholar 

  • Murphy RJ, Underwood AJ, Tolhurst TJ (2008) Field-based remote-sensing for experimental intertidal ecology: Case studies using hyperspatial and Hyperspectral data for New South Wales (Australia). Remote Sens Environ 112(8):3353–3365

    Google Scholar 

  • Nascimento JMP, Bioucas-Dias JM (2005) Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans Geosci Remote Sens 43(4):898–910

    Google Scholar 

  • Nawar S, Buddenbaum H and Hill (2015) Estimation of soil salinity using three quantitative methods based on visible and near-infrared reflectance spectroscopy: A case study from Egypt. Arab J Geosci 8: 5127

    Google Scholar 

  • Nikonorov A, Bibikov S, Myasnikov V (2016) Correcting color and hyperspectral images with identification of distortion model. Pattern Recogn Lett 83(2):178–187

    Google Scholar 

  • O'Connell JL, Kristin BB, Kelly M (2014) Remotely-Sensed Indicators of N-Related Biomass Allocation in Schoenoplectus acutus. PLoS One 9(3):e90870

    Google Scholar 

  • Okujeni A, Sebastian VL, Laurent T (2013) Support vector regression and synthetically mixed training data for quantifying urban land cover. Remote Sens Environ 137:184–197

    Google Scholar 

  • Oumar Z, Mutanga O, Ismail R (2013) Predicting Thaumastocoris peregrinus damage using narrow band normalized indices and hyperspectral indices using field spectra resampled to the Hyperion sensor. Int J Appl Earth Obs Geoinf 21:113–121

    Google Scholar 

  • Panigada C, Rossini M, Busetto L (2010) Chlorophyll concentration mapping with MIVIS data to assess crown discoloration in the Ticino Park oak forest. Int J Remote Sens 31(12):3307–3332

    Google Scholar 

  • Parshakov I, Coburn C, Staenz K (2014) Automated Class Labeling Of Classified Landsat TM Imagery Using a Hyperion-Generated hyperspectral Library. Photogramm Eng Remote Sens 80(8):797–805

    Google Scholar 

  • Pena MA, Brenning A, Sagredo A (2012) Constructing satellite-derived hyperspectral indices sensitive to canopy structure variables of a Cordilleran Cypress (Austrocedrus chilensis) forest. ISPRS J Photogramm Remote Sens 74:1–10

    Google Scholar 

  • Perumal K, Bhaskaran R (2010) Supervised classification performance of multispectral images. J Comput 2(2):124–129

    Google Scholar 

  • Petropoulos GP, Kalivas DP, Georgopoulou IA (2015) Urban vegetation cover extraction from hyperspectral imagery and geographic information system spatial analysis techniques: case of Athens Greece. J Appl Remote Sens 9:096088

    Google Scholar 

  • Phillips RD, Watson LT, Wynne RH (2012) Continuous iterative guided spectral class rejection classification algorithm. IEEE Trans Geosci Remote Sens 50(6):2303–2317

    Google Scholar 

  • Pipkins K, Foerster M, Clasen A (2014) A Comparison of Feature Selection Methods for Multitemporal Tree Species Classification. Proc SPIE 9245:92450V

    Google Scholar 

  • Plourde LC, Ollinger SV, Smith ML (2007) Estimating species abundance in a northern temperate forest using spectral mixture analysis. Photogramm Eng Remote Sens 73(7):829–840

    Google Scholar 

  • Prasad KA, Gnanappazham L (2013) Spectral Separability among mangrove species of rhizophoraceae family using field spectroscopy. Ocean. Electronics:213–220

  • Prasad ST, Eden AE, Mark SA, Bauke VDM (2004) Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sens Environ 91:354–376

    Google Scholar 

  • Pu R, Gong P (2004) Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping. Remote Sens Environ 91:212–224

    Google Scholar 

  • Pinzon JE, Ustin SL, Castaneda CM (1998) Robust spatial and spectral feature extraction for multispectral and hyperspectral imagery. Proceedings Of The Society Of Photo-Optical Instrumentation Engineers 3372: 199-210

  • Qiu F (2008) Neuro-fuzzy based analysis of hyperspectral imagery. Photogramm Eng Remote Sens 74(10):1235–1247

    Google Scholar 

  • Qiu HL, Gamon JA, Roberts DA (1998) Monitoring post fire succession in the Santa Monica Mountains using hyperspectral imagery. Proceedings of the society of photo-optical instrumentation engineers 3502: 201-208

  • Qu Y, Jiao S, Liu S (2015) Retrieval of copper pollution information from hyperspectral satellite data in a vegetation cover mining area. Spectrosc Spectr Anal 35(11):3176–3181

    Google Scholar 

  • van der Meer FD, Jia X (2012) Collinearity and orthogonality of end members in linear spectral unmixing. Int J Appl Earth Obs Geoinf 18:491–503

    Google Scholar 

  • Raksuntorn N, Du Q (2010) Nonlinear spectral mixture analysis for hyperspectral imagery in an unknown environment. IEEE Geosci Remote Sens Lett 7(4):836–840

    Google Scholar 

  • Rasel SMM, Chang HC, Ralph T (2015) Endmember identification from EO-1 Hyperion L1_R hyperspectral data to build saltmarsh spectral library in Hunter Wetland NSW Australia. Proc SPIE 9637:96371O

    Google Scholar 

  • Rautiainen M, Lang M, Mottus M (2008) Multi-angular reflectance properties of a hemiboreal forest: An analysis using CHRIS PROBA data. Remote Sens Environ 112(5):2627–2642

    Google Scholar 

  • Raychaudhuri B (2012) Synthesis of mixed pixel hyperspectral signatures. Int J Remote Sens 33(6):1954–1966

    Google Scholar 

  • Rodriguez GVF, Chica OM, Abarca HF (2012) Random Forest classification of mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens Environ 121:93–107

    Google Scholar 

  • Roth KL, Dennison PE, Roberts DA (2012) Comparing endmember selection techniques for accurate mapping of plant species and land cover using imaging spectrometer data. Remote Sens Environ 127:139–152

    Google Scholar 

  • Roth KL, Roberts DA, Dennison PE (2015) The impact of spatial resolution on the classification of plant species and functional types within imaging spectrometer data. Remote Sens Environ 171:45–57

    Google Scholar 

  • Rubeena V, Tiwari KC (2016) Multisensor multiresolution data fusion for improvement in classification. Proc SPIE 9880:98800X

  • Safavian SR, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 21(3):660–674

    Google Scholar 

  • Sandmeier S, Deering DW (1999) Structure analysis and classification of boreal forests using airborne hyperspectral BRDF data from ASAS. Remote Sens Environ 69(3):281–295

    Google Scholar 

  • Sandor LS (1999) A subspace projection approach to characterization and classification of TRWIS III data. Proceedings Of The Society Of Photo-Optical Instrumentation Engineers (3753): 318-326

  • Santiago FF, Kovacs JM, Jinfei W (2016) Examining the influence of seasonality, condition, and species composition on mangrove leaf pigment contents and laboratory based spectroscopy data. Remote Sens 8(3):1–20

    Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Google Scholar 

  • Schmid T, Koch M, Gumuzzio J (2004) A spectral library for a semi-arid wetland and its application to studies of wetland degradation using hyperspectral and multispectral data. Int J Remote Sens 25(13):2485–2496

    Google Scholar 

  • Schmidt KS, Skidmore AK (2004) Smoothing vegetation spectra with wavelets. Int J Remote Sens 25(6):1167–1184

    Google Scholar 

  • Schlerf M, Atzberger C (2006) Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sens Environ 100(3):281–294

    Google Scholar 

  • Schlerf M, Atzberger C, Hill J (2005) Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens Environ 95(2):177–194

    Google Scholar 

  • Serrano L, Gonzalez-Flor C, Gorchs G (2012) Assessment of grape yield and composition using the reflectance based water index in mediterranean rainfed vineyards. Remote sensing of environment 118: 249–258

    Google Scholar 

  • Settle JJ, Drake NA (1993) Linear mixing and the estimation of ground cover proportions. Int J Remote Sens 14:1159–1177

    Google Scholar 

  • Singh S, Dutta D, Singh U (2014) Hydat-A hyperspectral Data Processing Tool For Field Spectroradiometer Data. International Archives of the Photogrammetry. Remote Sens Spat Inf Sci 40(8):481–484

    Google Scholar 

  • Shackelford K, Davis CH (2003) A hierarchical fuzzy classification approach for high-resolution multispectral data over urban areas. IEEE Trans Geosci Remote Sens 41(9):1920–1932

    Google Scholar 

  • Shafri HZM, Yusof MRM (2009) Determination of optimal wavelet denoising parameters for red edge feature extraction from hyperspectral data. J Appl Remote Sens 3(1):033533

    Google Scholar 

  • Shafri HZM, Anuar MI, Saripan MI (2009) Modified vegetation indices for Ganoderma disease detection in oil palm from field spectroradiometer data. J Appl Remote Sens 3:033556

    Google Scholar 

  • Shang X, Chisholm LA (2014) Classification of australian native forest species using hyperspectral remote sensing and machine-learning classification algorithms. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2481–2489

    Google Scholar 

  • Shang J, Neville R, Staenz K (2008) Comparison of fully constrained and weakly constrained unmixing through mine-tailing composition mapping. Can J Remote Sens 34(1):S92–S109

    Google Scholar 

  • Shang K, Zhang X, Zhang L (2011) Evaluation of hyperspectral classification methods based on FISS data Proceedings of SPIE 8002(1): 80020L

  • Sheikh ZG, Thakare VM (2016) Wavelet based feature extraction technique for face recognition and retrieval: A review. IOSR J Comput Eng:49–54

  • Sibanda M, Mutanga O, Rouget M (2016) Comparing the spectral settings of the new generation broad and narrow band sensors in estimating biomass of native grasses grown under different management practices. Giscience Remote Sens 53(5):614–633

    Google Scholar 

  • Silvestri S, Marani M, Settle J (2002) Salt marsh vegetation radiometry - Data analysis and scaling. Remote Sens Environ 80(3):473–482

    Google Scholar 

  • Simental E, Bosch EH, Rand RS (2004) Wavelet-based feature indices as a data mining tool for hyperspectral imagery exploitation. Proceedings of the society of photo-optical instrumentation engineers 5558(1): 169-180

  • Sluiter R, Pebesma EJ (2010) Comparing techniques for vegetation classification using multi- and hyperspectral images and ancillary environmental data. Int J Remote Sens 31(23):6143–6161

    Google Scholar 

  • Smith KL, Steven MD, Colls JJ (2004) Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sens Environ 92(2):207–217

    Google Scholar 

  • Soares GL, Jorge PF, Veraldo L (2009) Possibilities of discriminating tropical secondary succession in Amazonia using hyperspectral and multiangular CHRIS/PROBA data. Int J Appl Earth Obs Geoinf 11(1):8–14

    Google Scholar 

  • Somers B, Cools K, Delalieux S (2009) Nonlinear hyperspectral Mixture Analysis for tree cover estimates in orchards. Remote Sens Environ 113(6):1183–1193

    Google Scholar 

  • Somers B, Delalieux S, Verstraeten WW, Van Aardt JAN, Albrigo G, Coppin P (2010) An automated waveband selection technique for optimized hyperspectral mixture analysis. Int J Remote Sens 31:5549–5568

    Google Scholar 

  • Somers B, Zortea M, Plaza A, Asner GP (2012) Automated extraction of image-based endmember bundles for improved spectral unmixing. J Sel Top Appl Earth Obs Remote Sens 5(2):396–408

    Google Scholar 

  • Sommer S, Mehl W, Leone AP (1997) Application of MIVIS airborne imaging spectrometer data to the assessment of land degradation risk in the Southern Apennines (Fortore Beneventano Italy). Remote sensing '96: integrated applications for risk assessment and disaster prevention for the mediterranean

  • Song X, Jiang H, Yu S (2008) Detection of acid rain stress effect on plant using hyperspectral data in Three Gorges region China. Chin Geogr Sci 18(3):249–254

    Google Scholar 

  • Staenz K, Szeredi T, Schwarz J (1998) ISDAS–A System for Processing/Analyzing Hyperspectral Data. Can J Remote Sens 24(2):99–113

    Google Scholar 

  • Stagakis S, Markos N, Sykioti O (2010) Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite Hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations. Remote Sens Environ 114(5):977–994

    Google Scholar 

  • Stagakis S, Markos N, Sykioti O (2014) Tracking seasonal changes of leaf and canopy light use efficiency in a Phlomis fruticosa Mediterranean ecosystem using field measurements and multi-angular satellite hyperspectral imagery. ISPRS 97:138–151

    Google Scholar 

  • Stagakis S, Vanikiotis T, Sykioti O (2016) Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery. ISPRS J Photogramm Remote Sens 119:79–89

    Google Scholar 

  • Stamnes K, Tsay SC, Wiscombe W, Jayaweera K (1988) Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl Opt 27(12):2505–2509

    Google Scholar 

  • Stavrakoudis DG, Galidaki GN, Gitas IZ (2012) A genetic fuzzy -rule-based classifier for land cover classification from hyperspectral imagery. IEEE Trans Geosci Remote Sens 50(1):130–148

    Google Scholar 

  • Strahler AN (1980) Systems theory in physical geography. Phys Geogr 1:1–27

    Google Scholar 

  • Suarez L, Zarco-Tejada PJ, Sepulcre-Canto G (2008) Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sens Environ 112(2):560–575

    Google Scholar 

  • Sun T, Zhao Y, Zhu F (2013) An Analysis of the marginal value of hyperspectral features of the mixed pixel of lotus leaf and water body. Indian Soc Remote Sens 41(4):757–762

    Google Scholar 

  • Sun C, Liu Y, Zhao S (2016) Classification mapping and species identification of salt marshes based on a short-time interval NDVI time-series from HJ-1 optical imagery. Int J Appl Earth Obs Geoinf 45:27–41

    Google Scholar 

  • Sweet JN (2008) Dominant component suppression with applications to spectral analysis. IEEE Applied Imagery Pattern Recognition Workshop 198-204

  • Tejada PJ, Miller JR, Mohammed GH (2002) Vegetation stress detection through chlorophyll a+b estimation and fluorescence effects on Hyperspectral imagery. J Environ Qual 31(5):1433–1441

    Google Scholar 

  • Tejada PJ, Berjon A, Lopez-Lozano R (2005) Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens Environ 99(3):271–287

    Google Scholar 

  • Tirelli C, Curci G, Manzo C, Tuccella P, Bassani C (2015) Effect of the aerosol model assumption on the atmospheric correction over land: case studies with CHRIS/PROBA hyperspectral images over Benelux. Remote Sens 7:8391–8415

    Google Scholar 

  • Thenkabail PS (2002) Optimal hyperspectral narrowbands for discriminating agricultural crops. Remote Sens Rev 20(4):257–291

    Google Scholar 

  • Thomas M, Jonas D, Honor PC (2014) Classification of grassland successional stages using airborne hyperspectral imagery. Remote Sens 6(8):7732–7761

    Google Scholar 

  • Thompson DR, Gao BC, Green RO (2015) Atmospheric correction for global mapping spectroscopy: ATREM advances for the HyspIRI preparatory campaign. Remote Sens Environ 167(SI):64–77

    Google Scholar 

  • Thoonen G, Hufkens K, Vanden BJ (2012) Accuracy assessment of contextual classification results for vegetation mapping. Int J Appl Earth Obs Geoinf 15(1):7–15

    Google Scholar 

  • Tits L, Delabastita W, Somers B (2012) First results of quantifying nonlinear mixing effects in heterogeneous forests: a modeling approach. IEEE Int Symp Geosci Remote Sens :7185–7188

  • Tong Q, Zheng L, Wang J (1997) Vegetation spectral identification and biomass mapping from hyperspectral imagery. Phys Meas Signatures Remote Sens 1-2:801–807

    Google Scholar 

  • Tu TN, Chen CH, Wu JL, Chang CI (1998) A fast two-stage classification method for high-dimensional remote sensing data. IEEE Trans Geosci Remote Sens 36:182–191

    Google Scholar 

  • Ullah S, Groen TA, Schlerf M (2012) Using a genetic algorithm as an optimal band selector in the mid and thermal infrared to discriminate vegetation species. Sensors 12(7):8755–8769

    Google Scholar 

  • Udelhoven T, Hill J, Schutt B (1998) A neural network approach for the identification of the organic carbon content of soils in a degraded semiarid ecosystem (Guadalentin SE Spain) based on hyperspectral data from the DAIS-7915 sensor Earsel. workshop on imaging spectroscopy

  • Vahtmaee E, Kutser T (2013) Classifying the baltic sea shallow water habitats using image-based and spectral library methods. Remote Sens 5(5):2451–2474

    Google Scholar 

  • Vaiphasa C (2006) Consideration of smoothing techniques for hyperspectral remote sensing. ISPRS J Photogramm Remote Sens 60(2):91–99

    Google Scholar 

  • Van WS, Alonso L, Verrelst J (2013) Upward and downward solar-induced chlorophyll fluorescence yield indices of four tree species as indicators of traffic pollution in Valencia. Environ Pollut 173:29–37

    Google Scholar 

  • Verhoef W (1984) Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL Model. Remote Sens Environ 16:125–141

    Google Scholar 

  • Verhoef W, Bach H (2003) Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models. Remote Sens Environ 87(1):23–41

    Google Scholar 

  • Verrelst J, Riveraa JP, Gitelsonc A, Delegidoa J, Morenoa J, Gustau CV (2016) Spectral band selection for vegetation properties retrieval using gaussian processes regression. Int J Appl Earth Obs Geoinf 52:554–567

    Google Scholar 

  • Vicent J, Sabater N, Tenjo C (2016) FLEX end-to-end mission performance simulator. IEEE Trans Geosci Remote Sens 54(7):4215–4223

    Google Scholar 

  • Vyas D, Krishnayya NSR, Manjunath KR (2011) Evaluation of classifiers for processing Hyperion (EO-1) data of tropical vegetation. Int J Appl Earth Obs Geoinf 13(2):228–235

    Google Scholar 

  • Wang L, Jia X (2009) Integration of soft and hard classifications using extended support vector machines. IEEE Geosci Remote Sens Lett 6(3):543–547

    Google Scholar 

  • Wang L, Sousa WP (2009) Distinguishing mangrove species with laboratory measurements of hyperspectral leaf reflectance. Int J Remote Sens 30(5):1267–1281

    Google Scholar 

  • Wang JN, Zhang LF, Tong QX (1998) The derivative spectral matching for wetland vegetation identification and classification by hyperspectral data. Proc SPIE 3502:280–288

    Google Scholar 

  • Wang H, Wang K, Xie Y (2009a) Application of hyperspectral Remote Sensing in Research on Ecological Boundary in North Farming-Pasturing. Transition in China. Spectrosc Spectr Anal 29(6):1636–1639

    Google Scholar 

  • Wang ZH, Hu GD, Zhou YZ (2009b) A Classification model of hyperion image base on SAM combined decision tree. Proc SPIE 7146:71461W

    Google Scholar 

  • Wang L, Ji HB, Shi Y (2011a) Face recognition using maximum local fisher discriminant analysis. 18th IEEE International Conference on Image Processing 1737–40

  • Wang Q, Zhang J, Chen J (2011b) An improved spectral reflectance and derivative feature fusion for hyperspectral image classification. IEEE Int Symp Geosci Remote Sens:1696–1699

  • Wang L, Liu D, Zhao L (2012a) Exploring support vector machine in spectral unmixing. Workshop on Hyperspectral Image and Signal Processing

  • Wang P, Xing Z, Feng Y (2012b) Comparison of evaluation based on different atmospheric correction methods for HJ-1A hyperspectral imaging data. Appl Mech Mater 108:224–229

    Google Scholar 

  • Wang X, Zhang J, Ren G (2014) Yellow river estuary typical wetlands classification based on hyperspectral derivative transformation. Proc SPIE 9142:91421O

    Google Scholar 

  • Wang J, Shi T, Liu H (2016a) Successive projections algorithm-based three-band vegetation index for foliar phosphorus estimation. Ecol Indic 67:12–20

    Google Scholar 

  • Wang W, Li Y (2009) Bayesian denoising for remote sensing image based on undecimated discrete wavelet transform. International conference on information engineering and computer science 1-4

  • Wang Y, Cui S (2014) Hyperspectral image feature classification using stationary wavelet transform. International Conference on Wavelet Analysis and Pattern Recognition 104-108

  • Wang Z, Wang T, Darvishzadeh R (2016b) Vegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest. Remote Sens 8(6):491

    Google Scholar 

  • Wen X, Yang X (2008) An unsupervised classification method for hyperspectral image using spectra clustering. IEEE International Symposium on Knowledge Acquisition and Modeling Workshop Proceedings 1-2: 1117-1120

  • White JC, Gomez C, Wulder MA (2010) Characterizing temperate forest structural and spectral diversity with Hyperion EO-1 data. Remote Sens Environ 114(7):1576–1589

    Google Scholar 

  • Wolf N (2013) Object features for pixel-based classification of urban areas comparing different machine learning algorithms. Photogrammetrie Fernerkundung Geoinformation 3:149–116

    Google Scholar 

  • Winter ME (1999) N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. Proceedings of SPIE Imaging Spectrometry 266–275

  • Wu J, Liu Y, Wang J (2010) Application of Hyperion data to land degradation mapping in the Hengshan region of China. Int J Remote Sens 31(19):5145–5161

    Google Scholar 

  • Wu J, Gao Z, Li Z (2014) Estimation for Sparse vegetation information in Desertification Region Based on Tiangong-Hyperspectral Image. Spectrosc Spectr Anal 34(3):751–756

    Google Scholar 

  • Xiao GZ, Wu XL, Teng K (2016) Hyperspectral Analysis and Electrolyte Leakage Inversion of Creeping Bentgrass under Salt Stress. Spectrosc Spectr Anal 36(11):3630–3636

    Google Scholar 

  • Yan L, Liu SH, Liu HL (2014) Two inverse processes: spectral reconstruction and pixel unmixing. International Workshop on Earth Observation and Remote Sensing Applications

  • Yang KM, Li H (2008) Feasibility analysis to extract hyperspectral image features based on the best basis of wavelet packet decompositions. Proceedings of information technology and environmental system. Science 3:488–493

    Google Scholar 

  • Yao W, Van LM, Romaczyk P (2015) Assessing the impact of sub-pixel vegetation structure on imaging spectroscopy via simulation. Proc SPIE 9472:94721K

    Google Scholar 

  • Younan NH, King RL, Bennett HH (2000) Hyperspectral data analysis using wavelet-based classifiers. IEEE Int Symp Geosci Remote Sens:390–392

  • Youngentob KN, Roberts DA, Held AA (2011) Mapping two Eucalyptus subgenera using multiple endmember spectral mixture analysis and continuum-removed imaging spectrometry data. Remote Sens Environ 115(5):1115–1128

    Google Scholar 

  • Yu H, Wang Q, Liu L (2016) Research Process on hyperspectral Imaging Detection Technology for the Quality and Safety of Grain and Oils. Spectrosc Spectr Anal 36(11)

  • Zhang C, Xie Z (2013) Object-based vegetation mapping in the kissimmee river watershed using hymap data and machine learning techniques. Wetlands 33(2):233–244

    Google Scholar 

  • Zhang B, Wang XG, Liu JG (2000) Hyperspectral image processing and analysis system (HIPAS) and its applications. Photogramm Eng Remote Sens 66(5):605–609

    Google Scholar 

  • Zhang Y, Chen JM, Miller JR (2008) Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery. Remote Sens Environ 112(7):3234–3247

    Google Scholar 

  • Zhao J, Ouyang Q, Chen Q (2010) Detection of bruise on pear by hyperspectral imaging sensor with different classification algorithms. Sens Lett 8(4):570–576

    Google Scholar 

  • Zhao K, Valle D, Popescu S (2013) Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection. Remote Sens Environ 132:102–119

    Google Scholar 

  • Zhou HJ, Mao ZH, Wang DF (2005) Classification of coastal areas by airborne hyperspectral image. Proceedings Of The Society Of Photo-Optical Instrumentation Engineers 5832: 471-476

  • Zhou D, Wang QJ, Tian QJ (2009) Wavelet analysis and its application in denoising the spectrum of hyperspectral image. Spectrosc Spectr Anal 29(7):1941–1945

    Google Scholar 

  • Zhou M, Shu J, Chen Z (2010) Classification of hyperspectral remote sensing image based on genetic algorithm and SVM. Proceedings of SPIE-The International Society for Optical Engineering 7809: 78090A

  • Zhou M, Shu J, Chen Z (2012) Classification of urban vegetation patterns from hyperspectral imagery: hybrid algorithm based on genetic algorithm tuned fuzzy support vector machine. Opt Eng 51(11):111709

    Google Scholar 

  • Zhu L, Zhao X, Lai L (2013) Soil TPH Concentration Estimation Using vegetation Indices in an Oil Polluted Area of Eastern China. PLoS One 8(1):e54028

    Google Scholar 

  • Zinnert JC, Via SM, Young DR (2013) Distinguishing natural from anthropogenic stress in plants: physiology fluorescence and Hyperspectral reflectance. Plant Soil 366(1-2):133–141

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge the grant received from Interdisciplinary Cyber Physical Systems Division, Department of Science & Technology, Ministry of Science & Technology for Network Programme on Imaging Spectroscopy and Applications (NISA) under GAP-0201. We are also thankful to Dr. Sanjay Kumar, Director, CSIR-IHBT, Palampur, Himachal Pradesh, India for providing support and facilities (MLP-0205). This is CSIR-IHBT communication number 4175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Additional information

Communicated by: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, V., Kumar, A. Hyperspectral Remote Sensing of Forests: Technological advancements, Opportunities and Challenges. Earth Sci Inform 11, 487–524 (2018). https://doi.org/10.1007/s12145-018-0345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-018-0345-7

Key words

Navigation