Skip to main content

Advertisement

Log in

Spectral enhancement of Landsat OLI images by using Hyperion data: a comparison between multilayer perceptron and radial basis function networks

  • Research Paper
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

The deactivation of Earth Observing-1 satellite has resulted in the termination of capturing Hyperion data as a unique source of hyperspectral satellite imagery. These images also were collected through an on-demand service and thereby are not available for the entire Earth’s surface. The Operational Land Imager (OLI) sensor, on the other hand, provides a free source of multi-spectral images with global coverage. Recognized these facts, the aim of this paper is to enhance the spectral resolution of OLI images by using existing Hyperion imageries to generate a high spectral resolution image for a desired date and site. This was conducted through the artificial neural network (ANN). To find the suitable ANN, we compared the performance of multilayer perceptron (MLP) and radial basis function (RBF) networks for spectral enhancement.

The research obtained two Hyperion and OLI images covering West Region of Tehran, Iran, on 4 January 2016. From 242 original Hyperion spectral bands, we selected 31 bands to reproduce from OLI spectral bands. These were determined through visual inspection, principal component analysis and Pearson’s correlation test. The MLP and RBF networks were generated based on the OLI bands 1–7 and per 31 Hyperion bands as input and output layers respectively. The comparison between the spectral bands of spectra-enhanced image and original Hyperion data indicated a good agreement (0.884 > R2 > 0.692). This study also found MLP network delivered higher accuracy against RBF network for spectral enhancement. The spectra-enhanced image can be used in studies with the need of images with continuous spectral bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.

Similar content being viewed by others

References

  • Abdi H, Williams LJ, Valentin D (2013) Multiple factor analysis: principal component analysis for multitable and multiblock data sets. WIREs Computational Statistics 5(2):149–179. https://doi.org/10.1002/wics.1246

    Article  Google Scholar 

  • Abdolmaleki M, Tabaei M, Fathianpour N, Gorte BGH (2017) Selecting optimum base wavelet for extracting spectral alteration features associated with porphyry copper mineralization using hyperspectral images. Int J Appl Earth Obs Geoinf 58:134–144. https://doi.org/10.1016/j.jag.2017.02.005

    Article  Google Scholar 

  • Adiri, Z., El Harti, A., Jellouli, A., Maacha, L., Azmi, M., Zouhair, M., & Bachaoui, E. M. (2018). Mapping copper mineralization using EO-1 Hyperion data fusion with Landsat 8 OLI and Sentinel-2A in Moroccan Anti-Atlas. Geocarto International, 1–20. doi:https://doi.org/10.1080/10106049.2018.1544287

  • Agrawal G, Bhopal M, Sarup J (2011) Comparision of QUAC and FLAASH atmospheric correction modules on EO-1 Hyperion data of Sanchi. International journal of advanced engineering sciences and technologies 4(1):178–186

    Google Scholar 

  • Asadi-Eydivand, M., Solati-Hashjin, M., Farzadi, A., & Osman, N. A. A. (2014). Artificial neural network approach to estimate the composition of chemically synthesized biphasic calcium phosphate powders. Ceramics International, 40(8, part a), 12439-12448

  • Asadisaghandi J, Tahmasebi P, (2011) Comparative evaluation of back-propagation neural network learning algorithms and empirical correlations for prediction of oil PVT properties in Iran oilfields. Journal of Petroleum Science and Engineering 78(2):464–475

  • Bapu JJ, Florinabel DJ, Robinson YH, Julie EG, Kumar R, Ngoc VTN, Son LH, Tuan TM, Giap CN (2019) Adaptive convolutional neural network using N-gram for spatial object recognition. Earth Sci Inf 12:525–540. https://doi.org/10.1007/s12145-019-00396-x

    Article  Google Scholar 

  • Barry, P. (2001). EO-1/Hyperion science data user’s guide, Level 1_B [Press release]. Retrieved from https://eo1.gsfc.nasa.gov/new/general/Disk2/HyperionScienceDataUsersGuide_public_L1B.pdf

  • Beiranvand Pour A, Hashim M (2014) ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration. SpringerPlus 3(1):130. https://doi.org/10.1186/2193-1801-3-130

    Article  Google Scholar 

  • Beiranvandpour A, Hashim M (2013) Fusing ASTER, ALI and Hyperion data for enhanced mineral mapping. Int J Image Data Fusion 4(2):126–145. https://doi.org/10.1080/19479832.2012.753115

    Article  Google Scholar 

  • Burden F, Winkler D (2008) Bayesian regularization of neural networks. Methods Mol Biol 458:25–44

    Google Scholar 

  • Chang N, Bai K, Imen S, Chen C, Gao W (2018) Multisensor satellite image fusion and networking for all-weather environmental monitoring. IEEE Syst J 12(2):1341–1357. https://doi.org/10.1109/JSYST.2016.2565900

    Article  Google Scholar 

  • Chavez PSJ (1988) An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens Environ 24(3):459–479

    Article  Google Scholar 

  • Chollet F (ed) (2017) Deep learning with python. Manning, NY, USA

    Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. L. Erlbaum Associates, Hillsdale, N.J

    Google Scholar 

  • Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2(4):303–314. https://doi.org/10.1007/BF02551274

    Article  Google Scholar 

  • Eckert S, Kneubühler M (2004) Application of HYPERION data to agricultural land classification and vegetation properties estimation in Switzerland. Paper presented at the XXth ISPRS congress. Istanbul, Turkey https://www.zora.uzh.ch/id/eprint/98420/

    Google Scholar 

  • Eichie JO, Oyedum OD, Ajewole MO, Aibinu AM (2017) Artificial neural network model for the determination of GSM Rxlevel from atmospheric parameters. Engineering Science and Technology, an International Journal 20(2):795–804. https://doi.org/10.1016/j.jestch.2016.11.002

    Article  Google Scholar 

  • Elbayoumi M, Ramli NA, Fitri Md Yusof NF (2015) Development and comparison of regression models and feedforward backpropagation neural network models to predict seasonal indoor PM2.5–10 and PM2.5 concentrations in naturally ventilated schools. Atmospheric Pollution Research 6(6):1013–1023. https://doi.org/10.1016/j.apr.2015.09.001

    Article  Google Scholar 

  • Foga S, Scaramuzza PL, Guo S, Zhu Z, Dilley RD, Beckmann T et al (2017) Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens Environ 194:379–390. https://doi.org/10.1016/j.rse.2017.03.026

    Article  Google Scholar 

  • Folkman, M. A., Pearlman, J., Liao, L. B., & Jarecke, P. J. (2001). EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration (Vol. 4151): SPIE

  • Franks S, Neigh CSR, Campbell PK, Sun G, Yao T, Zhang Q, Huemmrich KF, Middleton EM, Ungar SG, Frye SW (2017) EO-1 data quality and sensor stability with changing orbital precession at the end of a 16 year mission. Remote Sens 9(5):412. https://doi.org/10.3390/rs9050412

    Article  Google Scholar 

  • Fuchs M, Awan AA, Akhtar SS, Ahmad I, Sadiq S, Razzak A, Haider N (2017) Lithological mapping with multispectral data – setup and application of a spectral database for rocks in the Balakot area, northern Pakistan. J Mt Sci 14(5):948–963. https://doi.org/10.1007/s11629-016-4101-5

    Article  Google Scholar 

  • Gao F, Wang Q, Dong J, Xu Q (2018) Spectral and spatial classification of Hyperspectral images based on random multi-graphs. Remote Sens 10(8):1271

    Article  Google Scholar 

  • Ge W, Cheng Q, Tang Y, Jing L, Gao C (2018) Lithological classification using sentinel-2A data in the Shibanjing Ophiolite complex in Inner Mongolia, China. Remote Sens 10(4):638

    Article  Google Scholar 

  • Ghassemian H (2016) A review of remote sensing image fusion methods. Information Fusion 32:75–89. https://doi.org/10.1016/j.inffus.2016.03.003

    Article  Google Scholar 

  • Gibril MBA, Bakar SA, Yao K, Idrees MO, Pradhan B (2017) Fusion of RADARSAT-2 and multispectral optical remote sensing data for LULC extraction in a tropical agricultural area. Geocarto International 32(7):735–748. https://doi.org/10.1080/10106049.2016.1170893

    Article  Google Scholar 

  • Han J, Kamber M, Pei J (2012) 9 - classification: advanced methods. In: Han J, Kamber M, Pei J (eds) Data mining, Third edn. Morgan Kaufmann, Boston, pp 393–442

  • Haykin, S. (Ed.) (1998). Neural Networks—A Comprehensive Foundation (2nd edition ed.). NJ: Prentice-Hall: Upper Saddle River

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366. https://doi.org/10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  • Huang, P., Tang, J., Wang, J., Zhong, H., Yue, J., & Guo, M. (2016, 9-11 Jan. 2016). Inverse proportional surface fitting-based image registration method for interferometric synthetic aperture sonar. Paper presented at the 2016 IEEE/OES China Ocean acoustics (COA)

  • Humboldt. (2016). Spectral Enhancements. Retrieved from https://bit.ly/2Y6Istb

  • Jensen JR, Lulla K (1987) Introductory digital image processing: a remote sensing perspective. Geocarto International 2(1):65–65. https://doi.org/10.1080/10106048709354084

    Article  Google Scholar 

  • Jiang H, Tian Y (2011) Fuzzy image fusion based on modified self-generating neural network. Expert Syst Appl 38(7):8515–8523. https://doi.org/10.1016/j.eswa.2011.01.052

    Article  Google Scholar 

  • Jolliffe I (ed) (2002) Principal component analysis, 2nd edn. Springer, NewYork

    Google Scholar 

  • Kalogirou SA (2009) Chapter eleven - designing and modeling solar energy systems. In: Kalogirou SA (ed) Solar energy engineering. Academic Press, Boston, pp 553–664

    Chapter  Google Scholar 

  • Kiran Raj S, Ahmed SA, Srivatsav SK, Gupta PK (2015) Iron oxides mapping from E0-1 hyperion data. J Geol Soc India 86(6):717–725. https://doi.org/10.1007/s12594-015-0364-7

    Article  Google Scholar 

  • Kodikara GRL, Woldai T, van Ruitenbeek FJA, Kuria Z, van der Meer F, Shepherd KD, van Hummel GJ (2012) Hyperspectral remote sensing of evaporate minerals and associated sediments in Lake Magadi area, Kenya. Int J Appl Earth Obs Geoinf 14(1):22–32. https://doi.org/10.1016/j.jag.2011.08.009

    Article  Google Scholar 

  • Krishna G, Sahoo RN, Pradhan S, Ahmad T, Sahoo PM (2018) Hyperspectral satellite data analysis for pure pixels extraction and evaluation of advanced classifier algorithms for LULC classification. Earth Sci Inf 11(2):159–170. https://doi.org/10.1007/s12145-017-0324-4

    Article  Google Scholar 

  • Kruse, F. A., Boardman, J. W., Huntington, J. F., Mason, P., & Quigley, M. A. (2002, 24–28 June 2002). Evaluation and validation of EO-1 Hyperion for geologic mapping. Paper presented at the IEEE International Geoscience and Remote Sensing Symposium

  • Kruse FA, Boardman JW, Huntington JF (2003) Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans Geosci Remote Sens 41(6):1388–1400. https://doi.org/10.1109/TGRS.2003.812908

    Article  Google Scholar 

  • Langford RL (2015) Temporal merging of remote sensing data to enhance spectral regolith, lithological and alteration patterns for regional mineral exploration. Ore Geol Rev 68:14–29. https://doi.org/10.1016/j.oregeorev.2015.01.005

    Article  Google Scholar 

  • Li, P., & Song, B. (2016, 10–15 July 2016). Lithological mapping from hyperspectral imagery using extended one-class kernel sparse representation. Paper presented at the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)

  • Li S, Kang X, Fang L, Hu J, Yin H (2017) Pixel-level image fusion: a survey of the state of the art. Information Fusion 33:100–112. https://doi.org/10.1016/j.inffus.2016.05.004

    Article  Google Scholar 

  • Liemberger, W., Miltner, M., & Harasek, M. (2018). Reduced model describing efficient extraction of hydrogen transported as co-stream in the natural gas grid. In a. Friedl, J. J. Klemeš, S. Radl, P. S. Varbanov, & T. Wallek (Eds.), Computer Aided Chemical Engineering (Vol. 43, pp. 1383-1388): Elsevier

  • Liu B, Zhang L, Zhang X, Zhang B, Tong Q (2009) Simulation of EO-1 Hyperion data from ALI multispectral data based on the spectral reconstruction approach. Sensors (Basel, Switzerland) 9(4):3090–3108. https://doi.org/10.3390/s90403090

    Article  Google Scholar 

  • Liu Y, Chen X, Peng H, Wang Z (2017) Multi-focus image fusion with a deep convolutional neural network. Information Fusion 36:191–207. https://doi.org/10.1016/j.inffus.2016.12.001

    Article  Google Scholar 

  • Liu Y, Chen X, Wang Z, Wang ZJ, Ward RK, Wang X (2018) Deep learning for pixel-level image fusion: recent advances and future prospects. Information Fusion 42:158–173. https://doi.org/10.1016/j.inffus.2017.10.007

    Article  Google Scholar 

  • Magendran T, Sanjeevi S (2014) Hyperion image analysis and linear spectral unmixing to evaluate the grades of iron ores in parts of Noamundi, eastern India. Int J Appl Earth Obs Geoinf 26:413–426. https://doi.org/10.1016/j.jag.2013.09.004

    Article  Google Scholar 

  • Marshall M, Thenkabail P (2015) Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation. ISPRS J Photogramm Remote Sens 108:205–218. https://doi.org/10.1016/j.isprsjprs.2015.08.001

    Article  Google Scholar 

  • Marwala T (2007) Bayesian training of neural networks using genetic programming. Pattern Recogn Lett 28(12):1452–1458. https://doi.org/10.1016/j.patrec.2007.03.004

    Article  Google Scholar 

  • Masek, J. G. (2019, June 22, 2019). Landsat science. Retrieved from https://landsat.gsfc.nasa.gov/landsat-data-continuity-mission/

  • Mizrahi, J. (2011). Advances in Applied Electromyography: BoD–books on demand

  • Mokhtari MH, Adnan R, Busu I (2013a) A new approach for developing comprehensive agricultural drought index using satellite-derived biophysical parameters and factor analysis method. Nat Hazards 65(3):1249–1274. https://doi.org/10.1007/s11069-012-0408-x

    Article  Google Scholar 

  • Mokhtari MH, Busu I, Mokhtari H, Zahedi G, Sheikhattar L, Movahed MA (2013b) Neural network and multiple linear regression for estimating surface albedo from ASTER visible and near-infrared spectral bands. Earth Interact 17(3):1–20. https://doi.org/10.1175/2011ei000424.1

    Article  Google Scholar 

  • Morfitt R, Barsi JA, Levy R, Markham BL, Micijevic E, Ong L et al (2015) Landsat-8 operational land imager (OLI) radiometric performance on-orbit. Remote Sens 7(2):2208–2237. https://doi.org/10.3390/rs70202208

    Article  Google Scholar 

  • Narayan S (1997) The generalized sigmoid activation function: competitive supervised learning. Inf Sci 99(1):69–82. https://doi.org/10.1016/S0020-0255(96)00200-9

    Article  Google Scholar 

  • Neill, S. P., & Hashemi, M. R. (2018). Chapter 8 - ocean Modelling for resource characterization. In S. P. Neill & M. R. Hashemi (Eds.), Fundamentals of Ocean Renewable Energy (pp. 193-235): academic press

  • Ntouros, K. D., Gitas, I. Z., & Silleos, G. N. (2009, 26-28 Aug. 2009). Mapping agricultural crops with EO-1 Hyperion data. Paper presented at the 2009 first workshop on Hyperspectral image and signal processing: evolution in remote sensing

  • Okut H, Gianola D, Rosa GJM, Weigel KA (2011) Prediction of body mass index in mice using dense molecular markers and a regularized neural network. Genet Res 93(3):189–201. https://doi.org/10.1017/S0016672310000662

    Article  Google Scholar 

  • Palsson F, Sveinsson JR, Ulfarsson MO (2017) Multispectral and Hyperspectral image fusion using a 3-D-convolutional neural network. IEEE Geosci Remote Sens Lett 14(5):639–643. https://doi.org/10.1109/LGRS.2017.2668299

    Article  Google Scholar 

  • Pande H, Tiwari PS, Dobhal S (2009) Analyzing hyper-spectral and multi-spectral data fusion in spectral domain. Journal of the Indian Society of Remote Sensing 37(3):395–408. https://doi.org/10.1007/s12524-009-0038-2

    Article  Google Scholar 

  • Pedro, H. T. C., Inman, R. H., & Coimbra, C. F. M. (2017). 4 - mathematical methods for optimized solar forecasting. In G. Kariniotakis (Ed.), Renewable Energy Forecasting (pp. 111-152): Woodhead publishing

  • Pervez, W., Khan, S. A., & Valiuddin. (2015). Hyperspectral hyperion imagery analysis and its application using spectral analysis. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-3/W2, 169–175. doi:https://doi.org/10.5194/isprsarchives-XL-3-W2-169-2015

  • Petropoulos GP, Kalaitzidis C, Prasad Vadrevu K (2012) Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Comput Geosci 41:99–107. https://doi.org/10.1016/j.cageo.2011.08.019

    Article  Google Scholar 

  • Phetcharat S, Nagai M, Tipdecho T (2014) Influence of surface height variance on distribution of ground control points. J Appl Remote Sens 8(1):1–13 13

    Article  Google Scholar 

  • Puig-Arnavat M, Bruno JC (2015) Chapter 5 - artificial neural networks for thermochemical conversion of biomass. In: Pandey A, Bhaskar T, Stöcker M, Sukumaran RK (eds) Recent advances in thermo-chemical conversion of biomass. Elsevier, Boston, pp 133–156

    Chapter  Google Scholar 

  • Ratner B (2009) The correlation coefficient: its values range between +1/−1, or do they? Journal of Targeting, Measurement and Analysis for Marketing 17(2):139–142. https://doi.org/10.1057/jt.2009.5

    Article  Google Scholar 

  • Saralıoğlu, E., Görmüş, E. T., & Güngör, O. (2016, 16-19 may 2016). Mineral exploration with hyperspectral image fusion. Paper presented at the 2016 24th signal processing and communication application conference (SIU)

  • Sarimveis, H., Alexandridis, A., Mazarakis, S., & Bafas, G. (2002). A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms. In J. Grievink & J. van Schijndel (Eds.), Computer Aided Chemical Engineering (Vol. 10, pp. 949-954): Elsevier

  • Song G, Han J, Zhao Y, Wang Z, Du H (2017) A review on medical image registration as an optimization problem. Current medical imaging reviews 13(3):274–283. https://doi.org/10.2174/1573405612666160920123955

    Article  Google Scholar 

  • Sorkhabi, R. (2017). Tectonic Evolution, Collision, and Seismicity of Southwest Asia: In Honor of Manuel Berberian's Forty-Five Years of Research Contributions: Geological Society of America

  • Suleiman D, Al-Zewairi M, Naymat G (2017) An empirical evaluation of intelligent machine learning algorithms under big data processing systems. Procedia Computer Science 113:539–544. https://doi.org/10.1016/j.procs.2017.08.270

    Article  Google Scholar 

  • Sun X, Zhang L, Yang H, Wu T, Cen Y, Guo Y (2015) Enhancement of spectral resolution for remotely sensed multispectral image. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(5):2198–2211. https://doi.org/10.1109/JSTARS.2014.2356512

    Article  Google Scholar 

  • Tanács A, Lindblad J, Sladoje N, Kato Z (2015) Estimation of linear deformations of 2D and 3D fuzzy objects. Pattern Recogn 48(4):1391–1403. https://doi.org/10.1016/j.patcog.2014.10.006

    Article  Google Scholar 

  • Tayebi MH, Tangestani MH (2015) Sub pixel mapping of alteration minerals using SOM neural network model and hyperion data. Earth Sci Inf 8(2):279–291. https://doi.org/10.1007/s12145-014-0194-y

    Article  Google Scholar 

  • Theis L, Berens P, Froudarakis E, Reimer J, Román Rosón M, Baden T, Euler T, Tolias AS, Bethge M (2016) Benchmarking spike rate inference in population calcium imaging. Neuron 90(3):471–482. https://doi.org/10.1016/j.neuron.2016.04.014

    Article  Google Scholar 

  • Thenkabail PS, Enclona EA, Ashton MS, Van Der Meer B (2004) Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sens Environ 91(3):354–376. https://doi.org/10.1016/j.rse.2004.03.013

    Article  Google Scholar 

  • Titterington DM (2004) Bayesian methods for neural networks and related models. Stat Sci 19(1):128–139. https://doi.org/10.1214/088342304000000099

    Article  Google Scholar 

  • Triyason T, Valaisathien S, Vanijja V, Kanthamanon P, Chan JH (2015) Chapter 5 - VoIP quality prediction model by bio-inspired methods. In: Yang X-S, Chien SF, Ting TO (eds) Bio-inspired computation in telecommunications. Morgan Kaufmann, Boston, pp 95–116

    Chapter  Google Scholar 

  • Upadhyay V, Kumar A (2018) Hyperspectral remote sensing of forests: technological advancements, opportunities and challenges. Earth Sci Inf 11(4):487–524. https://doi.org/10.1007/s12145-018-0345-7

    Article  Google Scholar 

  • van Ruitenbeek FJA, van der Werff HMA, Bakker WH, van der Meer FD, Hein KAA (2019) Measuring rock microstructure in hyperspectral mineral maps. Remote Sens Environ 220:94–109. https://doi.org/10.1016/j.rse.2018.10.030

    Article  Google Scholar 

  • Yousif JH, Kazem HA, Alattar NN, Elhassan II (2019) A comparison study based on artificial neural network for assessing PV/T solar energy production. Case Studies in Thermal Engineering 13:100407. https://doi.org/10.1016/j.csite.2019.100407

    Article  Google Scholar 

  • Zhang T, Shao Y, Gong H, Li L, Wang L (2014) Salt content distribution and Paleoclimatic significance of the Lop Nur “ear” feature: results from analysis of EO-1 Hyperion imagery. Remote Sens 6(8):7783–7799

    Article  Google Scholar 

  • Zhang N, Zhou K, Li D (2018) Back-propagation neural network and support vector machines for gold mineral prospectivity mapping in the Hatu region, Xinjiang, China. Earth Sci Inf 11(4):553–566. https://doi.org/10.1007/s12145-018-0346-6

    Article  Google Scholar 

  • Zhao, Y., & Huang, B. J. (2017). A hybrid image fusion model for generating high spatial-temporal-spectral resolution data using OLI-MODIS-Hyperion satellite imagery

  • Zhong K, Zhao S, Prateek J, Bartlett PL, Dhillon IS (2017) Recovery guarantees for one-hidden-layer neural networks. Paper presented at the proceedings of machine learning research (PMLR). Australia, Sydney https://eprints.qut.edu.au/128876/

    Google Scholar 

  • Zhu Z (2017) Change detection using landsat time series: a review of frequencies, preprocessing, algorithms, and applications. ISPRS J Photogramm Remote Sens 130:370–384

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Mokhtari.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, M.H., Deilami, K. & Moosavi, V. Spectral enhancement of Landsat OLI images by using Hyperion data: a comparison between multilayer perceptron and radial basis function networks. Earth Sci Inform 13, 493–507 (2020). https://doi.org/10.1007/s12145-020-00451-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-020-00451-y

Keywords

Navigation