Skip to main content

Advertisement

Log in

Grid algorithm for large-scale topographic oblique photogrammetry precision enhancement in vegetation coverage areas

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

In areas covered by vegetation, large-scale topographic mapping by UAV oblique photogrammetry normally obtain elevations from vegetation instead of ground points, resulting in lower elevation precision. This study developed an precision improvement grid algorithm and associated SOP for large-scale topographic surveying and mapping in vegetation coverage areas by UAV oblique photogrammetry. The procedures of generating a three-dimensional model for topographical surveying was proposed using Guanlang project as an experimental case study. The UAV flight route and the course overlap and side overlap of UAV oblique photogrammetry were designed, and the image control point layout in the experimental field was carried out. CTI T3 high-precision intelligent RTK was used for image control point measurement. A grid algorithm based on elevation maps was developed and validated in the Guanlang experimental field to improve the elevation precision in vegetation coverage areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability statement

All data, models, and code generated or used during the study appear in the submitted article.

References

  • Aicardi I, Chiabrando F, Grasso N, Lingua A, Noardo F, Spano A (2016) UAV photogrammetry with oblique images: frst analysis on data acquisition and processing. Remote Sensing XLI-B1:835–842

    Google Scholar 

  • Bandrova T, Zlatanova S, Konecny M (2012) Three-dimensional maps for disaster management. ISPRS Ann Photogrammetry Remote Sensing Spat Inf Sci I-4:245–250

    Article  Google Scholar 

  • Carnevali L, Ippoliti E, Lanfranchi F, Menconero S, Russo M, Russo V (2018) Closerange mini-UAVs photogrammetry for architecture survey. Int Arch Photogramm Remote Sens Spat Inf Sci XLII-2:217–224

    Article  Google Scholar 

  • Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing:a review. ISPRS J Photogramm Remote Sens 92:79–97

    Article  Google Scholar 

  • Cramer M, Stallmann D, Haala N (2000) Direct georeferencing using GPS/inertial exterior orientations for photogrammetric applications. Int Arch Photogrammetry Remote Sensing 33(3):198–205

    Google Scholar 

  • Cummings ML, Bruni S, Mercier S (2007) Automation architecture for single operator, multiple UAV command and control. Int C2 J 2007:1–24

    Google Scholar 

  • Dominici D, Alicandro M, Massimi V (2016) UAV photogrammetry in the postearthquake scenario: case studies in L'Aquila. Geomatics Nat Hazards Risk 8(1):87–103

    Article  Google Scholar 

  • Elarab M, Mticlavilca A, Torres-Ruab AF (2015) Estimatingchlorophyll with thermal and broadband multispectral high-resolution imageryfrom an unmanned aerial system using relevance vector machines for precision agriculture. Int J Appl Earth Observation Geo Inf 43:32–42

    Google Scholar 

  • Eltner A, Kaiser C, Castillo G (2016) Image-based surface reconstruction in geomorphometry: Merits, limits and developments. Earth Surface Dyn 4(2):359–389

    Article  Google Scholar 

  • Feng Q, Liu J, Gong J (2015) UAV remote sensing for urban vegetation mapping using random forest and texture analysis. Remote sensing 7(1):1074–1094

    Article  Google Scholar 

  • Furukawa Y, Ponce J (2010) Accurate, Dense, and Robust Multiview Stereosis. Pattern Anal Machince Intell 32(8):1362–1376

    Article  Google Scholar 

  • Gerke M, Przybilla H (2016) Precision analysis of photogrammetric UAV image blocks: influence of on board RTK GNSS and cross flight patterns. Photogramm Fernerkund Geoinf 1:17–30

    Article  Google Scholar 

  • Gonçalves JA, Henriques R (2015) UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J Photogramm Remote Sens 104:101–111

    Article  Google Scholar 

  • Iqbal A, Musk RA, Osborn J, Stone C, Lucieer A (2019) A comparison of area-based forest attributes derived from airborne laser scanner, small-format and medium-format digital aerial photography. Int J Appl Earth Obs Geoinf 76:231–241

    Google Scholar 

  • Jian S, Jiang W (2017) Efcient structure from motion for oblique UAV images based on maximal spanning tree expansion. ISPRS J Photogramm Remote Sens 132:140–161

    Article  Google Scholar 

  • Johnson LB, Choi HL, Ponda SS (2017) Decentralized task allocation using local information consistency assumptions. AIAA J Aerosp Inf Syst 14:103–122

    Google Scholar 

  • Justin M, Sagan VV, Bodine C (2020) Archaeological surveying with airborne LiDAR and UAV photogrammetry: a comparative analysis at Cahokia mounds. J Archaeol Sci Rep 33:102509

    Google Scholar 

  • Kisa A, Ozmus L, Erkek B, Ates H, Bakici S (2013) Oblique photogrammetry and usage on land administration. Int Arch Photogrammetry Remote Sensing Spat Inf Sci XL-2/W2:161–165

    Article  Google Scholar 

  • Lucieer A, de Jong S, Turner D (2014) Mapping landslide displacements using structure from motion (SfM) and image correlation of multi-temporal UAV photography. Prog Phys Geogr 38(1):97–116

    Article  Google Scholar 

  • Mancini F, Dubbini M, Gattelli M (2013) Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: the structure from motion approach on coastal environments. Remote Sens 5:6880–6898

    Article  Google Scholar 

  • Manyoky M, Theiler P, Steudler D (2011) Unmanned aerial vehicle in cadastral applications.Int. arch. Photogramm. Remote Sensing Spat Inf Sci XXXVIII -1/C22:57–62

    Google Scholar 

  • Michael G, Perko R, Ponticelli M (2004) The all digital photogrammetric workflow:redundancy and robustness. ISPRS Commission I Sensors Platforms Imagery 2004:232–234

    Google Scholar 

  • Michez A, Huylenbroeck L, Bolyn C, Latte N, Bauwens S, Lejeune P (2020) Can regional aerial images from orthophoto surveys produce high quality photogrammetric canopy height model? A single tree approach in Western Europe. Int J Appl Earth Obs Geoinf 92:102190

    Google Scholar 

  • Niethammer U, James MR, Rothmund S (2012) UAV-based remote sensing of the super-Sauze landslide: evaluation and results. Eng Geol 128:2–11

    Article  Google Scholar 

  • Nikolakopoulos K, Soura K, Koukouvelas I, Argyropoulos N (2017) UAV vs classical aerial photogrammetry for archaeological studies. J Archaeol Sci Rep 14:758–773

    Google Scholar 

  • Parian JA, Gruen A (2010) Sensor modeling, self-calibration and precision testing of panoramic cameras and laser scanners. ISPRS J Photogramm Remote Sens 65(1):60–76

    Article  Google Scholar 

  • Pepe M, Fregonese L, Scaioni M (2018) Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors. Eur J Remote Sensing 51(1):412–435

    Article  Google Scholar 

  • Polat N, Uysal M (2015) Investigating performance of airborne LiDAR data filtering algorithms for DTM generation. Measurement 63:61–68

    Article  Google Scholar 

  • Prandi F, Achille C, Brumana R, Fassi F, Fregonese L (2008) LiDAR and pictometry images integrated use for 3D model generation. Int Arch Photogrammetry Remote Sensing Spat Inf Sci XXXVII-B2:763–770

    Google Scholar 

  • Remondino F, Barazzetti L, Nex F (2011a) UAV photogrammetry for mapping and 3D modeling. Remote Sensing Spat Inf Sci 22:1–7

    Google Scholar 

  • Remondino F, Barazzetti L, Nex F (2011b) UAV photogrammetry for mapping and 3D modeling. Remote Sensing Spat Inf Sci 22:1–7

    Google Scholar 

  • Remondino F, Gerke M (2015) Oblique aerial imagery - a review. In: Proceedings of 55th Photogrammetric Week, Stuttgart, pp 75–83

  • Ruzgienė B, Berteška T, Gečyte S, Jakubauskienė E, Aksamitauskas VČ (2015) The surface modelling based on UAV photogrammetry and qualitative estimation. Measurement 73:619–627

    Article  Google Scholar 

  • Santise M, Fornari M, Forlani G (2014) Evaluation of DEM generation precision from UAS imagery. Int Arch Photogramm Remote Sens Spat Inf Sci XL-5:529–536

    Article  Google Scholar 

  • Sayab M, Aerden D, Paananen M, Saarela P (2018) Virtual structural analysis of Jokisivu open pit using “structure-from-motion” unmanned aerial vehicles (UAV) photogrammetry: implications for structurally-controlled gold deposits in Southwest Finland. Remote Sens 10(8):1296

    Article  Google Scholar 

  • Toschi I, Nocerino E, Menna F (2017) Oblique photogrammetry supporting 3D urban reconstruction of complex scenarios. Int Arch Photogrammetry Remote Sensing Spat Inf Sci XLII-1/W1:519–526

    Article  Google Scholar 

  • Vallet J, Panissod F, Strecha C, Tracol M (2011) Photogrammetric performance of an ultra light weight swinglet UAV. Int Arch Photogrammetry Remote Sensing Spat Inf Sci 38:253–258

    Google Scholar 

  • Varlik A, Selvi H, Kalayci I, Karauguz G (2016) Investigation of the compatibility of Fasillar and Eflatunpinar Hitite monuments with close-range photogrammetric technique. Mediter Archaeol Archaeom 16(1):249–256

    Google Scholar 

  • Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012) Structure-from-motion photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314

    Article  Google Scholar 

  • Whiteside TG, Esparon AJ, Bartolo RE (2020) A semi-automated approach for quantitative mapping of woody cover from historical time series aerial photography and satellite imagery. Ecol Inform 55:101012

    Article  Google Scholar 

  • Wierzbicki D (2018) Multi-camera imaging system for uav photogrammetry. Sensors 18(8):24–33

    Article  Google Scholar 

  • Xu Z, Wu Y, Lu X, Jin X (2020) Photo-realistic visualization of seismic dynamic responses of urban building clusters based on oblique aerial photography. Adv Eng Inform 43:101025

    Article  Google Scholar 

  • Yastikli N (2007) Documentation of cultural heritage using digital photogrammetry and laser scanning. J Cult Herit 8:423–427

    Article  Google Scholar 

  • Zhang J, Hu J, Lian J, Fan Z, Ouyang X, Ye W (2016) Seeing the forest from drones: testing the potential of lightweight drones as a tool for long-term forest monitoring. Biol Conserv 198:60–69

    Article  Google Scholar 

  • Zhang X, Zhao P, Hu Q, Ai M, Li J (2020) A UAV-based panoramic oblique photogrammetry (POP) approach using spherical projection. ISPRS J Photogramm Remote Sens 159:198–219

    Article  Google Scholar 

  • Zisserman A, Hartley R (2012) Assessing the precision of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery. Remote Sens 4(6):1573–1599

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Wang.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Xu, X., Yu, L. et al. Grid algorithm for large-scale topographic oblique photogrammetry precision enhancement in vegetation coverage areas. Earth Sci Inform 14, 931–953 (2021). https://doi.org/10.1007/s12145-021-00602-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-021-00602-9

Keywords

Navigation