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Abstract
In this article, we introduce a notable bounded distribution based on a modification of the epsilon function that creates an
upper bound on the domain of a distribution. Further, a key feature of the distribution is to have asymptotic connections
with the famous Lindley distribution, which is a weighted variant of the exponential distribution and also a mixture of
exponential and gamma distributions. In some ways, the proposed distribution provides a flexible solution to the modeling
of bounded characteristics that can be almost well-fitted by the Lindley distribution if the domain is restricted. Moreover, we
have also explored its application, particularly with reference to lifetime and environmental points of view, and found that
the proposed model exhibits a better fit among the competing models. Namely, we demonstrate the practical applicability of
the new distribution on two data sets containing lifetime data, as well as on two other data sets of rainfall data. Further, from
the annual rainfall analysis, the proposed model exhibits a realistic return period of the rainfall.

Keywords Epsilon distribution · Lindley distribution · Practical analysis · Applications · Hydrological measure

Introduction

While observing real life phenomena, one usually comes
across finite range of changes. Such finite changes
generally give rise to bounded domain distributions. Among
these bounded distributions, an upper bound is very
helpful in analysing the annual stream flow and annual
rainfall data (see (Phien and Ajirajah 1984)). The most
common bounded domain distributions are the uniform,
power, Bates, arcsine, Kumaraswamy, Topp-Leone, beta,
triangular, raised cosine, and von Mises distributions.
As an alternative to these distributions, (Dombi et al.
2018) recently introduced the epsilon distribution (EpD).
Mathematically, it is based on the epsilon function defined
by

ελ,d(x) =
⎧
⎨

⎩

(
d+x
d−x

)λ d
2
, if − d < x < d,

0, otherwise,
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where λ ∈ R, λ �= 0 and d > 0. This function is derived
from the first-order epsilon differential equation, and it
has the following exponential limit property: For any x ∈
(−d, +d), if d → ∞, then ελ,d(x) → eλx . Hence, a
continuous random variable X is said to have an epsilon
distribution with the parameters λ > 0 and d > 0 if its
cumulative distribution function (CDF) is given by

F ∗
λ,d(x) =

⎧
⎪⎨

⎪⎩

0, if x ≤ 0,

1 − ε−λ,d(x), if 0 < x < d,

1, if x ≥ d.

As a result, the epsilon distribution is a bounded domain
distribution with two parameters, and it satisfies the
following limit property: limd→+∞ F ∗

λ,d(x) = F ∗
λ (x),

where F ∗
λ (x) is the CDF of the exponential distribution

with parameter λ. Among the applications, according to
(Dombi et al. 2018), the epsilon distribution can be used to
describe the mortality and useful life cycle in the sense of
reliability management under the assumption of a typical
bathtub-shaped failure (hazard) rate.

In this paper, we propose a notable two-parameter
distribution that is also based on the epsilon function, but
connected to the famous Lindley distribution, instead of
the exponential distribution. The Lindley distribution has a
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plural interest. First, it was created by Lindley (see (Lindley
1958) and (Lindley 1965)). It was first coined to express the
distinction between fiducial and posterior distributions, and
it has been widely used in mathematical theory and practice
in recent years. Let us recall that the CDF of the Lindley
distribution with a parameter λ > 0 is given by

Fo
λ (x) =

{
0, if x ≤ 0,

1 −
(
1 + λx

1+λ

)
e−λx, if x > 0.

The Lindley distribution has been used to analyze large
amounts of data, especially in the context of stress
resistance and reliability modeling. There is a substantial
literature on the Lindley distribution. Let us mention
the Lindley distribution’s dominance over the exponential
distribution of banking customers’ waiting times until
service, as highlighted by (Ghitany et al. 2008), the
Lindley distribution’s applications in lifetime data in the
context of competing risks, as presented by (Mazucheli and
Achcar 2011), and a comparison study of the adequacy
of exponential and Lindley distributions, as presented by
(Shanker and Mishra 2013) and (Shanker et al. 2015),
among others.

By capturing the idea of the epsilon distribution and
adapting it to reach the Lindley distribution as a limit, we
motivate the use of the following function:

Fλ,d (x) =

⎧
⎪⎨

⎪⎩

0, if x ≤ 0,

1 −
(

1 + λ

1 + λ

dx

d − x

)

ε−λ,d (x), if 0 < x < d,

1, if x ≥ d,

(1)

where λ > 0 and d > 0. The distribution defined by
Fλ,d(x) is called the epsilon-Lindley distribution (EpLD).
Then, one can prove that it is a valid CDF, which satisfies
limd→+∞ Fλ,d(x) = Fo

λ (x); the Lindley distribution is a
limit case of the EpLD, which is a rare property for a boun-
ded support distribution. Furthermore, the related functions,
such as the probability density function (PDF) and hazard
rate function (HRF) are very flexible in their behaviour, as
shown later. More precisely, by using a graphical analysis,
the PDF adopts various shapes, like skewed to the right with
J-shapes as well as an upside down U-shape. In all these
cases, we observe a positive skewness and leptokurtic nature
of the curve, which clearly indicates that it is designed
to model the heavy-tailed phenomenon. Such phenomena
are generally common in reliability applications, queuing
theory and environmental aspects. In this regard, we focus
on the environmental aspect and also lifetime direction. Our
application section will help the reader to reach a decision
to forecast the next generation’s future in a better way.
Environmental data analysis is based on the most efficient
bounded models. One can mention the three-parameter

lognormal distribution, generalized extreme value type II
distribution, generalized extreme value type III distribution,
three-parameter gamma distribution, and three-parameter
log-Pearson distribution, among others. The non-closed
form of the CDF in these popular hydrological models
is a fundamental flaw, whereas the suggested model is
based on only two parameters and has a closed form of
its basic functions, including its CDF, which makes the
determination of the return period considerably easier.

Further, the HRF adopts various shapes, from bathtub
to increasing failure rate with a left skewed J-shape. This
functional flexibility is a true plus for the EpLD from
the modeling viewpoint. On the mathematical plan, the
EpLD is a weighted version of the EpD. This weighted
version not only models ascertainment biases but also a
linear combination of probability distributions. We thus
develop the statistical features offered by the EpLD through
diverse aspects, including theoretical and practical facts.
The practical lines interested in fitting, modeling and
analysis of lifetime and environmental data are outlined by
the proposed model. Here, we demonstrate the practical
applicability of the EpLD on two data sets containing
lifetime data, as well as on two other data sets of rainfall
data. Further, from the annual rainfall analysis, we found a
realistic return period of the rainfall by the proposed model.

The organization of the paper is as follows. Section Some
related functions, properties with estimations presents some
other functions of interest in the EpLD, like moments and
parameter estimation. Section Model compatibility and its
application to real-world data covers the application area
of the proposed model. Section Conclusions and future
research plans deals with conclusion and closing comments
about the proposed distribution with future research plans.

Some related functions, properties
with estimations

Related functions

We now illustrate the shape behavior of the main functions
of the EpLD. First, let us focus on the CDF as defined in
Eq. 1. Figure 1 presents some graphs of this CDF for several
values of the parameters.

Figure 1 depicts that for smaller values of both d and λ,
the convergence of CDF to 1 is very slow compared to that
for larger d and λ values.

Let us now focus on the related PDF. The PDF of the
EpLD is expressed as

fλ,d (x)=
{

λd2

(1+λ)(d2−x2)

[
1+λ− d+x−λdx

d−x

]
ε−λ,d (x), if 0 < x < d,

0, otherwise.

(2)
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Fig. 1 Graphs of the CDF of the EpLD

Figure 2 presents some graphs of this PDF for several
parameter values.

From Figs. 2 and 3, we see that the PDF of the EpLD
also adopts various shapes, like unimodal shapes skewed
to the right, various J-shapes, as well as an upside down
U-shapes. In particular, Fig. 2 indicates that, when the rate
parameter λ decreases, it increases the probability of events
whatever the boundary value of d is. Thus, the PDF of the
EpLD distribution is extremely flexible, and, as developed
in the introductive section, motivates the use of the EpLD
for various modelling purposes, including the heavy-tailed
phenomenon.

In addition to its practical ability, the PDF of the EpLD
has interesting mathematical decompositions. Indeed, one
can view fλ,d(x) as follows:

• It is a weighted version of the PDF of the EpD, because
it can be written as fλ,d(x) = wλ,d(x)f ∗

λ,d(x), where

wλ,d(x) = 1 − d + x − λdx

(1 + λ)(d − x)

and f ∗
λ,d(x) refers to the PDF of the epsilon distribution.

• If λ > 2/d , by noticing that

d + x − λdx

(1 + λ)(d − x)
= 1

1 + λ

[
λ

4
(d − x) +

(

1 − λ

4
(d + x)

)
d + x

d − x

]

,

we can also write fλ,d(x) as a linear combination of
PDFs and lenght biased PDFs of the EpD as

fλ,d (x) =
(

1 − λ

4(1 + λ)
(d − x)

)

f ∗
λ,d (x)

− λd

(1 + λ)(λd − 2)

(

1 − λ

4
(d + x)

)

f ∗
λ−2/d,d (x)

=
(

1 − λd

4(1 + λ)

)

f ∗
λ,d (x) (3)

− λd

(1 + λ)(λd − 2)

(

1 − λd

4

)

f ∗
λ−2/d,d (x)

+ λ

4(1+λ)
xf ∗

λ,d (x)+ λ2d

4(1+λ)(λd−2)
xf ∗

λ−2/d,d (x).

This expansion is useful to determine several proba-
bilistic quantities related to the EpLD.

As a major reliability function (see, e.g., (Nair et al.
2018)) of the EpLD, the HRF is specified as

hλ,d (x) =
⎧
⎨

⎩

λd2

(1+λ)(d2−x2)

[
1+λ− d+x−λdx

d−x

](
1+ λ

1+λ
dx

d−x

)−1
, if 0 < x < d,

0, otherwise.

Fig. 2 Graphs of the PDF of the EpLD; unimodal shapes skewed to the right and J shapes
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Fig. 3 Graphs of the PDF of the EpLD; U-J shapes and upside down U-shapes

Figure 4 provides some graphs of this HRF for selected
values of the parameters.

The graphs in Fig. 4 clearly portray the HRF behaviour
like increasing and bathtub-shaped in an impressive way.

We end this part by discussing the quantile analysis of the
EpLD. As we know, in traditional probability and statistics
as well as in stochastic analysis, the quantile function
(QF) deals with a valuable way of describing a static or
vigorous distribution, as a result, knowing how to use this
function indicates certain advantages not available straight
from the CDF or PDF. For example, the simplest way of
simulating any non-uniform random variable is by applying
its QF to uniform deviates. Similarly, from an environmental
point of view, these functions usually help environmental
scientists to calculate the return period and return level of
any distribution.

In view of above, the QF of the EpLD, denoted by
Qλ,d(u) with u ∈ (0, 1), is the solution of the following
non-linear equation:

(

1 + λ

1 + λ

dQλ,d(u)

d − Qλ,d(u)

)

ε−λ,d [Qλ,d(u)] = 1 − u.

To evaluate Qλ,d(u) at given u and parameters, it is clear
that a mathematical software is required.

Moments

In mathematics, and in statistics in particular, the word mo-
ments of a function are reckonable procedures associated to
the shape of the function’s graph. If the function represents
density or mass function, then the first moment represent
the center of the mass or expected value, and the second
moment is the rotational inertia or the variance. So, the
moments about the origin of the EpLD can be determined
by using the expansion in Eq. 3. For a random variable Yλ,d

following the epsilon distribution with parameters λ and
d and a random variable X following the EpLD, the r-th
moment of X can be obtained as

μ′
r = E(Xr)

=
(

1 − λd

4(1 + λ)

)

E(Y r
λ,d)

− λd

(1 + λ)(λd − 2)

(

1 − λd

4

)

E(Y r
λ−2/d,d)

+ λ

4(1+λ)
E(Y r+1

λ,d )+ λ2d

4(1+λ)(λd −2)
E(Y r+1

λ−2/d,d).

The r-th and (r+1)-th moments of Yλ,d are well established,
see (Okorie and Nadarajah 2019). In a similar way, we
can express the incomplete moments of X in terms of

Fig. 4 Graphs of the HRF of the EpLD
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incomplete moments of Yλ,d . Thus, the mean and variance
of X can be obtained.

Similarly, the ratio of third mean moment to the square of
second mean moment are the skewness and the ratio fourth
moment about mean to second moment about mean is the
kurtosis. From these moments, we are now able to interpret
the shape and kurtosis behaviour of the EpLD. In this
regard, Fig. 5 portrays that the proposed model can exhibit
versatile shapes ranging from negative to positive behaviour.
In addition, we see that the distribution also has the lep-
tokurtic, mesokurtic and platykurtic behaviour.

Fig. 5 Graphs of skewness and kurtosis of the EpLD

Parameters estimation

Due to the importance of statistical inference, here,
we adopt the maximum likelihood method, giving the
maximum likelihood estimates (MLEs) of the unknown
parameters. MLEs are designed to follow the regularity
conditions, which are usually helpful for constructing
the confidence intervals and the test statistics. For these
estimators, the large sample theory yields straightforward
approximations that work well in finite samples. In order
to achieve better approximation distributions, statisticians
frequently strive to estimate quantities, such as the
distribution of a test statistic that depends on the sample
size. The resulting MLE approximation in distribution
theory can be handled analytically or numerically with ease.
Only complete samples are used to calculate the MLEs of
the EpLD parameters. In this regard, let x1, . . . , xn be a
realization of a random sample of size n from the EpLD
given by Eq. 2. Then, the log-likelihood function of the
EpLD is given by

�(λ, d) = 2n log d + n log λ − n log(1 + λ)

−
(

1 + dλ

2

) n∑

i=1

log

(
d + xi

d − xi

)

(4)

+
n∑

i=1

log [dλ + xi((d − 1)λ − 2)] − 3
n∑

i=1

log(d − xi).

The log-likelihood can be maximized either directly by
using the Mathematica [12.0] or by solving the nonlinear
likelihood equations obtained by differentiating Eq. 4. In
particular, we have

∂�(λ, d)

∂λ
= n

λ
− n

1 + λ
− d

2

n∑

i=1

log

(
d + xi

d − xi

)

+
n∑

i=1

d + (d − 1)xi

dλ + ((d − 1)λ − 2)xi

= 0.

The MLE of the parameter λ is obtained by solving the
nonlinear system ∂�(λ, d)/∂λ = 0. As mentioned earlier,
this equation cannot be solved analytically, so we prefer to
use statistical packages like Mathematica [12.0]. For this
purpose, we use Global MLE of the proposed model that
take the Lindley distribution MLE as seed value. However,
we observe that we cannot obtain the estimate of d from
Eq. 4. Consequently, we adopt the methodology described
as follows: since d is free from x and it is the upper limit in
the domain of x, we consider x(1), x(2), . . . , x(n), the ordered
sample corresponding to x1, x2, . . . , xn, and, based on them,
the estimate d as d̂ = max(x1, x2, . . . , xn) + υ, where
υ > 0 denotes an arbitrary constant. However, when we
start estimating d using the sample, we undertake that all
the elements in the sample are in the domain of the random
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variable. This is because the sample should be comprised
of independent observations. Since the value of parameter d

determines the domain of attraction of the random variable
that has a EpLD, in the estimation, it is a necessity that d

is greater than the maximal element in the sample. So we
are looking for the robust value of d̂, which will probably
be established under the condition that d̂ is greater than the
largest element in the sample. For more details, see (Dombi
et al. 2018), (Dombi et al. 2019), (Dombi and Jónás 2020)
and (Dombi and Jónás 2021).

Model compatibility and its application
to real-world data

In this section, we concentrate on the modelling process’s
model selection and model validation. However, model se-
lection is a challenging task and the prime of a suitable mo-
del and it is produced with the use of well-considered judge-
ment based on whatever information is available. It is essen-
tial that the chosen model be malleably sufficient to model
the confronted data amply, while considering the settlement
between simplicity of evaluation and the intricacy of the mo-
del. Moreover, outstanding attention must be devoted to mo-
deling behavior for large and small values of the variable of
interest. In this regard, the modelling process includes vali-
dating the model, which includes various goodness-of-fit tests
and graphical procedures. These statistical techniques for as-
sessing hypothesised models are known as goodness-of-fit
tests. An unsatisfactory fit, either analytical or graphical, may
occur for the following reasons: i) The model is incorrectly
specified. ii) The model specification is correct, but unfortu-
nately carries a huge bias. In general, validation necessitates
more data, other information, and further testing, as well as
a careful examination of the consequences.

Goodness-of-fit tests

As in such tests, researchers usually make a null hypothesis,
H0: The given data comes from a CDF with a specified
form. For this purpose, we have considered four tests. The
first test is the famous χ2 test (Chi Square), due to Karl
Pearson. It includes grouping observed data into intervals
and may be used to assess the fit of data to any specified
distribution (continuous or discrete). When using this test, a
sample of size n is assumed, with each observation falling
into one of k potential classifications. The observed and
expected frequencies in the interval i are denoted by oi and
ei , respectively. The test statistic is

χ2 =
k∑

i=1

(oi − ei)
2

ei

.

However, this test has the advantages of being easy to apply
and being applicable even when parameters are unknown
(see (Murthy et al. 2004)). In addition, this test is not of
much use in small or sometimes even modest size samples
(see (Murthy et al. 2004)). The next three tests are based on
the empirical cumulative distribution function (ECDF) and
hence are often referred to as ECDF tests.

Kolmogorov-Smirnov (KS) Test

The Kolmogorov-Smirnov (KS) test is grounded on the
ECDF. Given n ordered observations Z1, Z2, . . . , Zk, then
the ECDF is defined as Ek = mi/k where mi is the number
of points less than Zi and the Zi are ordered from smallest
to largest value. At the value of each ordered data point, this
step function rises by 1/k. The greatest distance between
the hypothesised CDF and ECDF is the test statistic KS. The
mathematical expression of the KS test statistic is given by

KS = max
1≤i≤k

{
i

k
− zi, zi − i − 1

k

}

,

where zi = F(Zi), and F is the theoretical CDF of the
distribution being tested. Other goodness-of-fit tests, like
the Anderson-Darling test and the Cramér-von Mises test,
are alternatives of the KS test. As these modified tests are
usually measured to be more powerful than the conventional
KS test, many analysts prefer them.

Anderson-Darling (AD∗
0) Test

The Anderson-Darling (AD∗
0) test is an alternative of the KS

test and usually attaches more weight to the tails than the
KS test. Its test statistic is

A∗
0 =

(
2.25

k2
+ 0.75

k
+1

){

−k− 1

k

k∑

i=1

(2i−1) log(zi(1−zk−i+1))

}

.

Cramér-vonMises (CVM∗
0) Test

The CVM∗
0 test is also a modification of the KS test, which

is usually considered to be more powerful than the original
KS test. The CVM∗

0 test statistic is expressed as

W ∗
0 =

k∑

i=1

(

zi − 2i − 1

2k

)2

+ 1

12k
.

A relative comparison of the selection of these tests
indicates that: i) The ECDF tests are more powerful than
the χ2 test. ii) The KS test is the most well-known
ECDF test, but it is often much less powerful than the
other ECDF tests (AD∗

0 and CVM∗
0 tests) (see (Murthy

et al. 2004)). Moreover, we have also applied information
criteria for model selection purposes, such as Akaike
information criterion (AIC), Bayesian information criterion
(BIC), corrected Akaike information criterion (AICc),
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Hannan-Quinn information criterion (HQIC) and consistent
Akaike information criterion (CAIC). The following are the
definitions of AIC, AICc, HQIC, and CAIC:

AIC = 2�−2l, AICc=AIC+ 2�(� + 1)

n − � − 1
, BIC=� log(n) − 2l,

HQIC = −2l + � log(log(n)), CAIC = −2l + 2�n

n − � − 1
,

where l denotes the estimate of the maximm log-likehood
function, � is the number of parameters to be estimated and
n is the number of data.

Along with these model selection procedures, we have al-
so used the Kullback-Leibler information criterion philoso-
phy and applied the Vuong test proposed by (Vuong 1989).

Vuong test

The Vuong test is a closeness test based on the likelihood-
ratio-based test for model selection using the Kullback-
Leibler information criterion philosophy. This test may be
used for non-nested models, and it generally compares the
null hypothesis that two competing models are equally near
to the actual data against the alternative that one model
performs better. Further discussion about the Vuong test can
be found in (Hussain et al. 2019).

Competingmodels

We compare the proposed model with the following well-
known models: epsilon probability distribution (EpD) (see
(Dombi et al. 2018)), two-parameter Lindley distribution
(TPLD) (see (Shanker et al. 2015)), A quasi Lindley dis-
tribution (QLD) (see (Shanker and Mishra 2013)), Lindley
distribution (LD) (see (Lindley 1958)) and exponential dis-
tribution (ED). For the sake of transparency, these competi-
tors are defined by the following PDFs:

• for the EpD:

f
EpD
λ,d (x) = λd2

d2 − x2
ε−λ,d(x), 0 < x < d,

and f
EpD
λ,d (x) = 0 for x �∈ [0, d], with d > 0,

• for the TPLD:

f T PLD
λ,d (x) = λ2(1 + dx)

d + λ
e−λx, x > 0,

and f T PLD
λ,d (x) = 0 for x ≤ 0, with λ > 0 and d > −1,

• for the QLD:

f
QLD
λ,d (x) = λ(d + λx)

d + 1
e−λx, x > 0,

and f
QLD
λ,d (x) = 0 for x ≤ 0, with λ > 0 and d > −1,

• for the LD:

f LD
λ (x) = λ2(1 + x)

1 + λ
e−λx, x > 0,

and f LD
λ (x) = 0 for x ≤ 0, with λ > 0,

• for the ED:

f ED
λ (x) = λe−λx, x > 0,

and f ED
λ (x) = 0 for x ≤ 0, with λ > 0.

We consider four different real-world data sets.

Lifetime data sets

Data sets I and II. The first and second data sets are taken
from (Walpole et al. 2012) and (Andrews and Herzberg
1985), respectively. The first data are about the length of
life in years, measured to the nearest tenth of 30 similar fuel
pumps, while the second data represent the life of fatigue
fracture of Kevlar 373 epoxy that is subjected to constant
pressure at the 90 stress level until all have failed. The
measurements of the first data set are 2.0, 3.0, 0.3, 3.3, 1.3,
0.4, 0.2, 6.0, 5.5, 6.5, 0.2, 2.3, 1.5, 4.0, 5.9, 1.8, 4.7, 0.7, 4.5,
0.3, 1.5, 0.5, 2.5, 5.0, 1.0, 6.0, 5.6, 6.0, 1.2, 0.2. The second
data set measurements are given as: 0.0251, 0.0886, 0.0891,
0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566,
0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425,
0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596,
1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503,
1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263,
1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808,
1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903,
2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470,
2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045,
3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435,
5.5295, 6.5541, 9.0960. In this regard, we have compiled
the descriptive statistics, which are listed in Table 1, and the
total time on test (TTT) plots introduced by (Aarset 1987),
which are portrayed in Fig. 6 for Data sets I and II.

Table 1 Descriptive statistics for Data sets I and II

Dataset Sample size Mean Median Standard deviation Skewness Kurtosis Skewness
Kurtosis

I 30 2.7967 2.1500 2.2273 0.3412 1.5689 0.2175

II 76 1.9592 1.5335 1.6753 1.9796 8.1608 0.2426
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Fig. 6 Estimated TTT plots of
Data sets I and II
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Discussion and analysis of lifetime data sets

Tables 1 and 2 reveal that theoretical and observed
descriptive statistics show a remarkable closeness to each
other and it seems that both data sets are being simulated by
the proposed model.

Note that as the parameter d specifies the support of the
PDF of the EpLD in Equation (2), i.e., it is positive only
if x ∈ (0, d). This means that the value of parameter d must
meet the requirement d > maxi=1,2,...,n(xi), see (Dombi
et al. 2019). That is why we observed that d̂ is large for
any data set, as shown in the related tables. From the TTT-
plot for Data set I, we can see that the curve has three charac-
teristic phases: (1) a first convex phase, where the failure
rate is decreasing; (2) a second quasi linear phase with a
constant failure rate; (3) and a third concave phase, where
the failure rate is increasing. That is, the TTT-plot for Data
set I (see Fig. 6) portrays a bathtub-shaped like failure rate
curve. Noting the TTT-plot for Data set II in Fig. 6, from
which we can conclude that it exhibits an increasing fail-
ure rate phenomenon of the empirical failure rate function.
Hence, both of the above data sets are efficiently modelled
by the proposed model. These results are in line with the
fact that the HRF of the EpLD can be bathtub-shaped or
increasing (see Fig. 4). Since d is large, the EpLD is almost
identical to the LD, and so they have almost the same
goodness-of-fit statistics values. Such a suitability of the
proposed model is reflected in Tables 3 and 4, where the
EpLD yields a smallest value of the goodness-of-fit statis-
tics along with highest p-vlaue for χ2 statistics. In addition,

we have also assessed the performance of the model with
respect to the LD via the log-likelihood ratio test, which is
usually applicable for nested models, and we drew the same
conclusion.

However, Tables 5 and 6 portray that the QLD and LD
yield minimum values of information criterion, which seem
to be a penalty of over parametrization, particularly with re-
ference to the LD model. Previously we pointed out that the
LD distribution may be viewed as an asymptotic EpLD dis-
tribution, i.e., if d → ∞, then the EpLD distribution is iden-
tical to the LD distribution. We can observe a practical im-
plication of this finding in Tables 3–6. Namely, when a data
set can be modelled well by the LD distribution, then it can
also be modelled well by the EpLD distribution with a suffi-
ciently large value of the parameter d, and vice versa. Cer-
tainly, in such a case, the estimates of the λ parameter and
the corresponding goodness-of-fit statistics are very close.

Furthermore, Table 7 also pleads for the suitability of the
proposed model. But Vuong statistics show that QLD and
LD are strong competitors for the proposed model.

Furthermore, by the histogram analysis performed in
Fig. 7, we see that the proposed model matches the data in
a better way than the competing models.

Environmental Data Sets

Data sets III and IV. The third and fourth data sets
are the total amount of rainfall in mm of Pakistani cities
Lasbella and Bunji, which covers a period of 30 years
(1981 to 2010) with 30 values of annual rainfall in each

Table 2 Theoretical statistics from the EpLD

Data set Sample size Mean Median Standard deviation Skewness Kurtosis Skewness
Kurtosis

I 30 2.7802 2.2285 2.2505 1.1766 4.2477 0.2769

II 76 1.9589 1.5739 1.7362 1.4309 5.4976 0.2602
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Table 3 MLEs and goodness-of-fit statistics for Data set I

Dist. λ̂ d̂ CVM∗
0 AD∗

0 KS χ2(df ) p-value

EpLD 0.5839 1219.9011 0.5059 0.0728 0.1408 1.0760(2) 0.5839

EpD 0.3575 6.31×106 0.7569 0.1189 0.1358 1.6246(2) 0.4438

TPLD 0.3575 -1.92×10−26 0.7569 0.1189 0.1358 1.6246(2) 0.4438

QLD 0.5123 1.3097 0.5512 0.0809 0.1341 1.0990(2) 0.5772

LD 0.5834 . . . 0.5061 0.0729 0.1409 1.0767(2) 0.5831

ED 0.3576 . . . 0.7569 0.1189 0.1358 1.6246(2) 0.4438

Table 4 MLEs and goodness-of-fit statistics for Data set II

Dist. λ̂ d̂ CVM∗
0 AD∗

0 KS χ2(df ) p-value

EpLD 0.7948 99910.0267 1.4902 0.2667 0.1156 6.8497(6) 0.3349

EpD 0.5104 40763.1154 3.2134 0.5746 0.1663 13.4562(6) 0.0363

TPLD 0.5104 8.29×10−10 3.0187 0.5746 0.1663 13.4562(6) 0.0363

QLD 0.9542 0.1499 0.6003 0.1016 0.1025 9.3621(8) 0.3126

LD 0.7947 . . . 1.4902 0.2668 0.1156 6.8496(6) 0.3348

ED 0.5104 . . . 3.0188 0.5746 0.1663 13.4562(6) 0.0363

Table 5 Estimates of the maximum log-likelihood and information criteria for Data set I

Distribution −l AIC AICC BIC HQIC CAIC

EpLD 60.7645 125.529 125.973 128.331 123.977 125.973

EpD 60.8525 125.705 126.149 128.507 124.153 126.149

TPLD 60.8529 125.706 126.15 128.508 124.154 126.15

QLD 60.4864 124.973 125.417 127.775 123.421 125.417

LD 60.7668 123.534 123.676 124.935 123.982 123.676

ED 60.8528 123.706 123.848 125.107 124.154 123.848

Table 6 Estimates of the maximum log-likelihood and information criteria for Data set II

Distribution −l AIC AICC BIC HQIC CAIC

EpLD 123.674 251.348 251.512 256.009 250.279 251.512

EpD 127.114 258.228 258.392 262.889 257.159 258.392

TPLD 127.114 258.228 258.392 262.889 257.159 258.392

QLD 121.65 247.3 247.464 251.961 246.231 247.464

LD 123.675 249.35 249.404 251.681 250.281 249.404

ED 127.114 258.228 258.392 262.889 257.159 258.392

Table 7 Vuong test statistics for Data sets I and II

Models Data set I Suitability Data set II Suitability

EpLD- EpD 2.7872 EpLD 32.5790 EpLD

EpLD-TPD 2.7872 EpLD 32.5804 EpLD

EpLD-QLD -0.9287 Indecisive -15.3623 QLD

EpLD-LD 1513.008 EpLD -1321291 LD

EpLD-ED 2.7872 EpLD 32.5790 EpLD
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Fig. 7 Data sets I and II fits via
histograms

set. They were reported by (Hussain et al. 2019). The third
data set measurements are as follows: 138.11818, 89.5,
246.5, 142.6, 143.5, 47.4, 105.7, 182.6, 153.7, 119.9, 56.5,
272.8, 99.9, 426.1, 205.6, 169.8, 308.3, 80.5, 104.0, 37.7,
223.0, 9.2, 474.6, 25.3, 209.6, 182.5, 196.2, 254.9, 103.6,
117.6. The fourth data set contains the following rainfall
measurements: 248.8, 82.2, 102.2, 217.9, 113.2, 248.2,
244.1, 122.2, 144.9, 63.2, 62.8, 139, 228.7, 216.4, 144.8,
252.6, 144.8, 157.2, 168.5, 139.1, 74.3, 154.6, 339.4, 154.1,
156.3, 200.7, 97.5, 96.3, 155.2, 298.8. The descriptive
statistics of these data sets and corresponding theoretical
statistics from the EpLD are presented in Tables 8 and 9,
respectively. Box-plots of the data are given in Fig. 8.

In order to analyse the environmental data, we have
also checked some features of the environmental data,
namely homogeneity, independence and stationarity. For
this purpose, we applied the Mann-Whitney (M-W) test
for testing homogeneity and stationarity, and the Mann-
Kendall (M-K) test for trend detection. In this regard, we
have observed that both data sets accept the hypotheses
of homogeneity and stationarity at a 5 percent level
of significance with Z-scores of 0.3568 and -0.2777,
respectively. Similarly, the hypothesis of independence and
identically distributed distribution is accepted at a 5 percent
level of significance with Z-scores of 0.4817 and -0.6943,
respectively. For details of these tests, readers are referred
to (Haktanir et al. 2013).

Analysis and discussion of environmental data

From Table 8 and Fig. 8 as well as Table 9, it is obvious that
the empirical and theoretical aspects of the data sets in the

presence of outliers in Data set III are in close agreement.
These indicate that the model can effectively be used if the
data are positively skewed and leptokurtic in nature, which
are the obvious characteristics of environmental data. Such
findings are further consolidated by viewing Tables 10 and
11, which portray that the EpLD exhibits minimum values
of goodness-of-fit statistics.

Tables 10 and 11 indicate that ECDF test statistics for
goodness-of-fit tests are low, which ensures that the EpLD
is a good competitor to the QLD and LD.

However, likelihood aspects and information criterion
values also favour the proposed model, which can be
visualized in Tables 12 and 13, respectively.

Furthermore, the shape of our proposed model, as shown
in Fig. 9, matches the data in a better way compared to the
competing models.

Furthermore, the Vuong statistics as depicted in Table 14
also show the capability of the proposed model.

Hydrological parameters

The annual series is very common in frequency analysis
for two reasons. The earliest is its accessibility, as most
data are managed in such a way that the annual series
is commonly available. The other one is that there is a
simple hypothetical basis for deducing the frequency of
annual series data beyond the range of observation (see
(World Meteorological Organization 2009)). Moreover, we
observed that both series are valid and approved by theM-W
and M-K tests, as shown in the earlier section.

Therefore, it can be settled that, according to the
consequences of relevant tests, both the annual rainfall

Table 8 Descriptive statistics for Data sets III and IV

Data set Sample size Mean Median Standard deviation Skewness Kurtosis Skewness
Kurtosis

III 30 164.241 143.05 108.163 1.1201 4.2629 0.2627

IV 30 165.6 154.35 70.3731 0.5800 2.7073 0.2142
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Table 9 Theoretical statistics from the EpLD

Data set Sample size Mean Median Standard deviation Skewness Kurtosis Skewness
Kurtosis

III 30 163.952 138.302 114.483 1.0747 4.0723 0.2639

IV 30 176.0789 160.9816 102.6899 0.5248 2.5549 0.2054

Fig. 8 Box-plots for Data sets
III and IV
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Table 10 MLEs and goodness-of-fit statistics for Data set III

Dist. λ̂ d̂ CVM∗
0 AD∗

0 KS χ2(df ) p-value

EpLD 0.0122 8329.81 0.0472 0.2778 0.1117 0.2294(2) 0.8916

EpD 0.0041 9.29×106 1.8655 0.3667 0.2417 3.6401(2) 0.1620

TPLD 0.00411 0.0000 0.3667 1.8655 0.2417 3.6401(2) 0.1620

QLD 0.0121 0.0159 0.0479 0.2796 0.1122 0.2350(2) 0.8891

LD 0.0121 . . . 0.0473 0.2779 0.1121 0.2296(2) 0.8915

ED 0.0061 . . . 0.3549 1.8494 0.2224 3.3397(2) 0.1883

Table 11 MLEs and goodness-of-fit statistics for Data set IV

Dist. λ̂ d̂ CVM∗
0 AD∗

0 KS χ2(df ) p-value

EpLD 0.0123 498.906 0.2002 1.3785 0.1650 2.5612(1) 0.1096

EpD 0.0060 9.25×107 0.8954 4.6593 0.3156 10.7892(1) 0.0010

TPLD 0.0060 6.56×10−13 0.8954 4.6594 0.3156 10.3156(1) 0.0013

QLD 0.0121 -4.12×10−27 0.3099 1.8943 0.1898 2.7965(1) 0.0945

LD 0.0120 . . . 0.3164 1.9301 0.1904 2.8808(1) 0.0896

ED 0.0060 . . . 0.8954 4.6593 0.3156 10.7892(1) 0.0010

Table 12 Estimates of the maximum log-likelihood and information criteria for Data set III

Distribution −l AIC AICC BIC HQIC CAIC

EpLD 179.123 362.247 362.691 365.049 360.695 362.691

EpD 183.04 370.08 370.524 372.882 368.528 370.524

TPLD 183.04 370.08 370.524 372.882 368.528 370.524

QLD 179.125 362.251 362.695 365.053 360.699 362.695

LD 179.13 360.26 360.403 361.661 360.708 360.403

ED 183.04 368.08 368.223 369.481 368.528 368.223
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Table 13 Estimates of the maximum log-likelihood and information criteria for Data set IV

Distribution −l AIC AICC BIC HQIC CAIC

EpLD 173.351 350.703 351.147 353.505 349.151 351.147

EpD 183.287 370.575 371.019 373.377 369.023 371.019

TPLD 183.287 370.575 371.019 373.377 369.023 371.019

QLD 174.435 352.869 353.314 355.672 351.318 353.314

LD 174.576 351.152 351.294 352.553 351.6 351.294

ED 183.287 368.575 368.717 369.976 369.023 368.717

Fig. 9 Data sets III and IV fits
via histograms

Table 14 Vuong test statistics for Data sets III and IV

Models Data set III Suitability Data set IV Suitability

EpLD- EpD 19.4212 EpLD 56.0414 EpLD

EpLD-TPD 19.4213 EpLD 56.0412 EpLD

EpLD-QLD 1954.888 EpLD 8.5923 EpLD

EpLD-LD -39411 LD 9.8278 EpLD

EpLD-ED 16.7418 EpLD 56.0414 EpLD

Fig. 10 Return periods of the competing models for Data sets III and IV
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series documented at Lasbella (Pakistan) and Bounji
(Pakistan) are homogeneous, independent, non-periodic and
trend-free. Hence, classical frequency analyses are applied
to all of the annual rainfall series. From the above mentioned
analysis, we can conjecture that the EpLD is a suitable
model for the above mentioned data sets, so we have
decided to portray its return period for those interested in
environmental data, which is being studied in the coming
subsection.

Return period

The average number of years in which an event is predicted
to be equalled or exceeded only once is the return
period T of a particular level. The return period is the
reciprocal of the probability of exceeding the threshold in
a particular year (see (World Meteorological Organization
2009)). The link between the annual return time and the
exceedance probability may be stated as follows if the
yearly exceedance probability is designated 1/T. Since the
probability of exceedance is P (X > xT) = 1/T, this
implies a return level with a return period of T = 1/p
is a high threshold xT whose probability of exceedance
is p.

In this regard, we have found that the EpLD yields a
realistic return period that can be visualized from Fig. 10.

Conclusions and future research plans

In this article, we proposed a notable bounded distribution
under the name epsilon Lindley distribution (EpLD). Since
the Lindley distribution is a limit case of the EpLD, which
is a rare property for a bounded support distribution, the
EpLDmay be treated as a bounded alternative to the Lindley
distribution. Therefore, this new distribution provides a
flexible solution to the problem of modeling bounded
characteristics. We pointed out that the PDF and HRF of
the EpLD are very flexible, i.e., they can exhibit various
shapes. The fact that the PDF of the EpLD can have a
positive skewness and a leptokurtic nature indicates that
this new distribution can be used to model the heavy-tailed
phenomenon, which is generally common in reliability
applications, queuing theory and environmental aspects.
We found that the HRF of the EpLD can adopt various
shapes from bathtub to increasing failure rate with a left
skewed J-shape. All that make this distribution suitable for
modeling purposes in a wide range of practical problems.
The environmental data analyses are mainly based on the
most efficient bounded models, such as the three-parameter
lognormal distribution, generalized extreme value type II
distribution, generalized extreme value type III distribution,
three-parameter gamma distribution, and three-parameter

log-Pearson distribution. A significant issue in many
common hydrological models is the non-closed form of the
CDF. At the same time, the EpLD has only two parameters
and has a closed form of its basic functions, including its
CDF. This property of the EpLD makes it useful in practical
hydrological modeling applications.We should mention that
the EpLD is a weighted variant of the EpD from a theoretical
standpoint. This weighted variant includes a linear mixture
of probability distributions as well as ascertainment biases.
In this study, we estimated the parameters of EpLD using
the maximum likelihood method. Next, we studied the
applications of the proposed distribution both in lifetime
and environmental data modeling. Based on the empirical
results, we could conclude that the proposed methodology
works quite well. In particular, for the annual rainfall data,
the EpLD yields a realistic return period when compared
with other competing models.

As part of our research activities, we plan to study
how the epsilon-Lindley distribution can be utilized in
other areas of statistics, including regression analyses and
classification modeling.
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