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Abstract: Scientific prediction of precipitation changes has important guiding value 16 

and significance for revealing regional spatial and temporal patterns of precipitation 17 

changes, flood climate prediction, etc. Based on the fact that CEEMD can effectively 18 

overcome the interference of modal aliasing and white noise, fine composite multi-scale 19 

entropy can reorganize the same FCMSE value to reduce the modal component and 20 

improve the computational efficiency, and Stacking ensemble learning can effectively 21 

and conveniently improve the fitting effect of machine learning, a rainfall prediction 22 

method based on CEEMD-fine composite multi-scale entropy and Stacking ensemble 23 

learning is constructed, and it is applied to the prediction of monthly precipitation in 24 
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the Xixia. The results show that, under the same conditions, the CEEMD-RCMSE-25 

Stacking model reduces the root mean square error by 83.48% and 62.08%, and the 26 

mean absolute error by 83.25% and 61.84%, respectively, compared with the single 27 

Stacking model and CEEMD-LSTM, while the goodness-of-fit coefficients improve by 28 

15.94% and 2.34%, respectively, which means that the CEEMD-RCMSE-Stacking 29 

model has higher prediction performance. The CEEMD-RCMSE-Stacking model has 30 

higher prediction performance. 31 

Keywords: Rainfall Forecasting, CEEMD, RCMSE, Stacking Integrated Learning, 32 

Xixia 33 

Introduction 34 

The contradiction between water supply and demand is a major problem facing 35 

China's social development at present, while precipitation is an important way of 36 

recharging regional water resources, and long-term precipitation forecasts play an 37 

important role in the rational allocation and use of water resources (Qing et al. 2019). 38 

Precipitation is influenced by a variety of uncertainties and its process is very complex. 39 

Most of the precipitation series are non-stationary series, which not only have the 40 

characteristics of trend and periodicity, but also have randomness, sudden changes and 41 

"multi-time scale" structure, which makes the precipitation prediction accuracy 42 

relatively low. This makes the accuracy of precipitation forecasts relatively low. In 43 

recent years, scholars at home and abroad have conducted a lot of research on 44 

precipitation forecasting and have achieved fruitful results. Bidroha et al. (2020) A 45 

downscaling method based on support vector regression (SVR) to downscale rainfall at 46 

several locations in a study area to obtain future rainfall forecasts, and the performance 47 

of the SVR method is compared with downscaling methods based on correlation vector 48 



 

 

machines and deep learning to demonstrate the effectiveness of the method. Yu et 49 

al.(2018) explored short-long time variation information in the original rainfall time 50 

series, where Support Vector Regression (SVR) was used for short-period component 51 

prediction and Artificial Neural Networks (ANN) for long-period component prediction, 52 

with results showing superior performance to traditional methods. Fethi et al. (2018) 53 

Prediction of rainfall using data retrieved from the Meteosat Second Generation (MSG) 54 

Rotationally Enhanced Visible and Infrared Imager (SEVIRI) based on the Random 55 

Forest (RF) algorithm, showing that the rainfall estimated by the scheme correlates well 56 

with that observed by rain gauges. Khan et al. (2020) The analysis was carried out using 57 

30 years of rainfall data from 1986 - 2016 in the Langat River Basin, Malaysia. Discrete 58 

wavelet transform decomposition of the calculated drought time series and prediction 59 

of high frequency subseries using artificial neural networks. Kavya et al. (2020) An 60 

adaptive empirical model decomposition-artificial neural network model is proposed 61 

for predicting summer rainfall in India. Liu et al. (2021) Integration of improved K-62 

Nearest Neighbour, Remote Sensing and Geographic Information Systems to analyse 63 

extreme rainfall data from tourist sites. Sun et al. (2021) The possibility of using the 64 

RF-SVR statistical downscaling model for extreme rainfall simulations during the flood 65 

season was explored, and the downscaling effects of the RF-SVR statistical 66 

downscaling model were compared with those of the SVR model. The results show that 67 

the deviations of daily rainfall in the Luan River basin simulated by the RF-SVR model 68 

are significantly reduced, and the prediction of extreme rainfall in the basin can be 69 

improved. Guo et al. (2010) The ANN-based statistical downscaling method is studied 70 

and explored to establish the statistical relationship between large-scale climate 71 

observations and measured precipitation through ANN and apply it to study the 72 

precipitation changes in the Han River basin under future climate scenarios. Lin et al. 73 



 

 

(2021) The integrated models such as bagging integrated model and stacking integrated 74 

model were established respectively to improve the effect of short time runoff 75 

forecasting in the Andun water basin, and the results show that its stacking integrated 76 

model has a better effect on the prediction of small flow incoming water. Scholars at 77 

home and abroad have investigated the use of combinatorial methods to optimise model 78 

parameters or modify parts of the code to improve the accuracy of rainfall prediction 79 

models, however there is less research on integrated learning model methods using each 80 

single prediction model. The Stacking algorithm brings together the strengths of 81 

different models and allows the raw data to be analysed from multiple perspectives, 82 

resulting in better predictive performance. In this paper, an adaptive noise-complete 83 

ensemble empirical modal decomposition (CEEMD) method is first introduced to 84 

decompose the raw precipitation series and calculate the fine composite multiscale 85 

entropy (RCMSE) of each decomposition component. The sequences of components 86 

with similar entropy values are then reorganised into new sequences to reduce model 87 

complexity and improve computational efficiency. In the prediction stage, the 88 

reconstructed series are based on the popular KNN, RF, SVR and ANN algorithms 89 

mentioned above, and the Stacking algorithm is used to combine the advantages of the 90 

four models to analyse the raw data from multiple perspectives, thus improving the 91 

model prediction performance and applying it to the monthly precipitation prediction 92 

at the Xixia station. 93 

1 Research methods 94 

1.1 CEEMD algorithm  95 

The CEEMD algorithm adaptively adds white noise to the decomposition process 96 

to solve the modal mixing problem that occurs with EMD, and to overcome the low 97 



 

 

efficiency and noise residuals of EEMD decomposition(Sang et al. 2019).The specific 98 

steps of the CEEMD algorithm implementation are as follows: 99 

(1) The i-th signal ( )i
y t obtained by adding adaptive white noise to the original 100 

rainfall signal can be expressed as 101 

 =
0

( ) ( ) ( ) , 1, 2， ，i i
y t y t t t n   L         (1) 102 

where n is the sample point of the rainfall data; t is the rainfall data period (1 103 

mouth). ( )y t is the original wind power signal.
0
  is the standard deviation of the noise.104 

( )i
t  is the i-th white noise signal. 105 

(2) The EMD decomposition of ( )i
y t  A is performed until the first modal 106 

component  1
IMF t is obtained 107 
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Calculate the first residual signal  1
r t   109 

      1 1
r t y t IMF t                    (3) 110 

(3) The EMD algorithm is used to decompose the signal     1 1 1

i
r t E t  to 111 

obtain the second modal component  2
IMF t  112 
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For each of the remaining stages, i.e. k=2, ... , k, the kth residual signal is calculated 114 

as follows  115 

     1k k k
r t r t IMF t                     (5) 116 

Repeat the procedure in step (3) to obtain the k+1st modal component as follows117 

        1 1
1

1 n
i

k k k k
i

IMF t E r t E t
n

 


           (6) 118 



 

 

Steps (4) and (5) are repeated until the residual signal can no longer be 119 

decomposed, resulting in K modal components. The decomposed final residual signal 120 

is  121 

     
1

K

k
i

R t y t IMF t


                       (7) 122 

The original rainfall signal is therefore decomposed into 123 

      
1

K

k
i

y t IMF t R t


                     (8) 124 

1.2 Fine-composite multiscale entropy  125 

The FCMSE algorithm is an algorithm that measures the complexity of a time 126 

series as the sample entropy of the time series at different scales, which compensates 127 

for the shortcomings of the MSE and CMSE algorithms (Kang et al. 2021). The main 128 

steps are as follows: 129 

(1)For the rainfall time series  1 2
, , ,

n
x x x x L , its  - th scale coarse-grained 130 

process is 131 
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,
( 1)

1
, 1 , 1
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k j i
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
 

 

  

                 (9) 132 

Coarse-grained time series at different time scales were obtained using the coarse-133 

graining described above. 134 

(2) Under the scale factor   , the number of all   coarse-grained sequence 135 

matching vector pairs 1

,

m

k
n 

  and pairs 
,

m

k
n   is calculated. 136 

(3) Calculate the mean 1

,

m

k
n 

  and the value
,

m

k
n   of   the 1

,

m

k
n 

  and
,

m

k
n   at 137 

1 k   . Define the FCMSE under the scale factor B as the logarithm of the ratio 138 

of N and the value M, i.e. 139 
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According to equation (10), the FCMSE appears as undefined entropy only when 141 

all 1

,

m

k
n 

 and 
,

m

k
n  are zero. 142 

1.3 Stacking Algorithms 143 

In the Stacking Integrated Learning Model, the predictive power of each base 144 

learner is analysed individually, while the combined effect of each base learner is 145 

compared, so that the Stacking Integrated Learning Model achieves the best prediction 146 

results (Shi et al. 2019). The base learner has to be selected for good performance but 147 

with different model principles. The K-Nearest Neighbor algorithm is a well-theorized 148 

classical machine learning method that is simple to implement and efficient to train (Lu 149 

et al. 2021).Random Forest is one of the first machine learning algorithms that 150 

improves the prediction accuracy of various models by constructing different training 151 

sets to improve the variance of each classification model (Dong et al. 2020，Xiao et al 152 

2020).Support vector regression shows good fitting performance for non-linear 153 

regression prediction of high-dimensional, complex data (Xiong et al. 2006).Better 154 

generalization and fitting performance of artificial neural network models (Gorai et 155 

al.2021). In summary, this paper selects KNN, RF, SVR and ANN as the base learners, 156 

and the ANN algorithm with strong generalization ability is used as the meta-learner. 157 

2 CEEMDAN-RCMSE-Stacking Model construction 158 

Based on the above-mentioned CEEMD algorithm, fine composite multiscale 159 

entropy and Stacking algorithm, a short-term precipitation prediction model is built in 160 

this paper, as shown in Figure 1. The specific ideas are as follows.  161 



 

 

(1) The raw precipitation data were decomposed into s modal components and 1 162 

residual component using the CEEMD algorithm. 163 

(2) The RCMSE values of each component are calculated and sequences with 164 

similar entropy values are superimposed to form a new sequence of components. 165 

(3) The reconstructed component data were divided into a training set D and a test 166 

set T.  167 

(4) Using 5-fold cross-validation, the training set D is randomly divided into 5 168 

equal parts. Let each base learner train 1 copy of the training set and use the remaining 169 

4 copies as the test set for prediction. Combine the predictions of the 4 base learners 170 

into the training set D%of the meta-learner. 171 

(5) Let each base learner make predictions on the test set T. The average of the 172 

predictions is used as the test setT%for the meta-learner. 173 

(6) A meta-learner is used to train the new training set D%,and this meta-learner is 174 

used to predict the new test set T%. The final prediction is output. 175 



 

 

 176 

Fig1 Flow of CEEMDAN-RCMSE-Stacking based prediction model 177 

3 Example applications 178 

The data used in this paper are from actual precipitation measurements in the 179 

Western Gorge, as shown in Figure 2, sampled from 1960 to 2019. A total of 720 data 180 

points were used, with the first 660 data points used for the training set and the last 60 181 

data points for the test set. In this paper, root mean square error (RMSE), mean absolute 182 

error (MAE) and goodness-of-fit coefficient 2
R  are used to evaluate the model error. 183 
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 185 

Fig2 Monthly precipitation sequence in Xixia 186 

3.1 Precipitation sequence CEEMD-RCMSE decomposition recombination test 187 

In this paper, the CEEMD algorithm is used to decompose the raw wind power 188 

data series by adding the number of white noise groups 80NR  , the noise standard 189 

deviation 0. 05
std

N  , and the maximum number of iterations 100MaxIter  . The 190 

decomposition results are shown in Figure3. 191 



 

 

 192 

Fig3 CEEMD decomposition of monthly precipitation series results 193 

As can be seen from Figure 3, the precipitation series is decomposed by CEEMD 194 

into 7 modal components and 1 residual component at different frequency scales. Due 195 

to the non-smoothness of the series makes the decomposition result in a large number 196 

of component series, if the 5-fold method is used to model the prediction of each 197 

component directly it will lead to a sharp increase in computational effort. This paper 198 

therefore uses the RCMSE method to calculate the fine composite multiscale entropy 199 

values of each component in order to assess the complexity of each component, and 200 

based on this, the components are combined and reorganised. RCMSE test parameters: 201 

embedding dimension 2m   , conditional threshold r takes 0.2 times standard 202 

deviation of component sequence time lag 1tau   . FCMSE values for each IMF 203 

component and residual are listed in Table 1.  204 

Table 1 FCMSE values for IMF components and residuals 205 

Component sequences FCMSE values Component sequences FCMSE values 

IMF1 0.1605 IMF5 0.0443 

IMF2 0.1044 IMF6 0.0243 

IMF3 0.0639 IMF7 0.0089 



 

 

IMF4 0.0560 R 0.0023 

As can be seen from Table 1, the RCMSE values for each component series are 206 

mainly distributed in the four numerical neighbourhoods of 0.15, 0.1, 0.05 and 0.005. 207 

Accordingly, in this paper, the component sequences are recombined and the results are 208 

as follows: F1=IMF1, F2=IMF2, F3=IMF3+IMF4+IMF5+IMF6 and F4=IMF7 +R are 209 

the recombined components. Figure 4 shows the rainfall recombination component 210 

sequences. 211 

 212 

Fig4 FCMSE recombination component sequence results 213 

The reorganised four components were imported into the Stacking model for 214 

prediction and the results are shown in Figure 5. 215 



 

 

 216 

Fig5 F1-F4 prediction results 217 

As can be seen from Figure 5, the smoothness of the Xixia precipitation time series 218 

is enhanced and the volatility is significantly reduced after the CEEMD decomposition. 219 

The prediction errors from F1 to F4 are getting lower and lower, which indicates that 220 

the training is getting better and better. 221 

3.2 Cross-sectional comparison test of Stacking model precipitation prediction  222 

In order to compare the prediction accuracy of the Stacking prediction model, this 223 

paper will use four base learners to do a cross-sectional comparison test of the 224 

prediction of modal F3, taking into account the moderate frequency fluctuation and 225 

smoothness of modal F3, which is more likely to reflect the fitting effect differently. 226 

The values of each model fit error evaluation metric and precipitation prediction plots 227 

for the F3 modal are shown in Figure 6 and listed in Table 2. 228 



 

 

 229 

Fig6 Fitting of each model for the F3 mode 230 

Table 2 Relative errors in the prediction results for the F3 trend term 231 

Predictive models RMSE MAE R2 

KNN 26.78 20.39 0.8158 

RF 26.04 19.17 0.8227 

SVR 26.42 19.24 0.8213 

ANN 25.14 18.16 0.8432 

Stacking 22.52 15.10 0.8591 

It can be seen from Table 2 that in the base learner, the RMSE and MAE of the 232 

ANN algorithm are the smallest, which are 25.14 and 18.16, respectively. From the 233 

fitting effect, ANN model fitting degree is the highest. This indicates that the model 234 

performs best and generalises best, and empirically demonstrates the rationality and 235 

validity of setting the meta-learner of the Stacking model as an ANN model in this paper. 236 

The Stacking model, which integrates four models, achieves better prediction 237 

performance than the single model, with prediction errors RMSE and MAE 10.42% and 238 

16.85% lower respectively than the ANN model, which is the best performing of the 239 

single models. This is 15.91% and 25.94% lower than the KNN model, which is the 240 



 

 

worst performing of the single models, and the fit to the actual values of the modal F3 241 

is 5.82% better. 242 

3.3 Five-year rainfall prediction test 243 

To further verify the generalisability and accuracy of the CEEMDAN-RCMSE-244 

Stacking model proposed in this paper, a total of 720 data points were selected from the 245 

five-year 12-month precipitation data of the hydrological station, with the first 55 years 246 

(660 data points) as the test set and the remaining 60 data points as the test set. The 247 

comparison model is the LSTM model, a deep learning algorithm widely used in natural 248 

language processing (Liu et al. 2020). The results of 60 months of wind power 249 

predictions under each prediction model are shown in Table 4. 250 

 251 

Fig7 Prediction results of the CEEMD-RCMSE-Stacking model compared with other models 252 

As can be seen from Figure 7, the single Stacking model has a large error between 253 

the predicted and measured values, and the fit is the worst, with the predictions obtained 254 

using the CEEMD-LSTM decomposition method deviating significantly from the peak 255 

of the measured runoff series. The combined CEEMD-RCMSE-Stacking model is the 256 



 

 

best fit and the prediction results are closer to the actual rainfall, verifying the accuracy 257 

and superiority of the model proposed in this paper. 258 

Table 3 Comparison of prediction results from different models 259 

Month 
True 
value 

Stacking CEEMD-LSTM CEEMD-RCMSE-Stacking 

Predicted 
value 

Relative 
error % 

Predicted 
value 

Relative 
error % 

Predicted 
value 

Relative 
error % 

1 17 19.77 16.28 18.53 9.00 17.53 3.14 

2 4 3.74 6.62 4.74 18.49 4.13 3.36 

3 31.7 23.38 26.25 26.91 15.11 30.32 4.36 

4 88.4 92.39 4.52 80.42 9.03 83.21 5.87 

5 85.6 124.82 45.82 102.59 19.85 88.51 3.40 

6 72.2 49.93 30.84 85.07 17.82 69.71 3.45 

7 136.9 191.60 39.96 111.25 18.74 144.43 5.50 

8 92.6 70.28 24.10 83.53 9.80 86.34 6.76 

9 46.7 60.23 28.97 46.27 0.93 46.87 0.37 

10 36.2 30.82 14.85 36.25 0.14 38.03 5.04 

11 35.9 26.06 27.40 32.01 10.84 33.46 6.80 

12 2.4 1.61 33.02 2.59 7.93 2.50 3.99 

13 6.2 5.86 5.43 5.36 13.55 6.53 5.25 

14 13 14.17 8.97 15.47 19.03 13.52 3.97 

15 11.3 13.65 20.82 11.60 2.69 10.86 3.88 

16 42.3 27.61 34.74 39.64 6.29 44.36 4.87 

17 76 48.78 35.82 84.05 10.59 71.39 6.06 

18 78.2 108.46 38.69 88.10 12.66 73.53 5.98 

19 168.8 216.88 28.48 192.01 13.75 173.04 2.51 

20 115.3 150.39 30.44 100.02 13.25 117.44 1.85 

21 70.9 53.51 24.53 75.49 6.47 74.81 5.51 

22 126.6 141.01 11.39 129.47 2.27 125.12 1.17 

23 28.6 17.69 38.15 32.66 14.21 27.97 2.21 

24 14.1 19.69 39.61 13.68 2.98 14.55 3.16 

25 14.5 16.92 16.66 14.20 2.05 14.92 2.87 

26 12.7 14.32 12.76 13.62 7.25 13.16 3.64 

27 33.3 27.87 16.30 39.93 19.91 31.94 4.09 

28 89.3 113.91 27.56 81.31 8.95 83.44 6.56 

29 63.1 71.58 13.44 67.13 6.38 59.36 5.92 

30 162.8 113.53 30.26 183.63 12.79 155.61 4.42 

31 139.7 100.42 28.12 159.97 14.51 132.41 5.22 

32 162.7 152.36 6.36 174.01 6.95 152.82 6.07 

33 241.7 299.75 24.02 221.76 8.25 240.16 0.64 

34 177.3 252.15 42.22 163.15 7.98 181.99 2.64 

35 7.8 10.42 33.59 7.88 0.97 7.61 2.47 

36 1.2 1.30 8.23 0.97 19.45 1.18 1.84 



 

 

37 59.9 47.65 20.45 67.63 12.91 62.06 3.61 

38 14.5 21.50 48.28 13.33 8.06 13.65 5.83 

39 22.6 29.79 31.81 23.36 3.35 24.03 6.35 

40 77.7 83.76 7.80 88.18 13.49 83.22 7.10 

41 231.1 207.00 10.43 220.46 4.60 217.30 5.97 

42 168.9 176.71 4.62 198.80 17.70 172.25 1.99 

43 49.5 28.33 42.77 48.08 2.88 47.03 5.00 

44 35.6 52.45 47.33 37.95 6.59 33.52 5.84 

45 60.4 60.52 0.20 49.71 17.70 61.32 1.52 

46 1.6 0.97 39.28 1.84 15.19 1.57 2.11 

47 36.8 36.94 0.38 36.66 0.38 39.47 7.26 

48 13 18.42 41.71 11.64 10.49 12.69 2.41 

49 19.3 9.80 49.25 15.83 17.99 17.92 7.16 

50 3.3 4.82 45.94 2.67 19.08 3.47 5.03 

51 3.9 3.79 2.84 3.68 5.75 3.80 2.58 

52 39.1 57.01 45.80 43.80 12.03 37.17 4.93 

53 23 24.04 4.54 19.85 13.69 23.06 0.24 

54 151.1 144.01 4.69 164.85 9.10 153.33 1.48 

55 94.5 74.20 21.48 86.60 8.36 100.26 6.10 

56 101.6 81.47 19.81 107.33 5.64 98.63 2.93 

57 67 55.83 16.66 79.18 18.17 65.06 2.90 

58 102 62.49 38.74 104.78 2.73 101.48 0.51 

59 3.7 2.38 35.60 3.17 14.40 3.45 6.67 

60 1.4 1.43 2.07 1.49 6.58 1.35 3.33 

Average relative 
error % 

24.29 10.30 4.06 

RMSE 22.52 9.81 3.72 

MAE 15.10 6.63 2.53 

R2 0.8591 0.9732 0.9960 

The statistical results of the evaluation criteria in Table 3 show that the combined 260 

model CEEMD-FCMSE-Stacking is much better than the single Stacking forecasting 261 

model, with a 15.94% improvement in the coefficient of goodness of fit R2 and 83.48% 262 

and 83.25% reductions in root mean square error RMSE and mean absolute error MAPE, 263 

respectively. The CEEMD-LSTM also achieves a certain level of fit, but not as good as 264 

the CEEMD-FCMSE-Stacking model at the peak points. Compared with the CEEMD-265 

LSTM model, the combined CEEMD-RCMSE-Stacking model improved the 266 

goodness-of-fit coefficient R2 by 2.34%, and reduced the root mean square error RMSE 267 



 

 

and mean absolute error MAPE by 62.08% and 61.84%. 268 

To improve the accuracy of medium- and long-term precipitation forecasts, this 269 

paper investigates the practicality and feasibility of the Stacking integrated learning 270 

model for runoff time series, constructs the CEEMD-FCMSE-Stacking prediction 271 

model, and verifies and compares the prediction effects of different models with the 272 

monthly precipitation data of the Xixia. The model performs well in precipitation 273 

forecasting tasks and is suitable for short-term precipitation forecasting with large 274 

seasonal fluctuations and for developing flood and drought plans, and can be used 275 

effectively for time series analysis in hydrology and related fields to mitigate the risk 276 

of climate extremes. 277 

4 Conclusion  278 

(1) To address the characteristics of intermittent and fluctuating precipitation, this 279 

paper introduces the CEEMD algorithm to decompose the precipitation series, which 280 

effectively reduces the non-smooth characteristics of the original series. At the same 281 

time, the CEEMD algorithm overcomes the possible modal confounding problem in 282 

EMD and provides a good basis for the Stacking model to make predictions. At the 283 

same time, the complexity of the CEEMD decomposition components is calculated 284 

using fine composite multiscale entropy, and they are restructured by FCMSE values, 285 

reducing the model complexity and computational scale.  286 

(2) The CEEMD-FCMSE-Stacking model is a better fit than the CEEMD-LSTM 287 

coupled neural network model for the location of abrupt changes in precipitation data, 288 

and is more reasonably detailed in terms of reflecting the true variability of the series. 289 



 

 

The mean relative error of 4.06%, RMSE and MAE of 3.72 and 2.53 respectively, are 290 

both low, and the coefficient of goodness of fit R2 of 0.9960 is very close to 1. The 291 

prediction accuracy is better than that of the CEEMD-LSTM model. The empirical 292 

results show that the model overcomes the limitations of the coupled model and 293 

substantially improves the generalization ability and accuracy of the precipitation 294 

prediction. 295 

(3) Although the overall prediction fitting degree of the established CEEMD-296 

RCMSE-Stacking model is relatively high, RMSE and MAE are relatively large. When 297 

selecting the base learner and meta-learning, conservative methods are used to select 298 

the simple learning methods that are common in recent years. There is no bold choice 299 

that has not been applied to the precipitation prediction method. In the subsequent work, 300 

further research will be carried out to improve the accuracy of the Stacking integrated 301 

learning model. 302 
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