Skip to main content
Log in

Quantification of life cycle advantages through increased expansion flexibility of self-organized baggage-handling systems

  • Original Paper
  • Published:
Logistics Research

Abstract

Baggage handling at airports is among the most complex tasks for material handling: Baggage handling systems form a large-scale conveying network connecting multiple sources and sinks. Also, they are used in a very dynamic environment: Many airports grow rapidly on average but have to absorb significant variance in passenger numbers at the same time. Therefore, baggage-handling systems that are flexible regarding expansions or modifications are desirable. This can be realized by using a highly modular approach with each module containing its own control. This results in self-organized systems, which are also known as the Internet of Things in facility logistics. However, it is necessary to quantify resulting advantages in monetary terms to compare them with additional costs like necessary RFID tags. In this paper, we analyze a conventional and two possible implementations of self-organized baggage handling systems for a reference airport on the base of all relevant life-cycle costs. To account for the dynamic nature of expansion flexibility, we use a dynamic programming approach. The data for the reference scenario was carefully collected by evaluating public and non-public sources and is provided in this paper. Results suggest that self-organized systems can decrease life-cycle costs of typical baggage handling systems, and that savings exceed the costs of necessary RFID tags.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The given formula is exact in case of a even number of MFC. For an uneven number of MFC there is a deviation of 0.5 connections, which gives a typical deviation in investment costs of about 100 euros.

  2. Like higher read rates, lower baggage losses, or an increased transparency of processes, cp. [22] and [73].

References

  1. Hallenborg K (2007) Decide: applying multi-agent design and decision logic to a baggage handling system. In: Weyns D, Brueckner S, Demazeau Y (eds) Engineering environment-mediated multiagent systems: satellite conference at the European conference on complex systems, pp 105–112

  2. Fraport AG (2007) Baggage management and infrastructure: Frankfurt/Main airport

  3. ten Hompel M, Follert G, Roidl M (2008) Künstliche Intelligenz im Internet der Dinge: Die Zukunft der Materialflusssteuerung mit autonomen Agenten. In: Wolf-Kluthausen H (eds) Jahrbuch Logistik 2008 (free Beratung GmbH, Korschenbroich, 2008), pp 24–29

  4. Dullinger KH (2006) Moderne Baggage Handling Systeme als Basis der Intralogistik auf Flughäfen. In: Arnold D (eds) Intralogistik: Potentiale, Perspektiven, Prognosen. Springer, Berlin Heidelberg New York

  5. Seemann A (2008) Flughafenlogistik–Wachstum ohne Grenzen? Logistik für Unternehmen (3):45–46

  6. Nagel L, Roidl M, Follert G (2008) The internet of things: on standardisation in the domain of intralogistics. In: Jakobs (ed) Internet of things 2008 Konferenz: Zürich 26.-28. März 2008

  7. Günthner W, Chisu R, Kuzmany F (2008) Internet der Dinge–Teil I: intelligent verteilt. F+H (7–8):422

  8. Günthner W, Chisu R, Kuzmany F (2008) Internet der Dinge–Teil II: Steuern ohne Hierarchie. F+H (9):494

  9. Mayer HS (2009) Development of a completely decentralized control system for modular continous conveyors. Ph.D. thesis, Universität Karlsruhe (TH)

  10. Sethi A, Sethi PS (1990) Flexibility in manufacturing: a survey. Int J Flex Manuf Syst (2):289

  11. Armbruster D, de Beer C, Freitag M, Jagalski T, Ringhofer C (2006) Autonomous control of production networks using a pheromone approach. Physica A 363:104

    Article  Google Scholar 

  12. Windt K, Hülsmann M (2007) Changing paradigms in logistics–understanding the shift from conventional control to autonomous cooperation and control. In: Hülsmann M, Windt K (eds) Understanding autonomous cooperation and control in logistics: the impact of autonomy on management, information, communication and material flow. Springer, Berlin Heidelberg New York, pp 1–16

  13. Furmans K, Mayer HS (2009) Neun Module im Versuchsbetrieb: Vollständig dezentraler und autonomer Flexförderer. Hebezeuge und Fördermittel 49(6):308

    Google Scholar 

  14. García A, McFarlane D, Fletcher M, Thorne A (2009) Auto-ID in materials handling: White Paper. Available online: http://www.autoidlabs.org/whitepapers/cam-autoid-wh013.pdf (last call April 25, 2010)

  15. Bullinger HJ, ten Hompel M (eds) (2007) Internet der Dinge: http://www.internet-der-dinge.de. Springer, Berlin Heidelberg New York

  16. ten Hompel M, Libert S, Sondhof U (2006) Dezentrale Steuerung für Materialflusssysteme am Beispiel von Stückgutförder- und Sortieranlagen. Logist J (4)

  17. Kohagen J (2008) Dezentrale Intelligenz. Logist inside (6):44

  18. Greenemeier L (2008) Artificial intelligence: robots rule when it comes to holiday shopping. Available online: http://www.scientificamerican.com/article.cfm?id=artificial-intelligence-robots-rule (last call April 25, 2010)

  19. Beumer (2009) Sortier- und verteilsysteme: Beumer autover system

  20. International Air Transport Association (IATA) (2007) IATA’s radio frequency ID (RFID) activities

  21. International Air Transport Association (IATA) (2007) RFID transition plan for baggage (2007)

  22. International Air Transport Association (IATA) (2007) RFID business case for baggage tagging

  23. Kelepouris T, Theodorou L, McFarlane D, Thorne A, Harrison M (2006) Track and trace requirements scoping. Aerospace ID (Auto-ID Labs), available online: http://www.aero-id.org/research_reports/AEROID-CAM-004-TrackTrace.pdf (last call April 25, 2010)

  24. Thorne A, Barrett D, McFarlane D (2007) Impact of RFID on aircraft turnaround processes. Aerospace ID (Auto-ID Labs), available online: http://www.aero-id.org/research_reports/AEROID-CAM-019-Operations.pdf (last call April 25, 2010)

  25. Corbey M (1991) Measurable economic consequences of investments in flexible capacity. Int J Prod Econ 23:47

    Article  Google Scholar 

  26. Nopper JR, ten Hompel (2009) Methodik zur Bewertung von Effizienzgewinnen durch erhöhte Flexibilität selbstorganisierter Systeme in der Intralogistik. Logist J (7)

  27. Günthner W, Heinecker M, Wilke M (2002) Materialflusssysteme für wandelbare Fabrikstrukturen. Ind Manag 18(5):8

    Google Scholar 

  28. Neumann K (1977) Operations Research Verfahren: Dynamische Optimierung, Lagerhaltung, Simulation, Warteschlangen. Carl Hanser Verlag, München Wien

  29. Fraport AG (2002) Fraport baggage management: reference model Frankfurt airport

  30. Fraport AG (2007) Luftverkehrsstatistik

  31. Fraport AG (2008) Luftverkehrsstatistik

  32. Fraport AG (2009) Monthly passenger figures at frankfurt airport

  33. Irrgang R (2005) 19. Jahrestagung airport logistics: high-tech und Innovationen für das Passagiergepäck. Logist Unternehm

  34. Flughafen München (2008) Statistischer Jahresbericht: Luftverkehrsstatistik

  35. Flughafen München (2010) Gepäckförderanlage. Available online: http://www.munich-airport.de/de/micro/t2bg/gebaeude/gfa/index.jsp?visit=visit_4347232 (last call April 25, 2010)

  36. Thien-Seitz U (2006) Münchner Statistik–Trends und Kennzahlen: Ab in die Wolken pp 20–22

  37. Incheon Airport (2010) Airport statistics. Available online: http://www.airport.kr/iiac/pds/sta/StaGeneral.iia?lang=E&yymm=200812&gubun=2 (last call April 25, 2010)

  38. Siemens (2009) Incheon international airport: a baggage handling system for Asia’s new hub

  39. Intraplan Consult GmbH (2005) Bedarfsprognose 2020 für den Flughafen München: Präsentation der Zwischenergebnisse im Nachbarschaftsbeirat

  40. Fraport AG (2005) Luftverkehrsstatistik

  41. Fraport AG (2006) Luftverkehrsstatistik

  42. Flughafen München (2000) Statistischer Jahresbericht: Luftverkehrsstatistik

  43. Flughafen München (2001) Statistischer Jahresbericht: Luftverkehrsstatistik

  44. Flughafen München (2002) Statistischer Jahresbericht: Luftverkehrsstatistik

  45. Flughafen München (2003) Statistischer Jahresbericht: Luftverkehrsstatistik

  46. Flughafen München (2004) Statistischer Jahresbericht: Luftverkehrsstatistik

  47. Flughafen München (2005) Statistischer Jahresbericht: Luftverkehrsstatistik

  48. Flughafen München (2006) Statistischer Jahresbericht: Luftverkehrsstatistik

  49. Flughafen München (2007) Statistischer Jahresbericht: Luftverkehrsstatistik

  50. Fraport AG (2001) Zahlen, Daten, Fakten zum Flughafen Frankfurt

  51. Fraport AG (2002) Zahlen, Daten, Fakten zum Flughafen Frankfurt

  52. Fraport AG (2003) Zahlen, Daten, Fakten zum Flughafen Frankfurt

  53. Fraport AG (2004) Zahlen, Daten, Fakten zum Flughafen Frankfurt

  54. Fraport AG (2005) Zahlen, Daten, Fakten zum Flughafen Frankfurt

  55. Fraport AG (2006) Zahlen, Daten, Fakten zum Flughafen Frankfurt

  56. Fraport AG (2007) Zahlen, Daten, Fakten zum Flughafen Frankfurt

  57. Fraport AG (2008) Zahlen, Daten, Fakten zum Flughafen Frankfurt

  58. Flughafen München (2010) Allgemeine Flughafendaten. Available online: http://www.munich-airport.de/de/company/facts/daten1/index.jsp?visit=visit_75021 (last call April 25, 2010)

  59. Flughafen München (2009) Ground handling: Zahlen 2008. Available online: http://www.munich-airport.de/de/micro/gh/zahlen/index.jsp (last call April 25, 2010)

  60. Flughafen München (2010) Daten zum Gebäude Terminal 2. Available online: http://www.munich-airport.de/de/micro/t2bg/facts/gebaeude/index.jsp (last call April 25, 2010)

  61. Fraport AG (2010) Prognose Luftverkehr. Available online: http://www.fraport.de/cms/entwicklung_frankfurt_airport/rubrik/2/2399.prognose_luftverkehr.htm (last call April 25, 2010)

  62. Airports Council International (2008) Preliminary world airport traffic

  63. Günthner W, Chisu R, Kuzmany F (2008) Internet der Dinge–Teil III: Zukunftstechnologie mit Kostenvorteil. F+H (10):556

  64. Fraport AG (2007) Geschäftsbericht

  65. Fraport AG (2008) Geschäftsbericht

  66. Fraport AG (2005) Konzernabschluss

  67. Fraport AG (2007) Präsentation Investor Day

  68. Flughafen München (2003) mySAP Business Intelligence bei der Flughafen München GmbH: SAP case study

  69. Schweigler C (2004) Effiziente Energieversorgung von Gebäuden mit Sorptionskälteanlagen und -wärmepumpen. Bayerisches Zentrum für angewandte Energieforschung e.V.

  70. Statistical Office of the European Commission (2009) Inflation rates Euro area 15 (fixed composition, manufacturing). http://www.sdw.ecb.int/browse.do?node=2120779

  71. Zhang T, Ouyang Y, He Y (2008) Traceable air baggage handling system based on rfid tags in the airport. J Theor Appl Electron Commer Res 3(1):106

    Google Scholar 

  72. Flughafen München (2007) Geschäftsbericht

  73. Michael K, McCathie L (2005) The pros and cons of RFID in supply chain management. Proc Int Conf Mob Bus

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan R. Nopper.

Additional information

This paper is a revision of a portion of the first author’s doctoral dissertation supervised by the second author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nopper, J.R., ten Hompel, M. Quantification of life cycle advantages through increased expansion flexibility of self-organized baggage-handling systems. Logist. Res. 2, 135–146 (2010). https://doi.org/10.1007/s12159-010-0032-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12159-010-0032-7

Keywords

Navigation