Skip to main content
Log in

Quantifying the impact of demand substitution on the bullwhip effect in a supply chain

  • Original Paper
  • Published:
Logistics Research

Abstract

In a supply chain, the distorted demand information when it goes upstream is commonly known as the bullwhip effect. In this paper, the impact of demand substitution on the bullwhip effect in a two-stage supply chain is investigated. In our model, a single retailer observes inventory levels for two products, among which product 1 can be used to substitute product 2. The retailer places orders to a single manufacturer following an order-up-to inventory policy and uses a simple moving average forecasting method to estimate the lead-time demand. The customers’ demands are modeled by an autoregressive process. By analyzing the bullwhip effect in such settings, quantitative relations between the bullwhip effect and the forecasting method, lead time, demand process, and the product substitution are obtained. Numerical results show that demand substitution can reduce the bullwhip effect in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The explicit technique details are shown in the Appendix.

  2. The explicit technique details are shown in the Appendix.

  3. Chen et al (2000a) oversimplified the situation to claim that for ρ < 0 the lower bound on the increase in variability will be large for odd values of p than for even values of p.

References

  1. Agrawal N, Smith SA (2003) Optimal retail assortments for substitutable items purchased in sets. Naval Res Logist 50(7):793–822

    Article  MATH  MathSciNet  Google Scholar 

  2. Bassok Y, Anupindi R, Akella R (1999) Single-period multiproduct inventory models with substitution. Oper Res 47(4):632–642

    Article  MATH  MathSciNet  Google Scholar 

  3. Bitran G, Dasu S (1992) Ordering policies in an environment of stochastic yields and substitutable demands. Oper Res 40(5):177–185

    Article  Google Scholar 

  4. Chen F, Drezner Z, Ryan JK, Simchi-Levi D (2000) Quantifying the bullwhip effect in a simple supply chain: the impact of forecasting, lead times, and information. Manage Sci 46(3):436–443

    Article  MATH  Google Scholar 

  5. Chen F, Ryan JK, Simchi-Levi D (2000) The impact of exponential smoothing forecasts on the bullwhip effect. Naval Res Logist 47(4):269–286

    Article  MATH  MathSciNet  Google Scholar 

  6. Drezner Z, Gurnani H (2000) Deterministic hierarchical substitution inventory models. J Oper Res Soc 51(1):129–133

    Article  MATH  Google Scholar 

  7. Drezner Z, Gurnani H, Pasternack BA (1995) An eoq model with substitutions between products. J Oper Res Soc 46(7):887–891

    Article  MATH  Google Scholar 

  8. Forrester J (1958) Industrial dynamics, a major breakthrough for decision makers. Harvard Bus Rev 36:37–66

    Google Scholar 

  9. Fuller JB, O’Connor J, Rawlinson R (1993) Tailored logistics: the next advantage. Harvard Bus Rev 71(3):87–98

    Google Scholar 

  10. Gilbert K (2005) An ARIMA supply chain model. Manag Sci 51(2):305–310

    Article  MATH  Google Scholar 

  11. Karaesmen I, van Ryzin G (2004) Overbooking with substitutable inventory classes. Oper Res 52(1):83–104

    Article  MATH  MathSciNet  Google Scholar 

  12. Lee HL, Padmanabhan V, Whang S (1997) The bullwhip effect in supply chains. MIT Sloan Manage Rev 38(38):93–102

    Google Scholar 

  13. Lee HL, Padmanabhan V, Whang S (1997) Information distortion in a supply chain: the bullwhip effect. Manage Sci 43(4):546–558

    Article  MATH  Google Scholar 

  14. Liu H, Wang P (2007) Bullwhip effect analysis in supply chain for demand forecasting technology. Syst Eng Theory Practice 27(7):26–33

    Article  Google Scholar 

  15. McGillivray AR, Silver EA (1978) Some concepts for inventory control under substitutable demand. Inf Syst Oper Res 16(1):47–63

    MATH  MathSciNet  Google Scholar 

  16. Metters R (1997) Quantifying the bullwhip effect in supply chains. J Oper Manage 15(2):89–100

    Article  Google Scholar 

  17. Netessine S, Rudi N (2003) Centralized and competitive inventory models with demand substitution. Oper Res 51(2):329–335

    Article  MATH  MathSciNet  Google Scholar 

  18. Parlar M, Goyal S (1984) Optimal ordering decisions for two substitutable products with stochastic demands. OPSEARCH 21:1–15

    MATH  Google Scholar 

  19. Rajaram K, Tang CS (2001) The impact of product substitution on retail merchandising. Eur J Oper Res 135(3):582–601

    Article  MATH  Google Scholar 

  20. Ryan JK (1997) Analysis of inventory models with limited demand information. PhD thesis, Northwestern University, Evanston, IL

  21. Zhang X (2004) The impact of forecasting methods on the bullwhip effect. Int J Prod Econ 88(1):15–27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueping Li.

Appendix

Appendix

1.1 The derivation process of E(Dt,i) and Var(Dt,i)

When the autoregressive demand process is stationary, we have E(Dt,i) = E(Dt−1,i) = E(Dt−2,i) = ⋯ = E(D i ) and Var(Dt,i) = Var(Dt−1,i) = Var(Dt−2,i) = ⋯ = Var(D i )

$$ \begin{aligned} D_{t,1} &=\mu_1+\rho_1D_{t-1,1}+\epsilon_{t,1}+\lambda D_{t,1}\\ (1-\lambda) D_{t,1} &=\mu_1+\rho_1D_{t-1,1}+\epsilon_{t,1} \end{aligned} $$
$$ \begin{aligned} (1-\lambda) E(D_{t,1})&=E(\mu_1)+\rho_1 E(D_{t-1,1})+E(\epsilon_{t,1})\\ (1-\lambda)E(D_{1})&=\mu_1+\rho_1 E(D_{1})+0 \\ E(D_{1})&= \frac{\mu_1}{1-\rho_1-\lambda} \end{aligned} $$
$$ \begin{aligned} (1-\lambda)^2 {\rm Var}(D_{t,1})&={\rm Var}(\mu_1)+{\rho_1}^2 {\rm Var}(D_{t-1,1})+{\rm Var}(\epsilon_{t,1}) \\ (1-\lambda)^2 {\rm Var}(D_{1})&=0+{\rho_1}^2 {\rm Var}(D_{1})+\sigma_1^2 \\ {\rm Var}(D_{1}) &= \frac{\sigma_1^2}{(1-\lambda)^2-\rho_1^2} \end{aligned} $$
$$ D_{t,2} = \mu_2+\rho_2D_{t-1,2}+\epsilon_{t,2}-\lambda D_{t,1} $$
$$ \begin{aligned} E(D_{t,2}) &=E(\mu_2)+\rho_2 E(D_{t-1,2})+E(\epsilon_{t,2})-\lambda E(D_{t,1})\\ E(D_{2}) &=\mu_2+\rho_2 E(D_{2})+0-\lambda E(D_{1}) \\ (1-\rho_2)E(D_{2}) &=\mu_2-\lambda \frac{\mu_1}{1-\rho_1-\lambda} \\ E(D_{t,2}) &= \frac{\mu_2(1-\rho_1-\lambda)-\lambda\mu_1}{(1-\rho_1-\lambda)(1-\rho_2)} \end{aligned} $$
$$ \begin{aligned} {\rm Var}(D_{t,2}) &={\rm Var}(\mu_2)+{\rho_2}^2 {\rm Var}(D_{t-1,2})+{\rm Var}(\epsilon_{t,2})-\lambda^2 {\rm Var}(D_{t,1})\\ {\rm Var}(D_{2}) &=0+{\rho_2}^2 var(D_{2})+{\sigma_2}^2-\lambda^2 {\rm Var}(D_{1}) \\ (1-\rho_2^2){\rm Var}(D_{2}) &={\sigma_2}^2-\lambda^2 \frac{\sigma_1^2}{(1-\lambda)^2-\rho_1^2} \\ {\rm Var}(D_{t,2})&=\frac{[(1-\lambda)^2-\rho_1^2]\sigma_2^2-\lambda^2\sigma_1^2}{[(1-\lambda)^2-\rho_1^2](1-\rho_2^2)} \end{aligned} $$

1.2 The derivation process of the further expression of qt,1

$$ \begin{aligned} q_{t,1}&=y_{t,1}-y_{t-1,1}+D_{t-1,1}\\ &=(\hat{D}_{t,1}^{L}+z_1\hat{\sigma}_{t,1}^L)-(\hat{D}_{t-1,1}^{L}+z_1\hat{\sigma}_{t-1,1}^L)+D_{t-1,1}\\ &=(\hat{D}_{t,1}^{L}-\hat{D}_{t-1,1}^{L})+D_{t-1,1}+z_1(\hat{\sigma}_{t,1}^L-\hat{\sigma}_{t-1,1}^L)\\ &=\frac{L}{p}\left(\sum_{i=1}^{p}D_{t-i,1}-\sum_{i=1}^{p}D_{t-1-i,1}\right)+D_{t-1,1}+z_1(\hat{\sigma}_{t,1}^L-\hat{\sigma}_{t-1,1}^L)\\ &=\frac{L}{p}(D_{t-1,1}-D_{t-p-1,1})+D_{t-1,1}+z_1(\hat{\sigma}_{t,1}^L-\hat{\sigma}_{t-1,1}^L)\\ &=(1+L/p)D_{t-1,1}-(L/p)D_{t-p-1,1}+z_1(\hat{\sigma}_{t,1}^L-\hat{\sigma}_{t-1,1}^L) \end{aligned} $$

1.3 The derivation process of the expression of Var(qt,1)

$$ \begin{aligned} {\rm Var}(q_{t,1})&={\rm Var}[(1+L/p)D_{t-1,1}-(L/p)D_{t-p-1,1}+z_1(\hat{\sigma}_{t,1}^L-\hat{\sigma}_{t-1,1}^L)]\\ &=(1+L/p)^2Var(D_{t-1,1})-2(L/p)(1+L/p)\times {\rm Cov}(D_{t-1,1},D_{t-p-1,1})\\ &\;\;\;\;\;+(L/p)^2Var(D_{t-p-1,1})+z_1^2Var(\hat{\sigma}_{t,1}^L-\hat{\sigma}_{t-1,1}^L)\\ &\;\;\;\;\;+2z_1(1+2L/p)\times {\rm Cov}(D_{t-1,1},\hat{\sigma}_{t,1}^{L})\\ &=\left(1+2\frac{L}{p}+2\frac{L^2}{p^2}\right){\rm Var}(D_{1})-\left(\frac{2L}{p}+\frac{2L^2}{p^2}\right) {\rm Cov}(D_{t-1,1},D_{t-p-1,1})\\ &\;\;\;\;\;+z_1^2Var(\hat{\sigma}_{t,1}^L-\hat{\sigma}_{t-1,1}^L)+2z_1(1+2L/p) {\rm Cov}(D_{t-1,1},\hat{\sigma}_{t,1}^{L}) \end{aligned} $$
(13)

To further simplify Equation 9, we need to calculate Cov(Dt-1,1Dt-p-1,1) and \(Cov(D_{t-1,1},\hat{\sigma}_{t,1}^{L})\)

$$ \begin{aligned} {\rm Cov}(D_{t-1,1},D_{t-p-1,1})&={\rm Cov}\left(\frac{1}{1-\lambda}(\mu_1+\rho_1D_{t-2,1}+\epsilon_{t,1}),D_{t-p-1,1}\right)\\ &=\underbrace{{\rm Cov}\left(\frac{\mu_1}{1-\lambda},D_{t-p-1,1}\right)}_{=0}+\frac{\rho_1}{1-\lambda}{\rm Cov}(D_{t-2,1},D_{t-p-1,1})\\ &\;\;\;\;\;+\frac{1}{1-\lambda}\underbrace{{\rm Cov}(\epsilon_{t,1},D_{t-p-1,1})}_{=0}\\ &=\frac{\rho_1}{1-\lambda}{\rm Cov}(D_{t-2,1},D_{t-p-1,1})\\ &\vdots\\ &=\left(\frac{\rho_1^p}{(1-\lambda)^p}\right){\rm Cov}(D_{t-p-1,1},D_{t-p-1,1})\\ &=\frac{\rho_1^p}{(1-\lambda)^p}{\rm Var}(D_{1}) \end{aligned} $$
(14)

Note that \(Cov(\frac{\mu_1}{1-\lambda},D_{t-p-1,1})=0\), because \(\frac{\mu_1}{1-\lambda}\) is a constant (Cov(X,a) = 0). \(Cov(\epsilon_{t,1},D_{t-p-1,1})=0\), because \(\epsilon_{t,1},D_{t-p-1,1}\) are independent from each other.

Ryan [20] proved the following result that can further simplify Equation 9. Assume the customer demands seen by a retailer are random variables of the form as \(D_{t}=\mu+\rho D_{t-1}+\epsilon_{t}\) and the error terms \(\epsilon_t\) are i.i.d. from a symmetric distribution with mean 0 and variance σ2. Let the estimate of the standard deviation of forecast error of lead-time demand be \(\hat{\sigma}_t^L=C_{L,\rho}\sqrt{\frac{\sum_{i=j}^p(D_{t-j}-\hat{D}_{t-j})^2}{p}},\) then

$$ {\rm Cov}(D_{t-j},\hat{\sigma}_t^L)=0, \forall i=1,\ldots,p. $$
(15)

By applying the results of Equation 28 and Equation 29, the expression about Var(qt,1) can be further simplified.

$$ \begin{aligned} {\rm Var}(q_{t,1})&=\left(1+2\frac{L}{p}+2\frac{L^2}{p^2}\right){\rm Var}(D_{1})-\left(\frac{2L}{p}+\frac{2L^2}{p^2}\right){\rm Cov}(D_{t-1,1},D_{t-p-1,1})\\ &\;\;\;\;\;+z_1^2Var(\hat{\sigma}_{t,1}^L-\hat{\sigma}_{t-1,1}^L)+2z_1(1+2L/p){\rm Cov}(D_{t-1,1},\hat{\sigma}_{t,1}^{L})\\ &=\left(1+2\frac{L}{p}+2\frac{L^2}{p^2}\right){\rm Var}(D_{1})-\left(\frac{2L}{p}+\frac{2L^2}{p^2}\right)\frac{\rho_1^p}{(1-\lambda)^p}{\rm Var}(D_{1})\\ &\;\;\;\;\;+z_1^2Var(\hat{\sigma}_{t,1}^L-\hat{\sigma}_{t-1,1}^L)+0\\ &={\rm Var}(D_1)\left[1+\left(\frac{2L}{p}+\frac{2L^2}{p^2}\right)\left(1-\frac{\rho_1^p}{(1-\lambda)^p}\right)\right]+z_1^2Var(\hat{\sigma}_{t,1}^L-\hat{\sigma}_{t-1,1}^L) \end{aligned} $$
(16)

1.4 The derivation process of the further expression of qt,2

$$ \begin{aligned} q_{t,2}&=y_{t,2}-y_{t-1,2}+D_{t-1,2} \\ &=(\hat{D}_{t,2}^{L}+z_1\hat{\sigma}_{t,2}^L)-(\hat{D}_{t-1,2}^{L}+z_1\hat{\sigma}_{t-1,2}^L)+D_{t-1,2}\\ &=(\hat{D}_{t,2}^{L}-\hat{D}_{t-1,2}^{L})+D_{t-1,2}+z_2(\hat{\sigma}_{t,2}^L-\hat{\sigma}_{t-1,2}^L)\\ &=\frac{L}{p}\left(\sum_{i=1}^{p}D_{t-i,2}-\sum_{i=1}^{p}D_{t-1-i,2}\right)+D_{t-1,2}+z_2(\hat{\sigma}_{t,2}^L-\hat{\sigma}_{t-1,2}^L) \\ &=\frac{L}{p}(D_{t-1,2}-D_{t-p-1,2})+D_{t-1,2}+z_2(\hat{\sigma}_{t,2}^L-\hat{\sigma}_{t-1,2}^L) \\ &=(1+L/p)D_{t-1,2}-(L/p)D_{t-p-1,2}+z_2(\hat{\sigma}_{t,2}^L-\hat{\sigma}_{t-1,2}^L) \end{aligned} $$

1.5 The derivation process of the expression of Var(qt,2)

$$ \begin{aligned} {\rm Var}(q_{t,2})&={\rm Var}[(1+L/p)D_{t-1,2}-(L/p)D_{t-p-1,2}+z_2(\hat{\sigma}_{t,2}^L-\hat{\sigma}_{t-1,2}^L)]\\ &=(1+L/p)^2Var(D_{t-1,2})-2(L/p)(1+L/p)\times {\rm Cov}(D_{t-1,2},D_{t-p-1,2})\\ &\;\;\;\;\;+(L/p)^2Var(D_{t-p-1,2})+z_2^2Var(\hat{\sigma}_{t,2}^L-\hat{\sigma}_{t-1,2}^L)\\ &\;\;\;\;\;+2z_2(1+2L/p)\times {\rm Cov}(D_{t-1,2},\hat{\sigma}_{t,2}^{L})\\ &=\left(1+2\frac{L}{p}+2\frac{L^2}{p^2}\right){\rm Var}(D_{2})-\left(\frac{2L}{p}+\frac{2L^2}{p^2}\right){\rm Cov}(D_{t-1,2},D_{t-p-1,2})\\ &\;\;\;\;\;+z_2^2Var(\hat{\sigma}_{t,2}^L-\hat{\sigma}_{t-1,2}^L)+\underbrace{2z_2(1+2L/p){\rm Cov}(D_{t-1,2},\hat{\sigma}_{t,2}^{L})}_{=0} \end{aligned} $$
(17)

Now we calculate Cov(Dt-1,2Dt-p-1,2)

$$ \begin{aligned} {\rm Cov}(D_{t-1,2},D_{t-p-1,2})&={\rm Cov}(\mu_2+\rho_2D_{t-2,2}+\epsilon_{t-1,2}-\lambda D_{t-1,1},D_{t-p-1,2})\\ &=\underbrace{{\rm Cov}(\mu_2,D_{t-p-1,2})}_{=0}+\rho_2Cov(D_{t-2,2},D_{t-p-1,2})\\ &\;\;\;\;\;+\underbrace{{\rm Cov}(\epsilon_{t-1,2},D_{t-p-1,2})}_{=0}-\lambda {\rm Cov}(D_{t-1,1},D_{t-p-1,2})\\ &=\rho_2Cov(D_{t-2,2},D_{t-p-1,2})-\lambda {\rm Cov}(D_{t-1,1},D_{t-p-1,2})\\ &\vdots \\ &=\rho_2^pVar(D_2)-\lambda\sum_{i=0}^{p-1}\rho_2^iCov(D_{t-1-i,1},D_{t-p-1,2}) \end{aligned} $$

We assume that the covariance is only affected by the number of periods which are taken into consideration. That is

$$ \begin{aligned} {\rm Cov}(D_{t,1},D_{t-p,2})&={\rm Cov}(D_{t-1,1},D_{t-p-1,2})\\ D_{t,1}&=\frac{1}{1-\lambda}(\mu_1+\rho_1D_{t-1,1}+\epsilon_{t,1}) \\ D_{t-p,2}&=\mu_2+\rho_2D_{t-p-1,2}+\epsilon_{t-p,2}-\lambda D_{t-p,1} \\ {\rm Cov}(D_{t,1},D_{t-p,2})&={\rm Cov}(\frac{1}{1-\lambda}(\mu_1+\rho_1D_{t-1,1}+\epsilon_{t,1}),\mu_2+\rho_2D_{t-p-1,2}+\epsilon_{t-p,2}-\lambda D_{t-p,1}) \\ &=\frac{\rho_1\rho_2}{1-\lambda}{\rm Cov}(D_{t-1,1},D_{t-p-1,2})-\frac{\lambda\rho_1}{1-\lambda}{\rm Cov}(D_{t-1,1},D_{t-p,1}) \\ {\rm Cov}(D_{t-1,1},D_{t-p-1,2})&=\frac{\rho_1\rho_2}{1-\lambda}{\rm Cov}(D_{t-1,1},D_{t-p-1,2})-\frac{\lambda\rho_1}{1-\lambda}{\rm Cov}(D_{t-1,1},D_{t-p,1}) \\ {\rm Cov}(D_{t-1,1},D_{t-p-1,2})&=\frac{-\lambda(1-\lambda)\rho_1^p}{(1-\lambda-\rho_1\rho_2)(1-\lambda)^{p}}{\rm Var}(D_{1}) \\ {\rm Cov}(D_{t-2,1},D_{t-p-1,2})&=\frac{-\lambda(1-\lambda)\rho_1^{p-1}}{(1-\lambda-\rho_1\rho_2)(1-\lambda)^{p-1}}{\rm Var}(D_{1}) \\ &\vdots \\ {\rm Cov}(D_{t-i,1},D_{t-p-1,2})&=\frac{-\lambda(1-\lambda)\rho_1^{p-i+1}}{(1-\lambda-\rho_1\rho_2)(1-\lambda)^{p-i+1}}{\rm Var}(D_{1}) \\ &\vdots \\ {\rm Cov}(D_{t-i,1},D_{t-p-1,2})&=\frac{-\lambda(1-\lambda)\rho_1^{2}}{(1-\lambda-\rho_1\rho_2)(1-\lambda)^{2}}{\rm Var}(D_{1}) \end{aligned} $$

Thus

$$ \begin{aligned} {\rm Cov}(D_{t-1,2},D_{t-p-1,2})&=\rho_2^pVar(D_2)-\lambda {\rm Cov}(D_{t-1,1},D_{t-p-1,2})\sum_{i=0}^{p}\rho_2^i \left(\frac{1-\lambda}{\rho_1}\right)^{i}\\ &=\rho_2^pVar(D_2)-\lambda\sum_{i=0}^{p}\rho_2^iCov(D_{t-1-i,1},D_{t-p-1,2}) \\ &=\rho_2^pVar(D_2)+\frac{\lambda^2(1-\lambda){\rm Var}(D_1)}{(1-\lambda-\rho_1\rho_2)}\sum_{i=0}^{p-1}\left(\frac{\rho_2^{i}\rho_1^{p-i+1}}{(1-\lambda)^{p-i+1}}\right) \end{aligned} $$

Substitute the above equation to Eq. 17, we have

$$ \begin{aligned} {\rm Var}(q_{t,2})&=\left(1+2\frac{L}{p}+2\frac{L^2}{p^2}\right){\rm Var}(D_{2})-\left(\frac{2L}{p}+\frac{2L^2}{p^2}\right){\rm Cov}(D_{t-1,2},D_{t-p-1,2})\\ &\;\;\;\;\;+z_2^2Var(\hat{\sigma}_{t,2}^L-\hat{\sigma}_{t-1,2}^L)\\ &=\left(1+2\frac{L}{p}+2\frac{L^2}{p^2}\right){\rm Var}(D_{2})-\left(\frac{2L}{p}+\frac{2L^2}{p^2}\right)\rho_2^pVar(D_2)\\ &\;\;\;\;\;-\left(\frac{2L}{p}+\frac{2L^2}{p^2}\right)\frac{\lambda^2(1-\lambda){\rm Var}(D_1)}{(1-\lambda-\rho_1\rho_2)}\sum_{i=0}^{p-1}\left(\frac{\rho_2^{i}\rho_1^{p-i+1}}{(1-\lambda)^{p-i+1}}\right)\\ &\;\;\;\;\;+z_2^2Var(\hat{\sigma}_{t,2}^L-\hat{\sigma}_{t-1,2}^L) \end{aligned} $$
(18)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Song, L. & Zhao, Z. Quantifying the impact of demand substitution on the bullwhip effect in a supply chain. Logist. Res. 3, 221–232 (2011). https://doi.org/10.1007/s12159-011-0060-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12159-011-0060-y

Keywords

Navigation