Skip to main content
Log in

How do production systems in biological cells maintain their function in changing environments?

  • Original Article
  • Published:
Logistics Research

Abstract

Metabolism is a fascinating natural production and distribution process. Metabolic systems can be represented as a layered network, where the input layer consists of all the nutrients in the environment (raw materials entering the production process in the cell), subsequently to be processed by a complex network of biochemical reactions (middle layer) and leading to a well-defined output pattern, optimizing, for example, cell growth. Mathematical frameworks exploiting this layered-network representation of metabolism allow the prediction of metabolic fluxes (the cell’s ‘material flow’) under diverse conditions. In combination with suitable minimal models, it is possible to identify fundamental design principles and understand the efficiency and robustness of metabolic systems. Here, we summarize some design principles of metabolic systems from the perspective of production logistics and explore, how these principles can serve as templates for the design of robust manufacturing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Becker T, Beber M, Windt K, Hütt M, Helbing D (2011) Flow control by periodic devices: a unifying language for the description of traffic, production, and metabolic systems. J Stat Mech Theory Exp 2011:P05004

    Article  Google Scholar 

  2. Kitano H (2002) Computational systems biology. Nature 420(6912):206–210

    Article  Google Scholar 

  3. Palsson B (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Kholodenko B (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176

    Article  Google Scholar 

  5. Demeester L, Eichler K, Loch CH (2004) Organic production systems: what the biological cell can teach us about manufacturing. Manuf Serv Oper Manag 6(2): 115–132

    Article  Google Scholar 

  6. Armbruster D, Kaneko K, Mikhailov AS (eds) (2005) Networks of interacting machines: production organization in complex industrial systems and biological cells. World scientific lecture notes in complex systems, vol 3. World Scientific, Singapore. http://dx.doi.org/10.1142/9789812703248_fmatter

  7. Helbing D, Deutsch A, Diez S, Peters K, Kalaidzidis Y, Padberg-Gehle K, Lämmer S, Johansson A, Breier G, Schulze F et al (2009) Biologistics and the struggle for efficiency: concepts and perspectives. Adv Complex Syst 12(6):533–548

    Article  Google Scholar 

  8. Beber M, Windt K, Hütt MT (2011) Production research on metabolic systems. In Spath D, Ilg R, Krause T (eds) International conference on production research (ICPR 21): innovation in product and production July 31–August 4, 2011 in Stuttgart, Fraunhofer-Verlag

  9. Beber ME, Armbruster D, Hütt MT (2012) Pattern complexity regulates modularity of flow networks. Phys Rev E (submitted)

  10. Ueda K, Vaario J, Ohkura K (1997) Modelling of biological manufacturing systems for dynamic reconfiguration. CIRP Ann Manuf Technol 46(1):343–346

    Article  Google Scholar 

  11. Ueda K, Kito T, Fujii N (2006) Modeling biological manufacturing systems with bounded-rational agents. CIRP Ann Manuf Technol 55(1):469–472

    Article  Google Scholar 

  12. Ueda K, Markus A, Monostori L, Kals HJJ, Arai T (2001) Emergent synthesis methodologies for manufacturing. CIRP Ann Manuf Technol 50(2):535–551

    Article  Google Scholar 

  13. Smith J, Hütt M (2010) Network dynamics as an interface between modeling and experiment in systems biology. In: Tretter F, Gebicke-Haerter PJ, Mendoza ER, Winterer G (eds) Systems biology in psychiatric research: from high-throughput data to mathematical modeling. Wiley, New York, pp 234–276

    Google Scholar 

  14. Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotech 12(10):994–998

    Article  Google Scholar 

  15. Price ND, Reed JL, Palsson BØ (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886–897

    Article  Google Scholar 

  16. Sonnenschein N, Geertz M, Muskhelishvili G, Hütt MT (2011) Analog regulation of metabolic demand. BMC Syst Biol 5(1):40

    Article  Google Scholar 

  17. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113

    Article  Google Scholar 

  18. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  Google Scholar 

  19. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL (2000) The large-scale organization of metabolic networks. Nature 407(6804):651–654

    Article  Google Scholar 

  20. Ma H, Zeng A (2003) The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 19(11):1423–1430

    Article  Google Scholar 

  21. Arita M (2004) The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci USA 101(6):1543–1547

    Article  Google Scholar 

  22. Erdős P, Rényi A (1959) On random graphs i. Publ Math (Debrecen) 6:290

    MathSciNet  Google Scholar 

  23. Becker T, Beber ME, Meyer M, Windt K, Hütt MT (2012) A comparison of network characteristics in metabolic and manufacturing systems. In: 3rd international conference on dynamics in logistics—LDIC 2012, Springer, New York

  24. Ravasz E, Somera AL., Monaru DA, Oltvai ZN, Barabási A (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555

    Article  Google Scholar 

  25. Beber M, Fretter C, Jain S, Müller-Hannemann M, Hütt MT (2012) Artefacts in statistical analyses of network motifs. Proc Roy Soc Interface. doi:10.1098/rsif.2012.0490

  26. Papp B, Teusink B, Notebaart RA (2009) A critical view of metabolic network adaptations. HFSP J 3(1):24–35

    Article  Google Scholar 

  27. Basler G, Grimbs S, Ebenhöh O, Selbig J, Nikoloski Z (2011) Evolutionary significance of metabolic network properties. J R Soc Interface 9(71):1168–1176

    Article  Google Scholar 

  28. Handorf T, Ebenhoh O, Heinrich R (2005) Expanding metabolic networks: scopes of compounds, robustness, and evolution. J Mol Evol 61(4):498–512

    Article  Google Scholar 

  29. Riehl WJ, Krapivsky PL, Redner S, Segrè D (2010) Signatures of arithmetic simplicity in metabolic network architecture. Plos Comput Biol 6(4):e1000725

    Article  Google Scholar 

  30. Noor E, Eden E, Milo R, Alon U (2010) Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Mol Cell 39(5):809–820

    Article  Google Scholar 

  31. Maslov S, Krishna S, Pang T, Sneppen K (2009) Toolbox model of evolution of prokaryotic metabolic networks and their regulation. Proc Natl Acad Sci USA 106(24):9743

    Google Scholar 

  32. Zhu Q, Qin T, Jiang YY, Ji C, Kong DX, Ma BG, Zhang HY (2011) Chemical basis of metabolic network organization. PLoS Comput Biol 7(10):e1002214

    Article  Google Scholar 

  33. Suthers PF, Zomorrodi A, Maranas CD Genome-scale gene/reaction essentiality and synthetic lethality analysis. 5:1–17

  34. Behre J, Wilhelm T, von Kamp A, Ruppin E, Schuster S (2008) Structural robustness of metabolic networks with respect to multiple knockouts. J Theor Biol 252(3):433–441

    Article  Google Scholar 

  35. Marr C, Müller-Linow M, Hütt MT (2007) Regularizing capacity of metabolic networks. Phys Rev E Stat Nonlin Soft Matter Phys 75(4 Pt 1):041917

    Google Scholar 

  36. Borenstein E, Kupiec M, Feldman MW, Ruppin E (September 2008) Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc Natl Acad Sci USA 105(38):14482–14487

    Google Scholar 

  37. Takemoto K, Nacher JC, Akutsu T (2007) Correlation between structure and temperature in prokaryotic metabolic networks. BMC Bioinform 8(1):303

    Article  Google Scholar 

  38. Takemoto K, Akutsu T (2008) Origin of structural difference in metabolic networks with respect to temperature. BMC Syst Biol 2(1):82

    Article  Google Scholar 

  39. Basler G, Ebenhöh O, Selbig J, Nikoloski Z (2011) Mass-balanced randomization of metabolic networks. Bioinformatics 27(10):1397–1403

    Article  Google Scholar 

  40. Fong SS, Palsson BØ (2004) Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat Genet 36(10):1056–1058

    Article  Google Scholar 

  41. Segrè D, Vitkup D, Church G (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA 99(23):15112–15117

    Article  Google Scholar 

  42. Motter AE, Gulbahce N, Almaas E, Barabási AL (2008) Predicting synthetic rescues in metabolic networks. Mol Syst Biol 4:1–10

    Article  Google Scholar 

  43. Kim DH, Motter AE (2009) Slave nodes and the controllability of metabolic networks. New J Phys 11(11):113047

    Article  Google Scholar 

  44. Windt K, Hütt M, Meyer M (2011) A modeling approach to analyze redundancy in manufacturing systems. In ElMaraghy HA (ed) Enabling manufacturing competitiveness and economic sustainability: proceedings of the 4th international conference on changeable, agile, reconfigurable and virtual production (CARV2011), Springer, New York, pp 493–498

  45. Kaluza P, Mikhailov AS (2007) Evolutionary design of functional networks robust against noise. Europhys Lett 79(4):48001

    Article  Google Scholar 

  46. Kaluza P, Ipsen M, Vingron M, Mikhailov A (2007) Design and statistical properties of robust functional networks: a model study of biological signal transduction. Phys Rev E 75(1):15101

    Article  Google Scholar 

  47. Kaluza P, Vingron M, Mikhailov A (2008) Self-correcting networks: function, robustness, and motif distributions in biological signal processing. Chaos 18(2):026113

    Article  MathSciNet  Google Scholar 

  48. Famili I, Forster J, Nielsen J, Palsson BØ (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci USA 100(23):13134–13139

    Article  Google Scholar 

  49. Nam H, Conrad TM, Lewis NE (2011) The role of cellular objectives and selective pressures in metabolic pathway evolution. Curr Opin Biotechnol 22(4):595–600

    Article  Google Scholar 

  50. Eom YH, Lee S, Jeong H (2006) Exploring local structural organization of metabolic networks using subgraph patterns. J Theor Biol 241(4):823–829

    Article  MathSciNet  Google Scholar 

  51. Nyhuis P, Wiendahl H (2008) Fundamentals of production logistics: theory, tools and applications. Springer, New York

    Google Scholar 

  52. Stange P, Mikhailov AS, Hess B (1998) Mutual synchronization of molecular turnover cycles in allosteric enzymes. J Phys Chem B 102(32):6273–6289

    Article  Google Scholar 

  53. Casagrande V, Togashi Y, Mikhailov A (2007) Molecular synchronization waves in arrays of allosterically regulated enzymes. Phys Rev Lett 99(4):48301

    Article  Google Scholar 

  54. Lämmer S, Kori H, Peters K, Helbing D (2006) Decentralised control of material or traffic flows in networks using phase-synchronisation. Phys A Stat Mech Appl 363(1):39–47

    Article  Google Scholar 

  55. Lämmer S, Helbing D (2008) Self-control of traffic lights and vehicle flows in urban road networks. J Stat Mech Theory Exp (JSTAT) 2008:P04019

    Article  Google Scholar 

  56. Fretter C, Krumov L, Weihe K, Müller-Hannemann M, Hütt M (2010) Phase synchronization in railway timetables. Eur Phys J B 77:281–289

    Article  Google Scholar 

  57. Sonnenschein N, Marr C, Hütt M-T (2012) A topological characterization of medium-dependent essential metabolic reactions. Metabolites 2(3):632–647

    Google Scholar 

  58. Marr C, Theis F, Liebovitch L, Hütt M (2010) Patterns of subnet usage reveal distinct scales of regulation in the transcriptional regulatory network of Escherichia coli. PLoS Comput Biol 6(7):e1000836

    Article  Google Scholar 

  59. Lorenz J, Battiston S, Schweitzer F (2009) Systemic risk in a unifying framework for cascading processes on networks. Eur Phys J B 71:441–460

    Article  MATH  MathSciNet  Google Scholar 

  60. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461

    Article  Google Scholar 

  61. Brandman O, Meyer T (2008) Feedback loops shape cellular signals in space and time. Science 322(5900):390–395

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

MEB is supported by a Deutsche Forschungsgemeinschaft grant to MTH (grant HU-937/6). We are indebted to Nikolaus Sonnenschein (San Diego, USA) for providing his expertise on flux-balance analysis. We gratefully acknowledge discussions and close collaboration with Katja Windt (Bremen, Germany) on the parallels of metabolism and manufacturing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Emanuel Beber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beber, M.E., Hütt, MT. How do production systems in biological cells maintain their function in changing environments?. Logist. Res. 5, 79–87 (2012). https://doi.org/10.1007/s12159-012-0090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12159-012-0090-0

Keywords

Navigation