Skip to main content
Log in

An inverse source problem for pseudo-parabolic equation with Caputo derivative

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider an inverse source problem for a fractional pseudo-parabolic equation. We show that the problem is severely ill-posed (in the sense of Hadamard) and the Tikhonov regularization method is proposed to solve the problem. In addition, we present numerical examples to illustrate applicability and accuracy of the proposed method to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beshtokov, M.K.: Boundary value problems for a pseudoparabolic equation with the Caputo fractional derivative. Differ. Equ. 55(7), 884–893 (2019). https://doi.org/10.1134/s0012266119070024

    Article  MathSciNet  MATH  Google Scholar 

  2. Herrmann, R.: Common aspects of deformed Lie algebras and fractional calculus. Phys. A: Stat. Mech. Appl. 389(21), 4613–4622 (2010). https://doi.org/10.1016/j.physa.2010.07.004

    Article  MathSciNet  Google Scholar 

  3. Hilfer, R.: Fractional diffusion based on Riemann–Liouville fractional derivatives. J. Phys. Chem. B (2000). https://doi.org/10.1021/jp9936289

    Article  MATH  Google Scholar 

  4. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problem. Applied Mathematical Sciences, 2nd edn. Springer, New York (2019). https://doi.org/10.1007/978-1-4419-8474-6

    Book  Google Scholar 

  5. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V, Amsterdam (2006)

    MATH  Google Scholar 

  6. Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag–Leffler function and generalized fractional calculus operators. Integral Transforms Spec. Funct. 15(1), 31–49 (2004). https://doi.org/10.1080/10652460310001600717

    Article  MathSciNet  MATH  Google Scholar 

  7. Kiryakova, V.: Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics 301. Longman, Harlow (1994)

    Google Scholar 

  8. Marras, M., Vernier-Piro, S., Viglialoro, G.: Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term. Discrete Contin. Dyn. Syst. B 22(6), 2291–2300 (2017). https://doi.org/10.3934/dcdsb.2017096

    Article  MathSciNet  MATH  Google Scholar 

  9. Musalhi, F.S.A., Nasser, S.A.S., Erkinjon, K.: Initial and boundary value problems for fractional differential equations involving Atangana–Baleanu derivative. SQU J. Sci. 23(2), 137–146 (2018). https://doi.org/10.24200/squjs.vol23iss2pp137-146

    Article  Google Scholar 

  10. Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Fractional calculus of variations in terms of a generalized fractional integral with applications to physics. Abstr. Appl. Anal. 2012, Special Issue, Article ID 871912 (2012). https://doi.org/10.1155/2012/871912

  11. Podlubny, I.: Fractional Diffusion Equation, Mathematics in Science and Engineering. Academic Press, New York (1999)

    MATH  Google Scholar 

  12. Rundell, W.: Determination of an unknown nonhomogeneous term in a linear partial differential equation from overspecified boundary data. Appl. Anal. 10, 231–242 (1980). https://doi.org/10.1080/00036818008839304

    Article  MathSciNet  MATH  Google Scholar 

  13. Ruzhansky, M., Tokmagambetov, N.: Nonharmonic analysis of boundary value problems. Int. Math. Res. Not. 12, 3548–3615 (2016). https://doi.org/10.1093/imrn/rnv243

    Article  MathSciNet  MATH  Google Scholar 

  14. Ruzhansky, M., Tokmagambetov, N.: Nonharmonic analysis of boundary value problems without WZ condition. Math. Model. Nat. Phenom. 12(1), 115–140 (2017). https://doi.org/10.1051/mmnp/201712107

    Article  MathSciNet  MATH  Google Scholar 

  15. Ruzhansky, M., Tokmagambetov, N., Torebek, B.T.: On a non-local problem for a multi-term fractional diffusion-wave equation. Fract. Calc. Appl. Anal. 23(2), 324–355 (2020). https://doi.org/10.1515/fca-2020-0016

    Article  MathSciNet  MATH  Google Scholar 

  16. Ruzhansky, M., Tokmagambetov, N., Torebek, B.: Inverse source problems for positive operators. I. Hypoelliptic diffusion and subdiffusion equations. J. Inverse Ill-Posed Probl. 27(6), 891–911 (2019). https://doi.org/10.1515/jiip-2019-0031

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018). https://doi.org/10.1016/j.cnsns.2018.04.019

    Article  MATH  Google Scholar 

  18. Tatar, S., Tinaztepe, R., Ulusoy, S.: Determination of an unknown source term in a space–time fractional diffusion equation. J. Fract. Calc. Appl. 6(1), 83–90 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Tuan, N.H., Zhou, Y., Can, N.H.: Identifying inverse source for fractional diffusion equation with Riemann–Liouville derivative. Comput. Appl. Math. 39(2), 1–16 (2020). https://doi.org/10.1007/s40314-020-1103-2

    Article  MathSciNet  MATH  Google Scholar 

  20. Tuan, N.H., Huynh, L.N., Baleanu, D., Can, N.H.: On a terminal value problem for a generalization of the fractional diffusion equation with hyper-Bessel operator. Math. Methods Appl. Sci. 43(6), 2858–2882 (2019). https://doi.org/10.1002/mma.6087

    Article  MathSciNet  MATH  Google Scholar 

  21. Tuan, N.H., Baleanu, D., Thach, T.N., O’Regan, D., Can, N.H.: Final value problem for nonlinear time fractional reaction–diffusion equation with discrete data. J. Comput. Appl. Math. (2020). https://doi.org/10.1016/j.cam.2020.112883

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Huu Can.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, L.D., Luc, N.H., Tatar, S. et al. An inverse source problem for pseudo-parabolic equation with Caputo derivative. J. Appl. Math. Comput. 68, 739–765 (2022). https://doi.org/10.1007/s12190-021-01546-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01546-5

Keywords

Mathematics Subject Classification

Navigation