Skip to main content
Log in

A meshless method for solving nonlinear variable-order fractional Ginzburg–Landau equations on arbitrary domains

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Meshless method is an effective method to solve many kinds of equations on arbitrary domains. However, previous meshless techniques, such as moving least square method, radious basis function method, and element free Galerkin method, often have complex shape functions, which make the ill-condition of the equation increase along with the adding of control points. In order to overcome above shortcomings, in this paper, we construct a new meshless method for solving nonlinear variable order fractional Ginzburg–Landau equation. The method uses the bases of bicubic spline space as shape functions and applies continuation technique to make the operation simple and the calculation accelerated. Eventually, numerical examples demonstrate that our method can obtain higher accuracy and efficiency even though the step size is larger than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Osman, M.S., Ghanbari, B., Machado, J.A.T.: New complex waves in nonlinear optics based on the complex Ginzburg–Landau equation with Kerr law nonlinearity. Eur. Phys. J. Plus 134, 20 (2019)

    Google Scholar 

  3. Fang, J.J., Mou, D.S., Wang, Y.Y., Zhang, H.C., Dai, C.Q., Chen, Y.X.: Soliton dynamics based on exact solutions of conformable fractional discrete complex cubic Ginzburg–Landau equation. Results Phys. 20, 103710 (2021)

    Google Scholar 

  4. Yang, Y., Shu, J., Wang, X.: Wong–Zakai approximations and random attractors of non-autonomous stochastic discrete complex Ginzburg–Landau equations. J. Math. Phys. 62, 062701 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Ouahid, L., Owyed, S., Abdou, M.A., Alshehri, N.A., Elagan, S.K.: New optical soliton solutions via generalized Kudryashov’s scheme for Ginzburg–Landau equation in fractal order. Alex. Eng. J. 60, 5495–5510 (2021)

  6. Kong, L.H., Luo, Y.Y., Wang, L., Chen, M., Zhao, Z.: HOC-ADI schemes for two-dimensional Ginzburg–Landau equation in superconductivity. Math. Comput. Simul. 190, 494–507 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Liu, B., Bo, W., Liu, J.D., Liu, J., Shi, J.L., Yuan, J.H., He, X.D., Wu, Q.: Simple harmonic and damped motions of dissipative solitons in two-dimensional complex Ginzburg–Landau equation supported by an external V-shaped potential. Chaos Solitons Fract. 150, 111126 (2021)

    MathSciNet  MATH  Google Scholar 

  8. Aguareles, M., Chapman, S.J., Witelski, T.: Dynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domains. Physica D 414, 132699 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Khan, Y.: Fractal modification of complex Ginzburg–Landau model arising in the oscillating phenomena. Results Phys. 18, 103324 (2020)

    Google Scholar 

  10. Yan, Y., Liu, W., Zhou, Q., Biswas, A.: Dromion-like structures and periodic wave solutions for variable-coefficients complex cubic–quintic Ginzburg–Landau equation influenced by higher-order effects and nonlinear gain. Nonlinear Dyn. 99, 1313–1319 (2020)

    Google Scholar 

  11. Djoko, M., Tabi, C.B., Kofane, T.C.: Effects of the septic nonlinearity and the initial value of the radius of orbital angular momentum beams on data transmission in optical fibers using the cubic–quintic–septic complex Ginzburg–Landau equation in presence of higher-order dispersions. Chaos Solitons Fract. 147, 110957 (2021)

    MathSciNet  Google Scholar 

  12. Coskun, E.: On the properties of a single vortex solution of Ginzburg–Landau model of superconductivity. Physica A 568, 125731 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Chu, Y., Shallal, M.A., Mirhosseini-Alizamini, S.M., Rezazadeh, H., Javeed, S., Baleanu, D.: Application of modified extended Tanh technique for solving complex Ginzburg–Landau equation considering Kerr law nonlinearity. Comput. Mater. Continua 66, 1369–1378 (2021)

    Google Scholar 

  14. Gavish, N., Kenneth, O., Keren, A.: Ginzburg–Landau model of a Stiffnessometer-A superconducting stiffness meter device. Physica D 415, 132767 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1, 1–13 (2015)

    Google Scholar 

  16. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Google Scholar 

  17. Bedi, P., Kumar, A., Khan, A.: Controllability of neutral impulsive fractional differential equations with Atangana–Baleanu–Caputo derivatives. Chaos Solitons Fract. 150, 111153 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Yadav, S., Pandey, R.K., Shukla, A.K.: Numerical approximations of Atangan–Baleanu Caputo derivative and its application. Chaos Solitons Fract. 118, 58–64 (2019)

    MATH  Google Scholar 

  19. Pho, K.H., Heydari, M.H., Tuan, B.A., Mahmoudi, M.R.: Numerical study of nonlinear 2D optimal control problems with multi-term variable-order fractional derivatives in the Atangana–Baleanu–Caputo sense. Chaos Solitons Fract. 134, 109695 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Arfan, M., Alrabaiah, H., Rahman, M.U., Sun, Y.L., Hashim, A.S., Pansera, B.A., Ahmadian, A., Salahshourj, S.: Investigation of fractal-fractional order model of COVID-19 in Pakistan under Atangana–Baleanu Caputo (ABC) derivative. Results Phys. 24, 104046 (2021)

    Google Scholar 

  21. Abdo, M.S., Abdeljawad, T., Kucche, K.D., Alqudah, M.A., Ali, S.M., Jeelani, M.B.: On nonlinear pantograph fractional differential equations with Atangana–Baleanu–Caputo derivative. Adv. Differ. Equ. 2021, 1–17 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Heydari, M.H., Hosseininia, M., Atangana, A., Avazzadeh, Z.: A meshless approach for solving nonlinear variable-order time fractional 2D Ginzburg–Landau equation. Eng. Anal. Bound. Elem. 120, 166–179 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Pandey, R.K., Yadav, S., Shukla, A.K.: Numerical approximations of Atangana Baleanu Caputo derivative and its application. Chaos Solitons Fract. 118, 58–64 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Morel, J.M., Takens, F., Teissier, B.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics. Springer, Berlin (2004)

    Google Scholar 

  25. Li, X.L., Li, S.L.: A linearized element-free Galerkin method for the complex Ginzburg–Landau equation. Comput. Math. Appl. 90, 135–147 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Fei, M.F., Huang, C.M., Wang, N., Zhang, G.Y.: Galerkin-Legendre spectral method for the nonlinear Ginzburg–Landau equation with the Riesz fractional derivative. Math. Methods Appl. Sci. 44, 2711–2730 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Zhang, L., Zhang, Q.F., Sun, H.W.: Exponential Runge–Kutta method for two-dimensional nonlinear fractional complex Ginzburg–Landau equations. J. Sci. Comput. 83, 59 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, Q.F., Hesthaven, J.S., Sun, Z.Z., Ren, Y.Z.: Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg–Landau equation. Adv. Comput. Math. 47, 35 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, L., Zhang, Q.F., Sun, H.W.: A fast compact difference method for two-dimensional nonlinear space-fractional complex Ginzburg–Landau equations. J. Comput. Math. 39, 708–732 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, M., Zhang, G.F.: Fast iterative solvers for the two-dimensional spatial fractional Ginzburg–Landau equations. Appl. Math. Lett. 121, 107350 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Zhang, Q.F., Zhang, L., Sun, H.W.: A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations. J. Comput. Appl. Math. 389, 113355 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Shokri, A., Bahmani, E.: Direct meshless local Petrov–Galerkin (DMLPG) method for 2D complex Ginzburg–Landau equation. Eng. Anal. Bound. Elem. 100, 195–203 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Mu, L., Du, H.: The solution of a parabolic differential equation with non-local boundary conditions in the reproducing kernel space. Appl. Math. Comput. 202, 708–714 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Xie, S.S., Heo, S., Kim, S., Woo, G., Yi, S.: Numerical solution of one-dimensional Burgers’ equation using reproducing kernel function. J. Comput. Appl. Math. 214, 417–434 (2008)

  35. Fardi, M., Ghasemi, M.: Solving nonlocal initial-boundary value problems for parabolic and hyperbolic integro-differential equations in reproducing kernel hilbert space. Numer. Methods Partial Differ. Equ. 33, 174–198 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Prenter, P.M.: Splines and Variational Methods. Courier Corporation, Chelmsford (2008)

    MATH  Google Scholar 

  37. Shi, L., Chen, Z., Ding, X.H., Ma, Q.: A new stable collocation method for solving a class of nonlinear fractional delay differential equations. Numer. Algorithms 85, 1123–1153 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Adams, R.A.: Sobolev Spaces. Academic Press, Heidelberg (2002)

    Google Scholar 

  39. Han, W.M., Meng, X.P.: Error analysis of the reproducing kernel particle method. Comput. Methods Appl. Mech. Eng. 190, 6157–6181 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Carlson, R.E., Hall, C.A.: Error bounds for bicubic spline interpolation. J. Approx. Theory 7, 41–47 (1973)

    MathSciNet  MATH  Google Scholar 

  41. He, J.H.: Homotopy perturbation method for solving boundary value problems. Phys. Lett. A. 350, 87–88 (2006)

    MathSciNet  MATH  Google Scholar 

  42. Du, H., Chen, Z., Yang, T.J.: A stable least residue method in reproducing kernel space for solving a nonlinear fractional integro-differential equation with a weakly singular kernel. Appl. Numer. Math. 157, 210–222 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Xu, Q., Chang, Q.: Difference methods for computing the Ginzburg–Landau equation in two dimensions. Numer. Methods Partial Differ. Equ. 27, 507–528 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Shokri, A., Dehghan, M.: A meshless method using radial basis functions for the numerical solution of two-dimensional complex Ginzburg–Landau equation. Comput. Model Eng. Sci. 84, 333–358 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Shokri, A., Afshari, F.: High-order compact ADI method using predictor–corrector scheme for 2d complex Ginzburg–Landau equation. Comput. Phys. Commun. 197, 43–50 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Chen, Z. A meshless method for solving nonlinear variable-order fractional Ginzburg–Landau equations on arbitrary domains. J. Appl. Math. Comput. 68, 3937–3959 (2022). https://doi.org/10.1007/s12190-021-01691-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01691-x

Keywords

Mathematics Subject Classification

Navigation