
Journal of Applied Mathematics and Computing (2022) 68:4331–4359
https://doi.org/10.1007/s12190-022-01709-y

ORIG INAL RESEARCH

Dynamics in a disease transmission model coupled virus
infection in host with incubation delay and environmental
effects

Abulajiang Aili1 · Zhidong Teng1 · Long Zhang1

Received: 7 November 2021 / Revised: 28 December 2021 / Accepted: 24 January 2022 /
Published online: 9 February 2022
© The Author(s) under exclusive licence to Korean Society for Informatics and Computational Applied
Mathematics 2022

Abstract
In this paper, a disease transmissionmodel coupled virus infection in host with incuba-
tion delay and environmental effects is studied. For the virus infection model in host
with immune, latent delay and environmental virus invading, the threshold criteria
on the global stability of antibody-free and antibody response infection equilibria are
established. For the disease transmission model with incubation delay and immune
response in host, basic reproduction number R0 is defined, and the local stability of
equilibria are established, i.e., the disease-free equilibrium is locally asymptotically
stable if R0 < 1, and the endemic equilibrium is locally asymptotically stable if
R0 > 1. Furthermore, the uniform persistence of positive solutions is studied while
there is not the direct transmission of disease by the infected individuals. Finally, the
numerical examples are presented to verify the main results.
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MSC Classification 34D20 · 34D23 · 92B05 · 92D30

1 Introduction

As is well-known, infectious diseases have a great impact on humans health, social
development andnational security. Especially, over the past fewdecades, humanbeings
have been faced with serious threat from various kind of infectious diseases which are
primarily caused through the virus, such as AIDS, Ebola, SARS, MERS and COVID-
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19, etc (See [1–5]). In order to effectively control the prevalence of infectious diseases,
it is necessary to conduct in-depth research on the characteristics, transmission rules
and treatment measures of infectious diseases. Using mathematical models as a tool
to study various problems in infectious diseases can make people have more com-
prehensive and profound understanding of the occurrence and spread of infectious
disease from quantitative perspective. The epidemic dynamical models in the form of
differential equations and difference equations are an important method for quanti-
tative research on infectious diseases. The function of this method not only provide
theoretical and practical basis for control the outbreak of disease, but also help to
explore the effects of infectious disease prevention and control measures in various
aspects, and enrich the understanding of prevention and control decisions.

Many infectious diseases usually involves at least two key processes, such as Hep-
atitis, Ebola, COVID-19, etc. One is the within-host virus infection process in which
the virus growth, spreads or be eliminated in the infected host, where the host’s immu-
nity plays a vital role in the growth, spread or elimination of virus. The other one
is the between-host disease transmission process in which the susceptible individual
is infected through close human contact or environmental virus. Rhoubari et al. [6]
have proposed two mathematical Ebola virus disease (EVD) model with three modes
of transmission to explain that the susceptible is infected by Ebola by contact with
bodily fluids of infected individual, infectious corpse or contaminated environment.
In [7–9], the authors pointed out that growth and spread of virus in host is a rapid
process, while the spread of diseases between-host is a relatively slow process.

In [7, 10], the authors proposed the followingmathematical model coupling within-
and between-host dynamics including a disease-induced death rate for the hosts, it
extends the model which was studied in [11, 12]. This model can be coupled with
environmental virus as is given below

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dT

ds
= �c − kV T − mT ,

dT ∗

ds
= kV T − (m + d)T ∗,

dV

ds
= g(E) + pT ∗ − cV ,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS

dt
= � − λES − μS,

d I

dt
= λES − (μ + α)I ,

dE

dt
= θ I V (1 − E) − γ E,

(1)

where T = T (s), T ∗ = T ∗(s) and V = V (s) represent the densities of healthy
cells, infected cells and viral load at time s, S(t) and I (t) represent the numbers of
susceptible and infected hosts at time t , and E(t) denotes the level of environment
contamination at time t . The parameter�c is the recruitment of T (s), k is the infection
rate of cells, m is the natural mortality of cells, d is the infection-induced mortality
rate of cells, p is parasite production rate by an infected cell, c is the within-host
parasite clearance rate, λ is infection rate of individuals at population level, � is the
recruitment of hosts, μ is the natural death rate of hosts, α is the disease-induced
death rate of hosts, and γ is clearance rate of the environment. The function g(E)

is an added rate in the change of parasite load due to the continuous ingestion of
parasites by the host from a contaminated environment. By using the limit equation
theory and singular perturbation equation theory of differential equations (See [13–
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18]), the authors firstly decomposed the whole model into fast time sub-model and
slow time sub-model, and further studied the both sub-models and whole coupling
model, respectively. The existence, local and global stability of equilibria, backward
bifurcation and virulence evolution of sub-models and the whole coupled model are
emphasized.

Recently, the epidemicmodelswith two processes ofwithin-host virus infection and
between-host disease transmission have been investigated in many articles (See [7–12,
19–24]). Particularly, Wen et al. [19] investigated a discrete time environmentally-
driven coupling dynamic model of within-host virus infection and between-host
disease transmission. Wen et al. [20] further improved the above discrete time model
into a more practical form with saturation incidence. In [8, 9], the authors also investi-
gated the age-structured and reaction-diffusion epidemic models for coupling within-
and between-host dynamics in environmentally-driven infectious diseases.

In many infectious diseases, the incubation period can not be neglected, such as
Influenza, COVID-19, etc., these diseases have no obvious symptoms in the early
stages of infection, some symptoms only appear after a period of incubation, and
some of them are not only contagious during its infectious period, but also during
its incubation period. Particularly, such as COVID-19 is contagious during its incu-
bation period [25]. And with the idea of infectivity in incubation period, Jiao et al.
[26] proposed a SEIR epidemic model with homestead-isolation on the susceptible.
However, for some diseases, such as Tuberculosis, Measles and AIDS, on adequate
contact with an infective, a susceptible individual becomes lurks, that is, infected but
not infective. This individual remains in incubation period before becoming infective
(See [27, 28]), and this incubation period can bemodeled by incorporating it as a delay
effect. Xu et al. [29] concerned with the combined effects of saturation incidence rate
and time delay representing the incubation period of the disease on the dynamics of
an epidemiological model. Cooke et al. [30] proposed a SEIR epidemic model with
time delays to investigate the influence of incubation period on the spread of infectious
diseases.

We already knew, the immune response has a great role in controlling the spread
of disease during the virus infection process (See [31–42]). Particularly, when the
antibody in host does not work or the effect of the antibody is weak, then the virus will
continue to spread. As a result, the spread of disease between-host will be difficult to
control. Otherwise, when the host have an extensive antibody response, the production
rate of B cells in host will be increased, and environmental virus invade into host
will be prevented, then the transmission of disease is well controlled. Based on the
fact that humoral immunity is much more efficient than cellular immunity in some
infection [41], Murase et al. [42] introduced a model that described the interaction
between target cell, pathogens and immune responses. Wang et al. [34] applied this
model to investigate the dynamical behavior of in host virus infection models with
humoral immunity and intracellular delays. Hattaf [40] proposed a generalized viral
infection model with general incidence functions for both modes of transmission
humoral immunity, twodistributed intracellular delays andonediscrete immunological
delay.

In this paper, we will study more general disease transmission model coupled virus
infection in hostwith incubation delay and environmental effects. This epidemicmodel
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is coupled with the virus infection model via the environmentally-driven infectious
diseases. We will use the limit system method to investigate this coupled model, and
see that the immune response for the dynamical behavior of between-host disease
transmission come into the important influence for the extinction and persistence of
disease.

The structure of this paper is as follows. In Sect. 2, we give a detailed description
for the disease transmission model with incubation delay and environmental effects.
In Sect. 3, we discuss the virus infection model in host with immune, latent delay
and environmental virus invading, the threshold criteria on the global stability of
antibody-free and antibody response infection equilibria are established. In Sect. 4,
we study the disease transmission model with incubation delay and immune response,
the nonnegative, boundness of solution, and the local stability of equilibria are proved.
Beside, we prove the uniform persistence of positive solutions while there is not the
direct transmission of disease by infected individual. In Sect. 5, the theoretical results
are illustrated by numerical simulations. In Sect. 6, a brief conclusion is given.

2 Model description

In this part, based on the above discussion, we propose a disease transmission model
coupled virus infection in host, which includes the latent delay and antibody immune in
virus infection, the incubation delay and environmental effects in disease transmission.
Firstly, we put forward the following assumptions.

1. The total population is divided into the susceptible, infected and removed. They
have samenaturalmortality rate. The susceptible has a recruitment rate. Theviruses
are divided into the virus in human body and the virus in human life environment.
They cause the virus infection in human and environmental pollution, respectively.

2. The transmission of disease is caused by susceptible exposed to virus in the envi-
ronment and the direct infection from close contact with infected individual. The
incidence rates of two transmission routes are bilinear.

3. After being infected by the virus, the susceptible become infected after an average
incubation period. During this incubation period there is only natural death, and
no disease transmission. The infected has disease-induced death and also can be
cured as a removed by treatment and autoimmunity. We assume that the removed
has lifelong immunity and will not return to the susceptible, and the disease will
not relapse.

4. The environmental virus mainly comes from the emission of infected. The amount
of effluent virus per unit time is proportional to the number of infected individual
and the average virus load in infected individual. The environmental virus can be
eliminated artificially and naturally.

5. The environmental virus can invade into the human body through breathing, eating,
and contacting, etc., and making the number of virus in the human body gradually
increase, and then causing the virus infection in host.
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Fig. 1 The susceptible are produced at the rate of�, die at the rate ofμ and become infected by environment
contaminationU and close human contact at time (t − τ). In addition, V indicates the total amount of virus
in infected individual, θ indicates the emission rate of virus to the environment released by each infected
individual, θV I (t) indicates the increase of virus concentration in the environment per unit time as a whole

Based on above assumptions (1)–(4), we can construct the following warehouse
diagram:

On account of above warehouse diagram, we can easily establish the following
environmentally-driven disease transmission dynamical model with incubation delay,
indirect and direct infection

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= � − β1U (t)S(t) − β2 I (t)S(t) − μS(t),

d I

dt
= (β1U (t − τ)S(t − τ) + β2 I (t − τ)S(t − τ))e−μτ − (μ + σ + ζ )I (t),

dR

dt
= σ I (t) − μR(t),

dU

dt
= θ I (t)V − (ξ + γ )U (t).

(2)
Where S(t), I (t), R(t) and U (t) represent the numbers of susceptible, infected,
removed and the level of environment contamination at time t , respectively, β1 is
the infection rate of susceptible in contaminative environment, β2 is the number of
contacts by one infective per unit time multiplied by the probability that a contact
with a susceptible leads to infection, τ is the incubation/latent period, e−μτ is the
surviving rate of infected hosts during incubation period τ , � is the recruitment rate
of susceptible, μ is the natural mortality rate of total population, σ is the quarantine
and cure rate of infected individual, ζ is the disease-induced death rate of infected,
ξ is the decay rate of virus in the environment, γ is the virus clearance rate in the
environment. All these parameters are non-negative constants.

In model (2), there is a variable V in dynamical equation of environmental virusU ,
which represents the total amount of virus in infected host. To get the exact change of
V , we need to further study the dynamic process of virus infection in host. We have
seen that dynamic models of virus infection in different types have been established in
many articles (See [7–12, 19, 21, 22, 24]). In this paper, based on above assumptions
(5), we propose the following within-host virus infection model with latent delay,
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antibody immune and environmental virus invading

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT

ds
= �c − kV (s)T (s) − mT (s),

dT ∗

ds
= kV (s − τ1)T (s − τ1)e

−mτ1 − (m + d)T ∗(s),

dV

ds
= g(U (t)) + pT ∗(s) − cV (s) − qB(s)V (s),

dB

ds
= αB(s)V (s) − ωB(s).

(3)

Where we use letter s to represent the dynamic evolution time of cells, virus, and B
cells in hosts, T = T (s), T ∗ = T ∗(s), V = V (s) and B = B(s) represent the densities
of healthy cells, infected cells, virus load and B cells in host at time s, respectively, q is
the neutralization rate of B cells, α is the production rate of B cells, ω is mortality rate
of B cells. The other parameters�c, k,m, d, p and c in model(3) are defined the same
as those of model (1). All these parameters are non-negative constants. The function
g(U ) in model (3) represents the increase in the number of virus in host caused by
environmental virus invading into the host per unit time. The virus invasion usually
indicates that the virus invading into host through breathing, eating, and contacting
with air, water, food or other objects which contaminated by environmental virus.
Obviously, as the number of environmental virus increases, the number of virus that
invade into host will also increase. Therefore, we can make the following assumptions
for function g(U ):

(H1) g′(U ) > 0 for all U ≥ 0, and g(0) = 0.
The simplest formof g(U ) studied in [10–12] is the linear function g(U ) = aU (a >

0), which means that the amount of environmental virus entering the host is linearly
increasing withU . In addition to this, the other forms of g(U ) studied in [12] include
g1(U ) = aU

1+bU with constants a > 0 and b > 0, which means that the amount of
environmental virus entering the host will reach a saturation level.

It is easy to see that there are some infectious diseases infected by virus, such
as COVID-19, Hepatitis B, Zika, Ebola, etc. The process of virus infection in hosts
needs to be described by virus infection model (3) with environmental virus effects.
Particularly, in above diseases, people get infected from the virus through breathing,
eating, and contacting with air, water, food or other objects which were contaminated
by environmental virus U . Before isolation and treatment, the environmental virus U
will continuously invade into the host and gradually increase the amount of virus in
host, where, the amount of virus increased per unit time can be represented by g(U ),
and when the level of virus in the host reaches a certain level, the host will release
the virus into the surrounding environment, and the environment eventually becomes
contaminated with virus.
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3 Virus infectionmodel in host with immune, latent delay and
environmental virus invading

3.1 Basic properties

For virus infection model (3) with latent delay, immune and environmental virus
invading, since the changes process of virus infection in host is much faster than the
disease transmission process, we can assume that the environmental contamination
rateU (t) in model (3) remains a constantU . Thus, model (3) becomes into an isolated
virus infection model in host.

Let R4+ = {(x1, x2, x3, x4) : xi ≥ 0, i = 1, 2, 3, 4}. Denote by C([−τ, 0], R4+) the
Banach space of all continuous functions φ = (φ1, φ2, φ3, φ4) : [−τ, 0] → R4+ with
the supremum norm ‖φ‖ = sup−τ≤s≤0{| φ(s) |}, where | φ(s) |= ∑4

i=1 | φi (s) |.
From the biological background of model (3), the initial condition for any solution

is given by

{
T (ϑ) = φ1(ϑ), T ∗(ϑ) = φ2(ϑ), V (ϑ) = φ3(ϑ), B(ϑ) = φ3(ϑ),

φ1(0) > 0, φ2(0) > 0, φ3(0) > 0, φ4(0) > 0, ϑ ∈ [−τ, 0], (4)

where (φ1, φ2, φ3, φ4) ∈ C([−τ1, 0], R4+). It is known as the basic theory of functional
differential equations [43],model (3) have a unique solution (T (s), T ∗(s), V (s), B(s))
that satisfies initial conditions (4).

First of all, regarding the non-negativity and boundedness of solutions for model
(3), we have the result given below.

Theorem 1 For any initial point x0 = (T0, T ∗
0 , V0, B0) ∈ R4∗+ , model (3) has a unique

nonnegative solution u(s) = (T (s), T ∗(s), V (s), B(s)) ∈ R4+ defined on [0,∞) and
the solution is also ultimately bounded.

The proof of Theorem 1 is simple. In fact, the positivity of solutions can be obtained
by using auxiliary function �(s) = min{T (s), T ∗(s), V (s), B(s)} and reduction to
absurdity. The ultimate boundedness of solutions can be verified by using the auxiliary
function

L(s) = T (s) + emτ1T ∗(s + τ1) + memτ1

p
V (s + τ1) + memτ1q

α p
B(s + τ1)

with f = min{m, d, c, ω} and the comparison principle. Therefore, we here omit it.
When U > 0, the basic reproduction number for the antibody response virus

infection for model (3) is defined by

Rw = αg(U )(m + d)(kω + mα) + kpωα�ce−mτ1

cω(m + d)(kω + mα)
.

Obviously, when U = 0 we have Rw = α pk�ce−mτ1

c(m+d)(kω+mα)
� Rw1.

On the existence of equilibrium for model (3), we have a result given below.
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Theorem 2

(a) When U > 0, model (3) always has unique antibody-free infection equilibrium
A1(U ) = (T1(U ), T ∗

1 (U ), V1(U ), 0), where T1(U ), T ∗
1 (U ) and V1(U ) are given

below. Furthermore, if Rw ≤ 1 for some U0 > 0, then for any 0 < U ≤ U0 model
(3) only has equilibrium A1(U );

(b) If Rw > 1 for some U0 > 0, then, except for equilibrium A1(U ), for any
U ≥ U0 model (3) also has unique antibody response infection equilibrium
A2(U ) = (T2(U ), T ∗

2 (U ), V2(U ), B2(U )), where T2(U ), T ∗
2 (U ), V2(U ) and

B2(U ) are given below.

Proof Denote Rw0 = kpT0e−mτ1

c(m+d)
. When U > 0 antibody-free infection equilibrium

A1(U ) = (T1(U ), T ∗
1 (U ), V1(U ), 0) satisfies the following equations

⎧
⎪⎨

⎪⎩

�c − kV1(U )T1(U ) − mT1(U ) = 0,

kV1(U )T1(U )e−mτ1 − (m + d)T ∗
1 (U ) = 0,

g(U ) + pT ∗
1 (U ) − cV1(U ) = 0.

(5)

We directly get

V1(U ) = 1

c
(g(U ) + pT ∗

1 (U )), T ∗
1 (U ) = me−mτ1

m + d
(T0 − T1(U )) (6)

and T1(U ) = m
m+kV1(U )

T0 < T0. Substituting (6) into the first equation of (5), we
further get the quadratic equation with T1(U ) as a root

T 2
1 (U ) − a1(U )T1(U ) + a2 = 0, (7)

where a1(U ) = (m+d)g(U )

pme−mτ1
+ T0(1 + 1

Rw0
), a2 = T 2

0
Rw0

. Since

a21(U ) − 4a2 =
[
(m + d)g(U )

pm
+ T0

(

1 + 1

Rw0

)]2

− 4T 2
0

Rw0

> T 2
0

(

1 + 1

Rw0

)2

− 4T 2
0

Rw0
≥ 0,

equation (7) has two positive roots as follows

T1±(U ) = 1

2
(a1(U ) ±

√

a21(U ) − 4a2). (8)

Computing the derivative of T1±(U ) we have T ′
1±(U ) = 1

2a
′
1(U )(1 ± a1√

a21−4a2
).

Because of a2 > 0 and a′
1(U ) > 0, we further have T ′+(U ) > 0 and T ′−(U ) < 0 for
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U > 0. From (8) we can obtain

T1+(0) =
⎧
⎨

⎩

T0, if Rw0 ≥ 1,

T0
Rw0

, if Rw0 < 1,
(9)

and

T1−(0) =
⎧
⎨

⎩

T0
Rw0

, if Rw0 > 1,

T0, if Rw0 ≤ 1.
(10)

Since T1+(U ) ≥ T1+(0) ≥ T0 and T1−(U ) ≤ T1−(0) ≤ T0 for any U > 0, we
can get that model (3) has unique antibody-free infection equilibrium A1(U ) =
(T1(U ), T ∗

1 (U ), V1(U ), 0) with

T1(U ) = 1

2

(

a1(U ) −
√

a21(U ) − 4a2

)

= T0
Rv(U )

, T ∗
1 (U ) = �ce−mτ1

m + d

(

1 − 1

Rv(U )

)

,

V1(U ) = 1

c

(

g(U ) + p�ce−mτ1

m + d

(

1 − 1

Rv(U )

))

, Rv(U ) = 2T0

a1(U ) −
√

a21(U ) − 4a2
.

We have that antibody response infection equilibrium A2(U ) = (T2(U ), T ∗
2 (U ),

V2(U ), B2(U )) satisfies the following equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�c − kV2(U )T2(U ) − mT2(U ) = 0,

kV2(U )T2(U )e−mτ1 − (m + d)T ∗
2 (U ) = 0,

g(U (t)) + pT ∗
2 (U ) − cV2(U ) − qB2(U )V2(U ) = 0,

αB2(U )V2(U ) − ωB2(U ) = 0,

(11)

by calculating we directly can obtain

V2(U ) = ω

α
, T ∗

2 (U ) = kω�ce−mτ1

(m + d)(kω + mα)
, T2(U ) = �cα

kω + mα
,

B2(U ) = αg(U )(m + d)(kω + mα) + kpωα�ce−mτ1 − cω(m + d)(kω + mα)

qω(m + d)(kω + mα)
.

(12)
Obviously, if Rw ≤ 1 for some U0 > 0, then B2(U ) ≤ 0 for any 0 < U ≤ U0, which
implies that model (3) only has equilibrium A1(U ). If Rw > 1 for someU0 > 0, then
B2(U ) > 0 for anyU ≥ U0, which implies that model (3) also has unique equilibrium
A2(U ). This completes the proof. 
�

3.2 Stability of equilibria

Firstly, we proved the stability of antibody-free infection equilibrium A1(U ) =
(T1(U ), T ∗

1 (U ), V1(U ), 0) with U > 0. We get a conclusion given below.
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Theorem 3 Assume Rw ≤ 1 for some U0 > 0. Then for any 0 < U ≤ U0 equilibrium
A1(U ) is globally asymptotically stable.

Proof The defined Lyapunov function L1 is as follows

L1 = e−mτ1T1

(
T

T1
− ln

T

T1
− 1

)

+ T ∗
1

(
T ∗

T ∗
1

− ln
T ∗

T ∗
1

− 1

)

+ e−mτ1kV1T1

∫ s

s−τ1
(

kV T

kV1T1
− 1 − ln

kV T

kV1T1

)

dx + m + d

p
V1

(
V

V1
− ln

V

V1
− 1

)

+ m + d

α p
qB.

The derivative of L1 along with solutions of model (3) is given by

dL1

dt
= e−mτ1

(

1 − T1
T

)

(kV1T1 + mT1 − kV T − mT ) +
(

1 − T ∗
1

T ∗

)

(kV (s − τ1)

× T (s − τ1)e
−mτ1 − (m + d)T ∗) + e−mτ1kV1T1

(
kV (s)T (s)

kV1T1

− ln
kV (s)T (s)

kV1T1
− kV (s − τ1)T (s − τ1)

kV1T1
+ ln

kV (s − τ1)T (s − τ1)

kV1T1

)

+ m + d

p

(

1 − V1
V

)

(pT ∗ − cV − qBV ) + q(m + d)

α p
(αBV − ωB)

= e−mτ1mT1

(

2 − T

T1
− T1

T

)

+ e−mτ1kV1T1 − e−mτ1
T1
T
kV1T1

− e−mτ1kV (s − τ1)T (s − τ1)
T ∗
1

T ∗ + (m + d)T ∗
1 − (m + d)T ∗ V1

V

+ (m + d)g(U )

p
− (m + d)g(U )

p

V1
V

+ (m + d)g(U )

p
− (m + d)g(U )

p

V

V1

+ m + d

p
qBV1 − m + d

α p
qωB + (m + d)T ∗

1 − m + d

p
B1V1 + m + d

p
B1V

− e−mτ1kV1T1 ln
kV (s)T (s)

kV1T1
+ e−mτ1kV1T1 ln

kV (s − τ1)T (s − τ1)

kV1T1

= e−mτ1mT1

(

2 − T

T1
− T1

T

)

+ (m + d)g(U )

p

(

2 − V

V1
− V1

V

)

− e−mτ1kV1T1

(
kV (s − τ1)T (s − τ1)

kV1T1

T ∗
1

T ∗ − 1 − ln
kV (s − τ1)T (s − τ1)

kV1T1

T ∗
1

T ∗

)

− e−mτ1kV1T1

(
T ∗V1
T ∗
1 V

− 1 − ln
T ∗V1
T ∗
1 V

)

− e−mτ1kV1T1

(
T1
T

− 1 − ln
T1
T

)

+ q(m + d)

p
(V1 − ω

α
)B.

Obviously, by calculating we can get V1 ≤ ω
α

when Rw ≤ 1. Hence, for any

T (s), T ∗(s), V (s), B(s) we have dL1
dt ≤ 0. Moreover, we have dL1

dt = 0 if and
only if (T (s), T ∗(s), V (s), B(s)) = (T1(s), T ∗

1 (s), V1(s), B1(s)). According to the
LaSalle’s invariance principle, clearly we have equilibrium A1(U ) for model (3) is
globally asymptotically stable. 
�
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Theorem 4 Assume Rw > 1 for some U0 > 0. Then for any U ≥ U0 equilibrium
A1(U ) is unstable and A2(U ) is local asymptotically stable.

Proof For the convenience of calculation, we denote (T1(U ), T ∗
1 (U ), V1(U ), 0) =

(T1, T ∗
1 , V1, 0) and (T2(U ), T ∗

2 (U ), V2(U ), B2(U )) = (T2, T ∗
2 , V2, B2). Firstly, by

the detailed calculation the linearized system of model (3) at any equilibrium Ā =
(T̄ , T̄ ∗, V̄ , B̄) can be obtained as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(s)

ds
= −kz(s)T̄ − kV̄ x(s) − mx(s),

dy(s)

ds
= ke−mτ1 z(s − τ1)T̄ + ke−mτ1x(s − τ1)V̄ − (m + d)y(s),

dz(s)

ds
= py(s) − cz(s) − qh(s)V̄ − q B̄z(s),

dh(s)

ds
= αh(s)V̄ + α B̄z(s) − ωh(s).

(13)

From system (13) we further obtain the characteristic equation at equilibrium Ā =
(T̄ , T̄ ∗, V̄ , B̄) as follows

A(λ) =

∣
∣
∣
∣
∣
∣
∣
∣

λ + kV̄ + m 0 kT̄ 0
−kV̄ e−(λ+m)τ1 λ + m + d −kT̄ e−(λ+m)τ1 0

0 −p λ + c + q B̄ qV̄
0 0 −α B̄ (λ + ω − αV̄ )

∣
∣
∣
∣
∣
∣
∣
∣

= 0. (14)

According to (14), the characteristic equation of model (3) at equilibrium A1(U ) is

A(λ) =(λ + ω − αV1)[λ3 + λ2(c + m + d + m + kV1) + λ((m + d + m + kV1)c

+ (m + d)(m + kV1)) + c(m + d)(m + kV1)

+ (−λpkT1e
−mτ1 − pkT1me−mτ1)e−λτ1 ] = 0.

(15)
Obviously, equation (15) has a root λ = αV1 − ω. When Rw > 1, we have

λ =αV1 − ω = α p�ce−mτ1(1 − 1
Rv(U )

) + αg(U )(m + d) − ωc(m + d)

c(m + d)

=α p�ce−mτ1(1 − 1
Rv(U )

)(kω + mα) + (αg(U ) − ωc)(m + d)(kω + mα)

c(m + d)(kω + mα)

=ωc(m + d)(kω + mα)(Rw − 1) + α p�ce−mτ1(mα − 1
Rv(U )

(kω + mα))

c(m + d)(kω + mα)
.

We can have λ > 0, and this implies that equilibrium A1(U ) is unstable for any τ1 ≥ 0.
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Next, from (14) the characteristic equation of model (3) at equilibrium A2(U ) is

A(λ) =

∣
∣
∣
∣
∣
∣
∣
∣

λ + kV2 + m 0 kT2 0
−kV2e−(λ+m)τ1 λ + m + d −kT2e−(λ+m)τ1 0

0 −p λ + c + qB2 qV2
0 0 −αB2 (λ + ω − αV2)

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

=(λ + kV2 + m)(λ + m + d)[(λ + c + qB2)(λ + ω − αV2)

+ qV2αB2] + (λ + ω − αV2)[pkT2(U )kV2e
−(λ+m)τ1

− (λ + kV2 + m)pkT2e
−(λ+m)τ1 ] = 0.

Furthermore, the characteristic equation becomes into the following form

(λ + kV2 + m)(λ + m + d)[(λ + c + qB2)(λ + ω − αV2) + qV2αB2]
= (λ + ω − αV2)(λ + m)pkT2e

−(λ+m)τ1 .
(16)

Suppose that (16) has a root λ = ρ + iω0 with ρ ≥ 0 and ω0 ≥ 0, which implies
| e−λτ1 |< 1. Denote

LHS = (ρ + iω0 + kV2 + m)(ρ + iω0 + m + d)[(ρ + iω0 + cRw)(ρ + iω0)

+ qV2αB2],
RHS =(ρ + iω0)(ρ + iω0 + m)pkT2e

−(λ+m)τ1 .

(17)
Since

| qV2αB2 + (ρ + iω0 + c + qB2)(ρ + iω0) |>| (ρ + iω0)cRw |

and

| ρ + iω0 + kV2 + m |>| ρ + iω0 + m |, | ρ + iω0 + m + d |> (m + d),

we further have

| LHS |= | (ρ + iω0 + kV2 + m) || (ρ + iω0 + m + d) |
× | (ρ + iω0 + cRw)(ρ + iω0) + qV2αB2 |

> | (ρ + iω0 + m)(m + d)(ρ + iω0)cRw | .
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Since

pkT2e
−mτ e−λτ1 = c(m + d)

[
αg(U )(m + d)(kω + mα) + kpωα�ce−mτ1

cω(m + d)(kω + mα)

−αg(U )(m + d)(kω + mα)

cω(m + d)(kω + mα)

]

e−λτ1

< c(m + d)
αg(U )(m + d)(kω + mα) + kpωα�ce−mτ1

cω(m + d)(kω + mα)

= (m + d)cRw,

then we have

| RHS |= | (ρ + iω0) || (ρ + iω0 + m) || pkT2(U )e−(λ+m)τ1 |
< | (ρ + iω0 + m)(m + d)(ρ + iω0)cRw | .

From the above calculations, we can easily see that the modulus on the left-hand
side of expression (17) is greater than the modulus on the right-hand side. This is an
obvious contradiction. Therefore, for any τ1 ≥ 0, equation (16) will not have roots
with non-negative real parts. Therefore, we can determine that the equilibrium point
A2(U ) is locally asymptotically stable. 
�
Remark 1 Clearly know that the local stability of equilibrium A1(U ) is simple, so
in Theorem 3 we directly give the global stability for A1(U ). The global stability for
A2(U ) has not been proved yet, so in Theorem 4we only obtain that A1(U ) is unstable
and A2(U ) is local asymptotically stable. Therefore, an interesting open problem is
to prove that A2(U ) is globally asymptotically stable when Rw > 1.

Remark 2 From themain conclusions obtained in this section, we easily find that when
there is the environmental virus unremitting invading then the virus infection in host
always occurs.

Remark 3 From the basic reproduction number Rw , we easily see that Rw is decreasing
when latent delay τ1 increases. This shows that, due to there is not virus infection in
latent period, the long latent period can retard the outbreak of virus infection in host.

Remark 4 From Theorem 4 we see that when there is antibody immunity response in
host then the virus in host will ultimately reach a steady numerical value ω

α
, where

α indicates the production rate of B cells, ω indicates the mortality rate of B cells.
Therefore, increasing the recruitment rate of B cells will decrease the numerical value
of virus, and then retard the virus infection in host.

4 Disease transmissionmodel with incubation delay and immune
response in host

In this part, we further study the disease transmission model (2). It is clear that for
the infection disease caused by the virus infection, the process of virus infection in
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host is very quick than the speed of disease transmission. Thence, we can propose the
following reasonable assumption.

(H2) In the process of disease transmission, the virus infection in host always
achieve its steady state.

When the infection disease is prevalent, we know that there must be virus infection
in host. Therefore, we always have U > 0. Further, we consider that there is the
immune response in host, then we also have Rw > 1 for anyU > 0. Obviously, when
Rw1 > 1 then Rw > 1 for anyU > 0. Thus, based on the discussions in above section
and due to the local stability of equilibrium A2(U ) = (T2(U ), T ∗

2 (U ), V2(U ), B2(U ))

from Theorem 4, we can assume that in host virus V (s) → V2(U ) = ω
α
as s → ∞.

Therefore, based on assumption (H2) we can replace V = V2(U ) = ω
α
in disease

transmission model (2), and further obtain the following model

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= � − β1U (t)S(t) − β2 I (t)S(t) − μS(t),

d I

dt
= (β1U (t − τ)S(t − τ) + β2 I (t − τ)S(t − τ))e−μτ − (μ + σ + ζ )I (t),

dR

dt
= σ I (t) − (μ + δ)R(t),

dU

dt
= θ I (t)

ω

α
− (ξ + γ )U (t).

(18)
The initial conditions for model (18) are given by

{
S(v) = φ1(v), I (v) = φ2(v), R(v) = φ3(v), U (v) = φ4(v),

φ1(0) > 0, φ2(0) > 0, φ3(0) > 0, φ4(0) > 0, v ∈ [−τ, 0], (19)

where φ = (φ1, φ2, φ3, φ4) ∈ C([−τ, 0], R4+).
Since the variable R in model (18) is not included in other three equations, it is

sufficient that we only need to study the following 3-dimensional model

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS

dt
= � − β1U (t)S(t) − β2 I (t)S(t) − μS(t),

d I

dt
= (β1U (t − τ)S(t − τ) + β2 I (t − τ)S(t − τ))e−μτ − (μ + σ + ζ )I (t),

dU

dt
= θ I (t)

ω

α
− (ξ + γ )U (t).

(20)

4.1 Basic properties

Theorem 5 The solution (S(t), I (t), R(t),U (t)) of model (18) satisfying initial con-
dition (19) is defined for all t ≥ 0 and is nonnegative and ultimately bounded.
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The non-negativity of solution is easy to prove. Furthermore, using the auxiliary func-
tion

N (t) = S(t) + eμτ I (t + τ) + R(t + τ)eμτ

with f = min{μ,μ + ζ, μ + ζ }, we can easily imply the ultimate boundedness of
solutions. Here, we omit the detailed proof.

In general, we use R0 to represent the corresponding basic reproduction number.We
can define it as the number of people infected by a patient during the average disease
period when all individuals are susceptible at the initial stage of the disease [44]. For
model (20), we have calculated the corresponding basic reproduction number

R0 = (β2�(ξ + γ ) + β1θV�)e−μτ

μ(μ + σ + ζ )(ξ + γ )
,

where, for the convenience of calculation, we denote V = ω
α
.

Denote S0 = �
μ
. Let

R(1)
0 = β1θωS0e−μτ

α(μ + σ + ζ )(ξ + γ )
, R(2)

0 = β2S0e−μτ

μ + σ + ζ
.

Obviously, we see that R(1)
0 is the basic reproduction number for the indirect trans-

mission of the disease driven by the environment, while R(2)
0 is the basic reproduction

number for the direct transmission of the disease by the infected individual. Then we
have

R0 = R(1)
0 + R(2)

0 ,

namely, the total basic reproduction number R0 of model (20) is the sum of indirect
basic reproduction number R(1)

0 and direct basic reproduction number R(2)
0

Remark 5 According to the biological definition of all parameters in model (18), and
expressions for the indirect and direct basic reproduction numbers R(1)

0 and R(2)
0 . It is

apparent to us that R(1)
0 is increasing with respect to the infection rate β1 of susceptible

in infected environment, the emission rate θ of virus to the environment released by
each infected individual and the mortality rate ω of B cells. R(1)

0 is decreasing with
respect to the production rate α of B cells, the incubation period τ , the clearance rate γ

of environmental virus and the quarantine and cure rate σ of infected individuals. R(2)
0

is increasing with respect to the infection rate β2 of susceptible infected by infected
individuals. R(2)

0 is decreasingwith respect to themortality of virus in the environment,
the incubation period τ and the cure rate σ of infected individuals.

The above discussions tell us that the total basic reproduction number R0 is increas-
ing with respect to the infection rate β1 of susceptible in infected environment, the
emission rate θ of virus to the environment released by each infected individual, the
mortality rate ω of B cells, the infection rate β2 of susceptible infected by infected
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individuals. R0 is decreasing with respect to the production rate α of B cells, the
clearance rate γ of environmental virus, the incubation period τ and the quarantine
and cure rate σ of infected individuals.

Apparently, model (20) has a disease-free equilibrium E0 = (S0, 0, 0). On the
existence of endemic equilibrium E∗ we easily come to the following conclusion.

Theorem 6

(a) When R0 ≤ 1, model (20) has only disease-free equilibrium E0 = (S0, 0, 0).
(b) When R0 > 1, model (20) has unique endemic equilibrium E∗ = (S∗, I ∗,U∗),

where

S∗ = S0
R0

, I ∗ = (ξ + γ )μ(R0 − 1)

β1θV + β2(ξ + γ )
, U∗ = θVμ(R0 − 1)

β1θV + β2(ξ + γ )
. (21)

4.2 Stability of equilibria

Now, we prove the stability of equilibria E0 and E∗. Let Ẽ = (S̃, Ĩ , Ũ ) be any
equilibrium of model (20). We firstly calculate the linearized system of model (20) at
equilibrium Ẽ as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)

dt
= −β1z(t)S̃ − β1x(t)Ũ − β2y(t)S̃ − β2 Ĩ x(t) − μx(t),

dy(t)

dt
= β1e

−μτ z(t − τ)S̃ + β1e
−μτ Ũ x(t − τ) + β2 Ĩ x(t − τ)e−μτ ,

+ β2y(t − τ)S̃e−μτ − (μ + σ + ζ )y(t),

dz(t)

dt
= θ y(t)V − (ξ + γ )z(t).

(22)

From this, we further can get the characteristic equation of model (20) at any
equilibrium Ẽ as follows.

Q(λ) =
∣
∣
∣
∣
∣
∣

λ + a11 β2 S̃ β1 S̃
a21 λ − a22 a23
0 −θV λ + (ξ + γ )

∣
∣
∣
∣
∣
∣
= 0, (23)

where a11 = β1Ũ + β2 Ĩ + μ, a21 = −β1Ũe−(λ+μ)τ − β2 Ĩ e−(λ+μ)τ , a22 =
β2e−(λ+μ)τ S̃ + μ + σ + ζ and a23 = −β1 S̃e−(λ+μ)τ .

We are now in a position to study the local stability of disease-free equilibrium E0.
We have the following result.

Theorem 7

(i) If R0 ≤ 1, then equilibrium E0 is locally asymptotically stable.
(ii) If R0 > 1, then E0 is unstable.
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Proof According to (23), we know that the characteristic equation of model (20) at
equilibrium E0 is

Q(λ) = (λ + μ)
(
λ2 + λ(μ + σ + ζ − β2e

−(λ+μ)τ �

μ
+ ξ + γ )

+ (μ + σ + ζ − β2e
−(λ+μ)τ �

μ
)(ξ + γ ) − β1θV

�

μ
e−τ(λ+μ)

) = 0.
(24)

When τ = 0, equation (24) becomes into the following form

(λ+μ)
(
λ2+λ(μ+σ +ζ −β2

�

μ
+ξ+γ )+(μ+σ +ζ −β2

�

μ
)(ξ+γ )−β1θV

�

μ

) = 0.

(25)
Clearly, we can see that equation (25) has one negative root λ1 = −μ. For the other
two roots λ2 and λ3 of equation (25), we have

λ2 + λ3 = −
(

μ + σ + ζ − β2
�

μ
+ ξ + γ

)

= −
[

(μ + σ + ζ )

(

1 − β2�

μ(μ + σ + ζ )

)

+(ξ + γ )
]

< 0

λ2λ3 = (ξ + γ )(μ + σ + ζ )

(

1 − β2�(ξ + γ )e−μτ + β1θV�e−μτ

μ(μ + σ + ζ )(ξ + γ )

)

> 0

with R0 < 1. Hence, λ2 and λ3 have negative real parts.
Let τ > 0, equation (24) becomes into the following form

Q(λ) = λ2 + a1λ + a0 − (b1λ + b0)e
−λτ = 0, (26)

where a1 = (μ + σ + ζ + ξ + γ ), a0 = (ξ + γ )(μ + σ + ζ ), b1 = β2
�
μ
e−μτ and

b0 = (ξ + γ )β2
�
μ
e−μτ + β1θV

�
μ
e−μτ .

Assume that λ = ωi (ω > 0) is a pure imaginary root of equation (26). Substitute
it into equation (26) and separate the imaginary and real parts by using e−λτ =
cos(ωτ) − i sin(ωτ), we can get

{
−ω2 + a0 = ωb1 sin(ωτ) + b0 cos(ωτ),

ωa1 = ωb1 cos(ωτ) − b0 sin(ωτ).
(27)

We add the squares of (27) to get

ω4 + pω2 + q = 0, (28)
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where p = a21 − 2a0 − b21 and q = a20 − b20 = (a0 + b0)(a0 − b0). Since

p = a21 − 2a0 − b21 = (μ + σ + ζ )2

(

1 −
[

β2�e−μτ

μ(μ + σ + ζ )

]2
)

+ (ξ + γ )2,

q = a20 − b20 =
(

(ξ + γ )(μ + σ + ζ ) + (ξ + γ )β2
�

μ
e−μτ + β1θV

�

μ
e−μτ

)

× (ξ + γ )(μ + σ + ζ )

[

1 − β2�(ξ + γ )e−μτ + β1θV�e−μτ

μ(μ + σ + ζ )(ξ + γ )

]

,

when R0 ≤ 1we have that p and q are non-negative. This shows that equation (28) has
not any positive root ω, which leads an obvious contradiction. Hence, we finally know
when R0 < 1 all roots of characteristic equation (24) have the negative real parts for
any τ > 0. This means that the disease-free equilibrium E0 is locally asymptotically
stable. 
�

Theorem 8 If R0 > 1, then endemic equilibrium E∗ of model (20) is local asymptot-
ically stable.

Proof From equation (23) we can get that the characteristic equation for model (20)
at endemic equilibrium E∗ is given as follows

H(λ) = (λ + β1U
∗ + β2 I

∗ + μ)[(λ − β2e
−(λ+μ)τ S∗ + μ + σ + ζ )(λ + ξ + γ )

− θVβ1S
∗e−(λ+μ)τ ] + (β1U

∗e−(λ+μ)τ + β2 I
∗e−(λ+μ)τ )

× [β2S
∗(λ + ξ + γ ) + β1S

∗θV ]
= λ3 + a2λ

2 + a1λ + a0 − (b2λ
2 + b1λ + b0)e

−λτ = 0,
(29)

where

a2 = (μ + σ + ζ ) + (β1U
∗ + β2 I

∗ + μ) + (ξ + γ )

a1 = (μ + σ + ζ )(ξ + γ ) + (μ + σ + ζ + ξ + γ )(β1U
∗ + β2 I

∗ + μ)

a0 = (μ + σ + ζ )(β1U
∗ + β2 I

∗ + μ)(ξ + γ ), b2 = β2S
∗e−μτ

b1 =β2S
∗(ξ + γ )e−μτ + θVβ1S

∗e−μτ + μβ2S
∗e−μτ

b0 = (ξ + γ )μe−μτβ2S
∗ + θVμβ1S

∗e−μτ .

When τ = 0, equation (29) becomes into the following form

λ3 + (a2 − b2)λ
2 + (a1 − b1)λ + a0 − b0 = 0. (30)
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By calculating, we can obtain

p2 = a2 − b2

= (μ + σ + ζ ) + (β1U
∗ + β2 I

∗ + μ) + (ξ + γ ) − β2S
∗e−μτ

= (μ + σ + ζ )R0(β1θV + β2(ξ + γ )) + β1θVμ(R0 − 1)R0

R0(β1θV + β2(ξ + γ ))

+ β2R0μ(ξ + γ )μ(R0 − 1) − β2S0(β1θV + β2(ξ + γ ))

R0(β1θV + β2(ξ + γ ))

+ R0μ(β1θV + β2(ξ + γ )) + R0(ξ + γ )(β1θV + β2(ξ + γ ))

R0(β1θV + β2(ξ + γ ))

= (μ + σ + ζ )R0β1θV + β1θVμ(R0 − 1)R0 + β2R0μ(ξ + γ )μ(R0 − 1)

R0(β1θV + β2(ξ + γ ))

+ R0μ(β1θV + β2(ξ + γ )) + R0(ξ + γ )(β1θV + β2(ξ + γ ))

R0(β1θV + β2(ξ + γ ))

= S0β1θV

R0(ξ + γ )
+ μR0 + (ξ + γ ) > 0.

By computing we can obtain β1U∗ +β2 I ∗ +μ = μR0 and R0(μ+ σ + ζ )(ξ + γ ) =
β2S0(ξ + γ ) + θVβ1S0, then we further have

p1 = a1 − b1

= (μ + σ + ζ )(ξ + γ ) + (μ + σ + ζ + ξ + γ )(β1U
∗ + β2 I

∗ + μ)

− β2S
∗(ξ + γ )e−μτ − θVβ1S

∗e−μτ − μβ2S
∗e−μτ

= 1

R0
(R0(μ + σ + ζ )(ξ + γ ) + R2

0μ(μ + σ + ζ + ξ + γ )

− β2S0(ξ + γ ) − θVβ1S0 − μβ2S0)

= β2�(
R0 − 1

R0
) + β1θV�

ξ + γ
+ β2�(ξ + γ ) + β1θV�

μ + σ + ζ
> 0,

p0 = a0 − b0

= (μ + σ + ζ )(β1U
∗ + β2 I

∗ + μ)(ξ + γ ) − (ξ + γ )μe−μτβ2S
∗ − θVμβ1S

∗e−μτ

= (μ + σ + ζ )(ξ + γ )μR0 − 1

R0
(μ((ξ + γ )β2S0 + θVβ1S0))

= (μ + σ + ζ )(ξ + γ )μ(R0 − 1) > 0.

Furthermore, by calculating it follows that

p1 p2 − p0 =
(

S0β1θV

R0(ξ + γ )
+ μR0 + (ξ + γ )

)

(R0μ(μ + σ + ζ ) + R0μ(ξ + γ )

− μβ2S0
R0

) − (μ + σ + ζ )(ξ + γ )μR0 + (μ + σ + ζ )(ξ + γ )μ > 0.

Therefore, by the Hurwitz criterion equation (30) only has negative real roots.
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Let τ > 0. Assume that λ = ωi (ω > 0) is a pure imaginary root of equation (29).
Substitute it into equation (29) and separate the imaginary and real parts by using
e−λτ = cos(ωτ) − i sin(ωτ), we can get

{ −ω3 + a1ω = b2ω
2 sin(ωτ) + b1ω cos(ωτ) − b0 sin(ωτ),

−a2ω
2 + a0 = −b2ω

2 cos(ωτ) + b1ω sin(ωτ) + b0 cos(ωτ).
(31)

Square and add the two equations in (31) we have

ω6 + pω4 + qω2 + r = 0, (32)

where p = a22 −2a1 −b22, q = a21 −2a0a2 −b21 +2b0b2 and r = a20 −b20. By directly
calculating we can obtain that

p = [(μ + σ + ζ ) + (β1U
∗ + β2 I

∗ + μ) + (ξ + γ )]2 − 2[(μ + σ + ζ )(ξ + γ )

+ (μ + σ + ζ + ξ + γ )(β1U
∗ + β2 I

∗ + μ)] − β2
2 S

∗2e−2μτ

=(μ + σ + ζ )2 + (β1U
∗ + β2 I

∗ + μ)2 + (ξ + γ )2 − β2
2 S

∗2e−2μτ

= R2
0(β1θV + β2(ξ + γ ))2(μ + σ + ζ )2 + β2

1θ
2V 2μ2(R0 − 1)2R2

0

R2
0(β1θV + β2(ξ + γ ))2

+ β2
2 R

2
0(ξ + γ )2μ2(R0 − 1)2 − β2

2 S
2
0 (β1θV + β2(ξ + γ ))2e−2μτ

R2
0(β1θV + β2(ξ + γ )2

+ μ2 + 2β1U
∗β2 I

∗ + 2β1U
∗μ + 2β2 I

∗μ(ξ + γ )2

= R2
0β

2
1θ

2V 2(μ + σ + ζ )2 + 2β1θVβ2(ξ + γ )(μ + σ + ζ )2

R2
0(β1θV + β2(ξ + γ ))2

+ β2
1θ

2V 2μ2(R0 − 1)2R2
0 + β2

2 R
2
0(ξ + γ )2μ2(R0 − 1)2

R2
0(β1θV + β2(ξ + γ ))2

+ μ2 + 2β1U
∗β2 I

∗ + 2β1U
∗μ + 2β2 I

∗μ(ξ + γ )2 > 0,

123



Dynamics in a disease transmission model coupled virus… 4351

and

q =[(μ + σ + ζ )(ξ + γ ) + (μ + σ + ζ )(β1U
∗ + β2 I

∗ + μ) + (ξ + γ )(β1U
∗ + β2 I

∗

+ μ)]2 − 2[(μ + σ + ζ ) + (β1U
∗ + β2 I

∗ + μ) + (ξ + γ )][(μ + σ + ζ )(β1U
∗

+ β2 I
∗ + μ)(ξ + γ )] − [β2S

∗(ξ + γ )e−μτ + θVβ1S
∗e−μτ + μβ2S

∗e−μτ ]2
+ 2((ξ + γ )μe−μτβ2S

∗ + θVμβ1S
∗e−μτ )β2S

∗e−μτ

=(μ + σ + ζ )2(ξ + γ )2 + (μ + σ + ζ )2(β1U
∗ + β2 I

∗ + μ)2

+ (ξ + γ )2(β1U
∗ + β2 I

∗ + μ)2 − 1

R2
0

(β2
2 S

2
0 (ξ + γ )2e−2μτ + θ2V 2β2

1 S
2
0e

−2μτ )

− 1

R2
0

(2β2
2 S

2
0μ(ξ + γ )e−2μτ + μ2β2

2 S
2
0e

−2μτ + 2β2β1S
2
0 (ξ + γ )θVe−2μτ )

+ 1

R2
0

(−2β2β1S
2
0θVe−2μτ + 2β2

2 S
2
0μ(ξ + γ )e−2μτ + 2β2β1S

2
0θVe−2μτ )

= 1

R2
0

(R2
0(μ + σ + ζ )2(ξ + γ )2 + μ2R4

0((μ + σ + ζ )2 + (ξ + γ )2))

+ 1

R2
0

(−β2
2 S

2
0 (ξ + γ )2e−2μτ − θ2V 2β2

1 S
2
0e

−2μτ − μ2β2
2 S

2
0e

−2μτ )

+ 1

R2
0

(−2β2β1S
2
0 (ξ + γ )θVe−2μτ − 2β2

2 S
2
0μ(ξ + γ )e−2μτ

− 2β2β1S
2
0θVe−2μτ ) + 1

R2
0

(2β2
2 S

2
0μ(ξ + γ )e−2μτ + 2β2β1S

2
0θVe−2μτ )

=β2
2�

2e−2μτ + 2β2�β1θV�e−2μτ

ξ + γ
+ (β2�(ξ + γ )e−μτ + β1θV�eμτ )2

(μ + σ + ζ )2

+ β2
1θ

2V 2�2e−2μτ

(ξ + γ )2
+ 1

R2
0

(�2β2
2e

−2μτ + 2β2β1S
2
0 (ξ + γ )θVe−2μτ

− 2β2β1S
2
0 (ξ + γ )θVe−2μτ )

=β2
2�

2e−2μτ (
R2
0 − 1

R2
0

) + β2
1θ

2V 2�2e−2μτ

(ξ + γ )2
+ 2β2�β1θV�e−2μτ

ξ + γ

+ (β2�(ξ + γ )e−μτ + β1θV�eμτ )2

(μ + σ + ζ )2
> 0.

Finally, we have

r =a20 − b20 = (a0 − b0)(a0 + b0) = (μ + σ + ζ )2(ξ + γ )2μ2(R2
0 − 1) > 0.

This shows that equation (32) has not positive root. Therefore, the characteristic equa-
tion (29) does not have pure imaginary roots when τ > 0. This further implies that the
equation (29) does not have a root with a positive real part for any τ ≥ 0. Therefore,
the endemic equilibrium E∗ is locally asymptotically stable for any τ ≥ 0. 
�

Remark 6 In Theorems 7 and 8 only the local asymptotic stability of disease-free equi-
librium E0 and unique endemic equilibrium E∗ is established.Whether we can further
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construct the appropriate Lyapunov function and further use the LaSalle invariant prin-
ciple or use the geometric method to get the global stability of E0 and E∗, which is
still an open problem.

4.3 Uniform persistence

In this part, we investigate the uniform persistence of model (20). Here, we call
that model (20) is uniformly persistent if there is a constant ε > 0 such that for
any positive solution (S(t), I (t),U (t)) of model (20) one has lim inf t→∞ S(t) ≥ ε,
lim inf t→∞ I (t) ≥ ε and lim inf t→∞ U (t) ≥ ε. However, it is with regret that we
here only can establish the uniform persistence criterion for the special case β2 = 0
in model (20). That is, in model (20) there is not the direct transmission of the disease
by the infected individual.

Denote by (S(t, v), I (t, v),U (t, v)) the solution of model (20) with initial function
v = (v1, v2, v3) ∈ C([−τ, 0], R3+) at time t = 0. Define the (St (v), It (v),Ut (v)) =
(S(t + θ, v), I (t + θ, v),U (t + θ, v)) for any t > 0 and θ ∈ [−τ, 0]. Further define
the set

X = {(v1, v2, v3) ∈ C([−τ, 0], R3+) : v2 �= 0, v3 �= 0}.

The boundary of X is

∂X := C([−τ, 0], R3+)/X = {(v1, v2, v3) ∈ C([−τ, 0], R3+) : v2 ≡ 0 or v3 ≡ 0}.

We have theorem as given below.

Theorem 9 Assume R0 > 1 and β2 = 0. Then there is a constant ε > 0, so that
any positive solution S(t, v), I (t, v),U (t, v) of model (20) with initial function v =
(v1, v2, v3) ∈ X one has

lim inf
t→∞ S(t, v) ≥ ε, lim inf

t→∞ I (t, v) ≥ ε, lim inf
t→∞ U (t, v) ≥ ε.

Proof Firstly, when β2 = 0 we have R0 = β1θV S0e−μτ

(μ+σ+ζ )(ξ+γ )
. Let u(t, v) =

(S(t, v), I (t, v),U (t, v)) be the solution of model (20) with initial conditions (19),
then from the first equation of model (20) we know that

dS(t, v)

dt
= � − (μ + β1U (t, v)))S(t, v) ≥ � − (μ + β1)S(t, v).

Using the comparison principle we easily know that limt→+∞ inf S(t, v) ≥ �
μ+β1

.
This shows that variable S(t) in model (20) is uniformly persistent.

we can clear see that X is the invariant set for model (20). Furthermore, define

M∂ = {v ∈ C([−τ, 0], R3+) : (St (v), It (v),Ut (v)) ∈ ∂X ,∀ t ≥ 0}.
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Let M0 = {E0}. Clearly, we have M0 ⊂ ∪v0∈M∂
ω(v0), where ω(v0) indicates the ω-

limit set of solution (St (v0), It (v0),Ut (v0))with initial value u(0) = v0. For any given
v ∈ M∂ , since (St (v), It (v),Ut (v)) ∈ M∂ for all t ≥ 0, clearly we have I (t, v) ≡ 0
or U (t, v) ≡ 0.

If I (t, v) ≡ 0, since S(t, v) has a positive lower boundary, then from the second
equation of model (20) we can obtain U (t, v) ≡ 0. Thus, from model (20) is reduced
to the following subsystem as follows

dS(t, v)

dt
= A − μS(t, v). (33)

From this, we can get limt→∞ S(t, v) = S0 which implies ω(v0) = {E0}.
If U (t, v) ≡ 0, then from the third equation of model (20) we easily can get

I (t, v) ≡ 0. Similarly,we alsohave subsystem (33).Thus, limt→∞ S(t, v) = S0 which
also impliesω(v0) = {E0}. From the abovediscussionwecanget∪v0∈M∂

ω(v0) ⊂ M0.
Thence, finally we have M0 = ∪v0∈M∂

ω(v0).
Now, we are going to prove that Ks(E0) ∩ X = ∅, where Ks(E0) is the stable set

of E0. Assuming to have a v ∈ X such that limt→∞ u(t, v) = E0. Since R0 > 1,
there is an enough small ε > 0 so that

β1(S0 − ε)θ ω
α
e−μτ

(μ + σ + ζ )(ξ + γ )
− 1 > 0.

Furthermore, for this ε > 0, there is a t∗ > 0 so that S(t, v) ≥ S0 − ε, I (t, v) < ε

and U (t, v) < ε for all t ≥ t∗. Define the function as given below

L(t, v) = eμτ I (t, v) + μ + σ + ζ

θ ω
α
e−μτ

U (t, v) +
∫ t

t−τ

β1U (x)S(x)dx .

Then limt→∞ L(t, v) = 0. When t ≥ t∗ we have

dL(t, v)

dt
= eμτβ1U (t − τ, v)S(t − τ, v)e−μτ − eμτ I (t, v)(μ + σ + ζ )

+ β1U (t, v)S(t, v) − β1U (t − τ, v)S(t − τ, v) + eμτ I (t, v)(μ + σ + ζ )

− (μ + σ + ζ )(ξ + γ )U (t, v)

θ ω
α
e−μτ

= β1U (t, v)S(t, v) − (μ + σ + ζ )(ξ + γ )U (t, v)

θ ω
α
e−μτ

≥
[

β1(S0 − ε)θ ω
α
e−μτ

(μ + σ + ζ )(ξ + γ )
− 1

]
(μ + σ + ζ )(ξ + γ )

θ ω
α
e−μτ

U (t, v).

Clearly, we have dL(t,v)
dt > 0 for all t ≥ t∗. Therefore, L(t, v) is an increasing function

on t ≥ t∗. It can be seen that limt→∞ L(t, v) �= 0, which leads to a contradiction.
Hence, we have Ks(E0) ∩ X = ∅. Depending on the persistence theory of dynamical
systems, we clearly see that the existence of constant ε makes the inequality given
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below hold for any v0 ∈ X .

lim inf
t→∞ S(t, v) ≥ ε, lim inf

t→∞ I (t, v) ≥ ε, lim inf
t→∞ U (t, v) ≥ ε.

Finally, we come to conclusion that the positive solutions for model (20) is uniformly
persistent. This completes the proof. 
�
Remark 7 In Theorem 8 we have obtained that when R0 > 1 the unique disease-free
equilibrium E0 is unstable for model (20). Since the positive solutions of model (20)
also are ultimately bounded, so long as we can prove Ks(E0) ∩ X = ∅, then from
the persistence theory of dynamical systems we exactly come to conclusion that the
positive solutions for model (20) is uniformly persistent. But, unfortunately when
β2 > 0 we now can not obtain Ks(E0) ∩ X = ∅. Therefore, an interesting open
problem is when β2 > 0 to prove Ks(E0) ∩ X = ∅.
Remark 8 We can propose a more general open problem. That is, only when R0 > 1,
or when R0 > 1 and some additional condition is added, to prove that the general
model (20), especially β2 > 0 is requested, is uniformly persistent.

Remark 9 From Theorem 8 and the explanation of basic reproduction numbers R(1)
0

and R(2)
0 , we see that increasing the production rate α of B cells, the clearance rate

γ of environmental virus and the quarantine and cure rate σ of infected individuals,
and lengthening the incubation period τ can effectively retard the outbreak of disease
transmission.

5 Numerical examples

In this section, we verified the open problems on the stability of antibody response
infection equilibrium for model (3), the global stability of E0 and E∗ for model (2)
and the uniform persistence of positive solutions for general model (20) proposed in
Remarks 1, 6 and 8 by means of the numerical examples.

Example 1 In model (3), we take the parameters �c = 60, w = 400, k =
1.5 × 10−4, m = 0.02, d = 0.02, p = 10, c = 15, τ1 = 0.2, α =
0.0009999, q = 0.03, ω = 0.02 and U = 0.5. Besides, the initial values of
solutions (T (t), T ∗(t), V (t), B(t)) are respectively given as (1800, 1000, 50, 1700),
(1300, 800, 100, 1400), (750, 250, 75, 1700) and (1340, 500, 35, 1330).

By calculation we have Rw = 7.1622 > 1. Then from the numerical simula-
tions in Fig. 2 we see that the antibody response infection equilibrium A2(U ) =
(2608.7, 194.8881, 20.0020, 3081.1) of model (3) may be globally asymptotically
stable. Thence, the theoretical conclusion in Theorem 4 is verified, and the open prob-
lem proposed in Remark 1 would be reasonable.

Example 2 In models (2) and (3), we choose the parameters � = 50, β1 = 0.05,
β2 = 0.005, w = 4 × 105, μ = 0.44, γ = 0.151, θ = 1.4 × 10−6, �c = 9000,
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Fig. 2 Dynamical behaviors of T (s), T ∗(s), V (s), B(s). From the numerical simulation we
know that the solution converge to the antibody response infection equilibrium A2(U ) =
(2608.7, 194.8881, 20.0020, 3081.1)
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Fig. 3 Dynamical behaviors of S(t), I (t), U (t). From the numerical simulation we know that the solution
converge to disease-free equilibrium E0 = (113.6868, 0, 0)

k = 1.05 × 10−6, m = 0.07, d = 0.07, p = 95, c = 61, τ1 = 0.5, τ = 0.8,
σ = 0.5, α = 0.04, ζ = 0.32, ξ = 0.35 and ω = 0.5. Besides, the initial values of
solutions (S(t), I (t),U (t)) are respectively given as (150, 300, 0.97), (70, 50, 0.52)
and (100, 150, 0.22).

By calculation we have Rw1 = 1.4498 > 1, and hence, Rw > 1 for any U > 0.
We also have R0 = 0.3620 < 1. Then from the numerical simulations in Fig. 3
we see that disease-free equilibrium E0 = (113.6868, 0, 0) of model (2) is globally
asymptotically stable. Thus, the theoretical conclusion in Theorem 7 is verified, and
the open problem proposed in Remark 6 would be reasonable.

Example 3 In models (2) and (3), we choose the parameters � = 50, β1 = 0.05,
β2 = 0.06, w = 4 × 105, μ = 0.64, γ = 0.151, θ = 1.4 × 10−6, �c = 6000,
k = 1.05×10−6,m = 0.07, d = 0.07, p = 95, c = 50, τ1 = 0.5, τ = 0.5, σ = 0.05,
α = 0.0004, ζ = 0.0012, ξ = 0.0095 and ω = 0.9. Besides, the initial values of
solutions (S(t), I (t),U (t)) are respectively given as (100, 100, 0.97), (70, 50, 0.52)
and (100, 75, 0.22).

By calculation we have Rw1 = 1.1409 > 1 and hence, Rw > 1 for any U > 0.
We also have R0 = 5.0051 > 1. Then from the numerical simulations in Fig. 4 we
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Fig. 4 Dynamical behaviors of S(t), I (t), U (t). From the numerical simulation we know that the solution
converge to disease-free equilibrium E∗ = (15.6092, 42.0331, 0.8249)

see that the endemic equilibrium E∗ = (15.6092, 42.0331, 0.8249) of model (2) may
be globallly asymptotically stable. Thus, the theoretical conclusion in Theorem 8 is
verified, and the open problem proposed in Remark 8 can be reasonable.

6 Conclusion

In this work, wemainly focus on the dynamics in a disease transmissionmodel coupled
virus infection in host with incubation delay and environmental effects. The model is
divided into two different time scales dynamics.

For the virus infection model in host with antibody immune, latent delay and
environmental virus invading, the main results on the existence of antibody-free and
antibody response infection equilibria and the threshold criteria of local and global sta-
bility for equilibria are established. The research results show that the environmental
virus invading leads to that the virus infection in host always occurs. The short latent
period can retard the outbreak of virus infection in host and increasing the production
rate of B cells will decrease the number of virus and then retard the virus infection in
host.

For the disease transmission model with incubation delay and immune response
in host, the basic reproduction number R0 is defined, and the stability of equilibria
are established. When R0 ≤ 1 the disease-free equilibrium is locally asymptotically
stable, and when R0 > 1 the model has a unique endemic equilibrium which is locally
asymptotically stable, and the disease prevalence is uniform persistent. Based on these
conclusions and the explanation of basic reproduction numbers R(1)

0 and R(2)
0 , we see

that increasing the production rate of B cells, the clearance rate of environmental virus
and the cure rate of infected individuals, and shortened the incubation period can
effectively retard the outbreak of disease transmission.

Some open problems are also presented in this paper. For the virus infection model
in host, the open problem on the global stability of antibody response infection equilib-
rium is proposed in Remark 1. FromExample 1 presented in Sect. 5, we can conjecture
that this equilibrium is globally asymptotically stable. For the disease transmission
model, a series of open problems on the global stability of disease-free and endemic
equilibria and the uniform persistence of positive solutions for general model (20) are
proposed in Remarks 6 and 8, respectively. From Examples 2 and 3 presented in Sect.
5, we can conjecture that when basic reproduction number R0 < 1 then the disease-
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free equilibrium is globally asymptotically stable, and when R0 > 1 then the model is
uniform persistent and the endemic equilibrium is also globally asymptotically stable.

There are some new research subjects involving the dynamics in a disease trans-
mission model coupled virus infection in host with environmental effects in the future.
Firstly, in this paper we know that only bilinear incidence is considered. There-
fore, more general models with nonlinear incidence also should be discussed. Next,
in this paper we only discussed the case of antibody response in host. However,
more complex situation is that there is no antibody response in host. In this case,
according to assumption (H2), in the disease transmission model (2) we will have
V (s) → V1(U ) = 1

c (g(U ) + pT ∗
1 (U )) as s → ∞ (See Theorem 2 in Sect. 3), model

(2) will change into a more complex form. Therefore, the research on the dynamical
behavior will be a very challenging subject. Thirdly, we have known that in many
epidemic diseases such as Hepatitis, Tuberculosis, AIDS and COVID-19, the infected
individuals in incubation periods also can possess the infection ability. Therefore, It
is more meaningful to study the disease transmission model coupled virus infection
with the incubation period infection. Fourthly, in fourth equation of model (2), the
amount of virus V can be from other populations other than people, for example, bats
for Ebola. Therefore, it will be very interesting to consider such factors in our model
(2). Lastly, when a disease spreads within a community, individuals acquire knowl-
edge about this disease, Therefore, it will be interesting to study the memory effect on
the dynamics of infectious model by using the new generalized fractional derivative
presented in [45].
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