Skip to main content
Log in

Acoustic rendering of particle-based simulation of liquids in motion

  • Original Paper
  • Published:
Journal on Multimodal User Interfaces Aims and scope Submit manuscript

Abstract

In interaction and interface design, the representation of continuous processes often uses liquid metaphors, such as dripping or streaming. When an auditory display of such processes is required, an approach to sound-synthesis based on the physics of liquids in motion would be the most convincing, especially when real-time interaction is into play. In order to bridge the complexity of fluid-dynamic simulations with the needs of interactive sonification, we propose a multi-rate sound synthesis of liquid phenomena. Low-rate smoothed-particle hydrodynamics is used to model liquids in motion and to trigger sound-emitting events. Such events, such as solid-liquid collision, or bubble formation, are synthesized at audio rate. The proposed method is applied to the two important cases of liquid falling into a vessel, and of solid object falling into a liquid. Some example applications in interaction design are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cabe P, Pittenger J (2000) Human sensitivity to acoustic information from vessel filling. J Exp Psychol Hum Percept Perform 26(1):313–324

    Article  Google Scholar 

  2. Cirio G, Marchal M, Hillaire S, Lecuyer A (2010) Six degrees-of-freedom haptic interaction with fluids. IEEE Transactions on Visualization and Computer Graphics 99 (PrePrints). http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.271

  3. Delle Monache S, Polotti P, Papetti S, Rocchesso D (2007) Gamelunch: A physics-based sonic dining table. In: Proceedings of the international computer music conference (ICMC), pp 41–44

    Google Scholar 

  4. Delle Monache S, Polotti P, Rocchesso D (2010) A toolkit for explorations in sonic interaction design. In: Proceedings of the 5th audio mostly conference: a conference on interaction with sound, AM’10. ACM, New York, pp 1–7. http://doi.acm.org/10.1145/1859799.1859800

    Chapter  Google Scholar 

  5. van den Doel K (2005) Physically-based models for liquid sounds. ACM Trans Appl Percept 2(4):534–546

    Article  Google Scholar 

  6. van den Doel K, Kry P, Pai K (2001) Foleyautomatic: Physically-based sound effects for interactive simulation and animation. In: Proc. ACM SIGGRAPH 01, pp 537–544

    Chapter  Google Scholar 

  7. Dourish P (2004) Where the action is: the foundations of embodied interaction. MIT Press, Cambridge

    Google Scholar 

  8. Drioli C, Rocchesso D (2009) Acoustic rendering of particle-based simulation of liquids in motion. In: DAFX-09: proceedings of the 12th international conference on digital audio effects

    Google Scholar 

  9. Ekman I, Rinott M (2010) Using vocal sketching for designing sonic interactions. In: Proceedings of the 8th ACM conference on designing interactive systems, DIS ’10. ACM, New York, pp 123–131. http://doi.acm.org/10.1145/1858171.1858195

    Chapter  Google Scholar 

  10. Enright D, Marschner S, Fedkiw R (2002) Animation and rendering of complex water surfaces. In: SIGGRAPH ’02: Proceedings of the 29th annual conference on computer graphics and interactive techniques. ACM, New York, pp 736–744. http://doi.acm.org/10.1145/566570.566645

    Chapter  Google Scholar 

  11. Farnell A (2010) Designing Sound. MIT Press, Cambridge

    Google Scholar 

  12. Franz GJ (1959) Splashes as sources of sound in liquids. J Acoust Soc Am 31(8):1080–1096. http://link.aip.org/link/?JAS/31/1080/1

    Article  Google Scholar 

  13. Gekle S, Peters I, Gordillo JM, van der Meer D, Lohse D (2010) Supersonic air flow due to solid-liquid impact. Phys. Rev. Lett. 104(2):024501. http://link.aps.org/doi/10.1103/PhysRevLett.104.024501

    Article  Google Scholar 

  14. Means SL, Heitmeyer RM (2001) Low-frequency sound generation by an individual open-ocean breaking wave. J Acoust Soc Am 110(2):761–768 http://link.aip.org/link/?JAS/110/761/1

    Article  Google Scholar 

  15. Minnaert M (1933) On musical air bubbles and the sounds of running water. Philos Mag 16:235–248

    Google Scholar 

  16. Moss W, Yeh H, Hong JM, Lin MC, Manocha D (2009) Harmonic fluids. ACM Trans Graph (SIGGRAPH 2009) 28(3):1–12

    Google Scholar 

  17. Moss W, Yeh H, Hong JM, Lin MC, Manocha D (2010) Sounding liquids: Automatic sound synthesis from fluid simulation. ACM Trans Graph (SIGGRAPH 2010) 29(3):1–13. http://doi.acm.org/10.1145/1805964.1805965

    Article  Google Scholar 

  18. Muller M, Charypar D, Gross M (2003) Particle-based fluid simulation for interactive applications. In: Proc ACM SIGGRAPH/Eurographics 03, pp 154–159

    Google Scholar 

  19. Nystuen JA, Ostwald Jr LH, Medwin H (1992) The hydroacoustics of a raindrop impact. J Acoust Soc Am 92(2):1017–1021 http://link.aip.org/link/?JAS/92/1017/1

    Article  Google Scholar 

  20. Peltola L, Erkut C, Cook PR, Välimäki V (2007) Synthesis of hand clapping sounds. IEEE Trans Audio, Speech Language Proc 15(3):1021–1029. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4100694

    Article  Google Scholar 

  21. Polotti P, Delle Monache S, Papetti S, Rocchesso D (2008) Gamelunch: forging a dining experience through sound. In: CHI’08 extended abstracts on Human factors in computing systems, CHI EA’08. ACM, New York, pp 2281–2286. http://doi.acm.org/10.1145/1358628.1358670

    Google Scholar 

  22. Pumphrey HC, Crum LA, Bjorno L (1989) Underwater sound produced by individual drop impacts and rainfall. J Acoust Soc Am 85(4):1518–1526. http://link.aip.org/link/?JAS/85/1518/1

    Article  Google Scholar 

  23. Rath M, Rocchesso D (2005) Continuous sonic feedback from a rolling ball. IEEE Multimed 12(2):60–69. doi:10.1109/MMUL.2005.24

    Article  Google Scholar 

  24. Rein M (1993) Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn Res 12(2):61–93. doi:10.1016/0169-5983(93)90106-K

    Article  Google Scholar 

  25. Richardson EG (1948) The impact of a solid on a liquid surface. Proc Phys Soc 61(3):352

    Article  Google Scholar 

  26. Rocchesso D, Bresin R, Fernström M (2003) Sounding objects. IEEE Multimed 10(2):42–52. http://dx.doi.org/10.1109/MMUL.2003.1195160

    Article  Google Scholar 

  27. Rocchesso D, Bresin R, Fernström M (2003) Sounding objects. IEEE Multimed 10:42–52. doi:10.1109/MMUL.2003.1195160

    Article  Google Scholar 

  28. Rocchesso D, Fontana F (eds) (2003) The sounding object. Mondo Estremo

  29. Rocchesso D, Polotti P, Delle Monache S (2009) Designing continuous sonic interaction. Int J Des 3(3):13–25. http://www.ijdesign.org/ojs/index.php/IJDesign/article/view/620/271

    Google Scholar 

  30. Visell Y, Cooperstock J, Giordano B, Franinovic K, Law A, McAdams S, Jathal K, Fontana F (2008) A vibrotactile device for display of virtual ground materials in walking. In: Ferre M (ed) Haptics: perception, devices and scenarios. Lecture notes in computer science, vol 5024. Springer, Berlin, pp 420–426. http://dx.doi.org/10.1007/978-3-540-69057-3_55. doi:10.1007/978-3-540-69057-3_55

    Chapter  Google Scholar 

  31. aus der Wiesche S (2003) Computational slosh dynamics: theory and industrial application. Comput Mech 30:374–387

    Article  MATH  Google Scholar 

  32. Dobashi Y, Yamamoto T, Nishita T (2003) Real-time rendering of aerodynamic sound using sound textures based on computational fluid dynamics. ACM Trans Graph 22(3):732–740 (Proc. SIGGRAPH2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Drioli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drioli, C., Rocchesso, D. Acoustic rendering of particle-based simulation of liquids in motion. J Multimodal User Interfaces 5, 187–195 (2012). https://doi.org/10.1007/s12193-011-0063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12193-011-0063-7

Keywords

Navigation